

Pentaho Data
Integration Cookbook
Second Edition

Over 100 recipes for building open source ETL solutions
with Pentaho Data Integration

Alex Meadows

Adrián Sergio Pulvirenti

María Carina Roldán

 BIRMINGHAM - MUMBAI

Pentaho Data Integration Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Second Edition: November 2013

Production Reference: 2221113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-067-4

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Alex Meadows

Adrián Sergio Pulvirenti

María Carina Roldán

Reviewers
Wesley Seidel Carvalho

Daniel Lemire

Coty Sutherland

Acquisition Editor
Usha Iyer

Meeta Rajani

Lead Technical Editor
Arvind Koul

Technical Editors
Dennis John

Adrian Raposo

Gaurav Thingalaya

Project Coordinator
Wendell Palmer

Proofreader
Kevin McGowan

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Alex Meadows has worked with open source Business Intelligence solutions for nearly
10 years and has worked in various industries such as plastics manufacturing, social and
e-mail marketing, and most recently with software at Red Hat, Inc. He has been very active in
Pentaho and other open source communities to learn, share, and help newcomers with the best
practices in BI, analytics, and data management. He received his Bachelor's degree in Business
Administration from Chowan University in Murfreesboro, North Carolina, and his Master's degree
in Business Intelligence from St. Joseph's University in Philadelphia, Pennsylvania.

First and foremost, thank you Christina for being there for me before, during,
and after taking on the challenge of writing and revising a book. I know
it's not been easy, but thank you for allowing me the opportunity. To my
grandmother, thank you for teaching me at a young age to always go for goals
that may just be out of reach. Finally, this book would be no where without
the Pentaho community and the friends I've made over the years being a part
of it.

Adrián Sergio Pulvirenti was born in Buenos Aires, Argentina, in 1972. He earned his
Bachelor's degree in Computer Sciences at UBA, one of the most prestigious universities in
South America.

He has dedicated more than 15 years to developing desktop and web-based software
solutions. Over the last few years he has been leading integration projects and development
of BI solutions.

I'd like to thank my lovely kids, Camila and Nicolas, who understood that
I couldn't share with them the usual video game sessions during the
writing process. I'd also like to thank my wife, who introduced me to the
Pentaho world.

María Carina Roldán was born in Esquel, Argentina, in 1970. She earned her Bachelor's
degree in Computer Science at UNLP in La Plata; after that she did a postgraduate course in
Statistics at the University of Buenos Aires (UBA) in Buenos Aires city, where she has been
living since 1994.

She has worked as a BI consultant for more than 10 years. Over the last four years, she has
been dedicated full time to developing BI solutions using Pentaho Suite. Currently, she works
for Webdetails, one of the main Pentaho contributors. She is the author of Pentaho 3.2 Data
Integration: Beginner's Guide published by Packt Publishing in April 2010.

You can follow her on Twitter at @mariacroldan.

I'd like to thank those who have encouraged me to write this book: On one
hand, the Pentaho community; they have given me a rewarding feedback
after the Beginner's book. On the other side, my husband, who without
hesitation, agreed to write the book with me. Without them I'm not sure I
would have embarked on a new book project.

I'd also like to thank the technical reviewers for the time and dedication that
they have put in reviewing the book. In particular, thanks to my colleagues at
Webdetails; it's a pleasure and a privilege to work with them every day.

About the Reviewers

Wesley Seidel Carvalho got his Master's degree in Computer Science from the Institute
of Mathematics and Statistics, University of São Paulo (IME-USP), Brazil, where he researched
on (his dissertation) Natural Language Processing (NLP) for the Portuguese language. He
is a Database Specialist from the Federal University of Pará (UFPa). He has a degree in
Mathematics from the State University of Pará (Uepa).

Since 2010, he has been working with Pentaho and researching Open Data government.
He is an active member of the communities and lists of Free Software, Open Data, and
Pentaho in Brazil, contributing software "Grammar Checker for OpenOffice - CoGrOO" and
CoGrOO Community.

He has worked with technology, database, and systems development since 1997, Business
Intelligence since 2003, and has been involved with Pentaho and NLP since 2009. He is
currently serving its customers through its startups:

 f http://intelidados.com.br

 f http://ltasks.com.br

Daniel Lemire has a B.Sc. and a M.Sc. in Mathematics from the University of Toronto,
and a Ph.D. in Engineering Mathematics from the Ecole Polytechnique and the Université de
Montréal. He is a Computer Science professor at TELUQ (Université du Québec) where he
teaches Primarily Online. He has also been a research officer at the National Research Council
of Canada and an entrepreneur. He has written over 45 peer-reviewed publications, including
more than 25 journal articles. He has held competitive research grants for the last 15 years.
He has served as a program committee member on leading computer science conferences
(for example, ACM CIKM, ACM WSDM, and ACM RecSys). His open source software has been
used by major corporations such as Google and Facebook. His research interests include
databases, information retrieval, and high performance programming. He blogs regularly on
computer science at http://lemire.me/blog/.

Coty Sutherland was first introduced to computing around the age of 10. At that time,
he was immersed in various aspects of computers and it became apparent that he had a
propensity for software manipulation. From then until now, he has stayed involved in learning
new things in the software space and adapting to the changing environment that is Software
Development. He graduated from Appalachian State University in 2009 with a Bachelor's
Degree in Computer Science. After graduation, he focused mainly on software application
development and support, but recently transitioned to the Business Intelligence field to
pursue new and exciting things with data. He is currently employed by the open source
company, Red Hat, as a Business Intelligence Engineer.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Working with Databases 7

Introduction 7
Connecting to a database 9
Getting data from a database 14
Getting data from a database by providing parameters 16
Getting data from a database by running a query built at runtime 21
Inserting or updating rows in a table 23
Inserting new rows where a simple primary key has to be generated 28
Inserting new rows where the primary key has to be generated based
on stored values 32
Deleting data from a table 35
Creating or altering a database table from PDI (design time) 40
Creating or altering a database table from PDI (runtime) 43
Inserting, deleting, or updating a table depending on a field 45
Changing the database connection at runtime 51
Loading a parent-child table 53
Building SQL queries via database metadata 57
Performing repetitive database design tasks from PDI 62

Chapter 2: Reading and Writing Files 65
Introduction 66
Reading a simple file 66
Reading several files at the same time 70
Reading semi-structured files 72
Reading files having one field per row 79
Reading files with some fields occupying two or more rows 82
Writing a simple file 84
Writing a semi-structured file 87

ii

Table of Contents

Providing the name of a file (for reading or writing) dynamically 90
Using the name of a file (or part of it) as a field 93
Reading an Excel file 95
Getting the value of specific cells in an Excel file 97
Writing an Excel file with several sheets 101
Writing an Excel file with a dynamic number of sheets 105
Reading data from an AWS S3 Instance 107

Chapter 3: Working with Big Data and Cloud Sources 111
Introduction 111
Loading data into Salesforce.com 112
Getting data from Salesforce.com 114
Loading data into Hadoop 115
Getting data from Hadoop 119
Loading data into HBase 122
Getting data from HBase 127
Loading data into MongoDB 129
Getting data from MongoDB 130

Chapter 4: Manipulating XML Structures 133
Introduction 133
Reading simple XML files 134
Specifying fields by using the Path notation 137
Validating well-formed XML files 143
Validating an XML file against DTD definitions 146
Validating an XML file against an XSD schema 148
Generating a simple XML document 153
Generating complex XML structures 155
Generating an HTML page using XML and XSL transformations 162
Reading an RSS Feed 165
Generating an RSS Feed 167

Chapter 5: File Management 171
Introduction 171
Copying or moving one or more files 172
Deleting one or more files 175
Getting files from a remote server 178
Putting files on a remote server 181
Copying or moving a custom list of files 183
Deleting a custom list of files 185
Comparing files and folders 188
Working with ZIP files 191
Encrypting and decrypting files 195

iii

Table of Contents

Chapter 6: Looking for Data 199
Introduction 199
Looking for values in a database table 200
Looking for values in a database with complex conditions 204
Looking for values in a database with dynamic queries 207
Looking for values in a variety of sources 211
Looking for values by proximity 217
Looking for values by using a web service 222
Looking for values over intranet or the Internet 225
Validating data at runtime 227

Chapter 7: Understanding and Optimizing Data Flows 231
Introduction 232
Splitting a stream into two or more streams based on a condition 233
Merging rows of two streams with the same or different structures 240
Adding checksums to verify datasets 246
Comparing two streams and generating differences 249
Generating all possible pairs formed from two datasets 255
Joining two or more streams based on given conditions 258
Interspersing new rows between existent rows 261
Executing steps even when your stream is empty 265
Processing rows differently based on the row number 268
Processing data into shared transformations via filter criteria and
subtransformations 272
Altering a data stream with Select values 274
Processing multiple jobs or transformations in parallel 275

Chapter 8: Executing and Re-using Jobs and Transformations 279
Introduction 280
Launching jobs and transformations 283
Executing a job or a transformation by setting static arguments
and parameters 284
Executing a job or a transformation from a job by setting arguments and 287
parameters dynamically 287
Executing a job or a transformation whose name is determined at runtime 290
Executing part of a job once for every row in a dataset 293
Executing part of a job several times until a condition is true 298
Moving part of a transformation to a subtransformation 309
Using Metadata Injection to re-use transformations 316

Chapter 9: Integrating Kettle and the Pentaho Suite 321
Introduction 321
Creating a Pentaho report with data coming from PDI 324

iv

Table of Contents

Creating a Pentaho report directly from PDI 329
Configuring the Pentaho BI Server for running PDI jobs and transformations 332
Executing a PDI transformation as part of a Pentaho process 334
Executing a PDI job from the Pentaho User Console 341
Populating a CDF dashboard with data coming from a PDI transformation 350

Chapter 10: Getting the Most Out of Kettle 357
Introduction 357
Sending e-mails with attached files 358
Generating a custom logfile 362
Running commands on another server 367
Programming custom functionality 369
Generating sample data for testing purposes 378
Working with JSON files 381
Getting information about transformations and jobs (file-based) 385
Getting information about transformations and jobs (repository-based) 390
Using Spoon's built-in optimization tools 395

Chapter 11: Utilizing Visualization Tools in Kettle 401
Introduction 401
Managing plugins with the Marketplace 402
Data profiling with DataCleaner 404
Visualizing data with AgileBI 409
Using Instaview to analyze and visualize data 413

Chapter 12: Data Analytics 417
Introduction 417
Reading data from a SAS datafile 417
Studying data via stream statistics 420
Building a random data sample for Weka 424

Appendix A: Data Structures 427
Books data structure 427
museums data structure 429
outdoor data structure 430
Steel Wheels data structure 431
Lahman Baseball Database 432

Appendix B: References 433
Books 433
Online 434

Index 435

Preface
Pentaho Data Integration (also known as Kettle) is one of the leading open source data
integration solutions. With Kettle, you can take data from a multitude of sources, transform
and conform the data to given requirements, and load the data into just as many target
systems. Not only is PDI capable of transforming and cleaning data, it also provides an
ever-growing number of plugins to augment what is already a very robust list of features.

Pentaho Data Integration Cookbook, Second Edition picks up where the first edition left off,
by updating the recipes to the latest edition of PDI and diving into new topics such as working
with Big Data and cloud sources, data analytics, and more.

Pentaho Data Integration Cookbook, Second Edition shows you how to take advantage of all
the aspects of Kettle through a set of practical recipes organized to find quick solutions to
your needs. The book starts with showing you how to work with data sources such as files,
relational databases, Big Data, and cloud sources. Then we go into how to work with data
streams such as merging data from different sources, how to take advantage of the different
tools to clean up and transform data, and how to build nested jobs and transformations. More
advanced topics are also covered, such as data analytics, data visualization, plugins, and
integration of Kettle with other tools in the Pentaho suite.

Pentaho Data Integration Cookbook, Second Edition provides recipes with easy step-by-step
instructions to accomplish specific tasks. The code for the recipes can be adapted and built
upon to meet individual needs.

What this book covers
Chapter 1, Working with Databases, shows you how to work with relational databases with
Kettle. The recipes show you how to create and share database connections, perform typical
database functions (select, insert, update, and delete), as well as more advanced tricks such
as building and executing queries at runtime.

Chapter 2, Reading and Writing Files, not only shows you how to read and write files, but also
how to work with semi-structured files, and read data from Amazon Web Services.

Preface

2

Chapter 3, Working with Big Data and Cloud Sources, covers how to load and read data from
some of the many different NoSQL data sources as well as from Salesforce.com.

Chapter 4, Manipulating XML Structures, shows you how to read, write, and validate XML.
Simple and complex XML structures are shown as well as more specialized formats such
as RSS feeds.

Chapter 5, File Management, demonstrates how to copy, move, transfer, and encrypt files
and directories.

Chapter 6, Looking for Data, shows you how to search for information through various
methods via databases, web services, files, and more. This chapter also shows you how
to validate data with Kettle's built-in validation steps.

Chapter 7, Understanding and Optimizing Data Flows, details how Kettle moves data through
jobs and transformations and how to optimize data flows.

Chapter 8, Executing and Re-using Jobs and Transformations, shows you how to launch jobs
and transformations in various ways through static or dynamic arguments and parameterization.
Object-oriented transformations through subtransformations are also explained.

Chapter 9, Integrating Kettle and the Pentaho Suite, works with some of the other tools in the
Pentaho suite to show how combining tools provides even more capabilities and functionality
for reporting, dashboards, and more.

Chapter 10, Getting the Most Out of Kettle, works with some of the commonly needed
features (e-mail and logging) as well as building sample data sets, and using Kettle to read
meta information on jobs and transformations via files or Kettle's database repository.

Chapter 11, Utilizing Visualization Tools in Kettle, explains how to work with plugins and
focuses on DataCleaner, AgileBI, and Instaview, an Enterprise feature that allows for fast
analysis of data sources.

Chapter 12, Data Analytics, shows you how to work with the various analytical tools built into
Kettle, focusing on statistics gathering steps and building datasets for Weka.

Appendix A, Data Structures, shows the different data structures used throughout the book.

Appendix B, References, provides a list of books and other resources that will help you
connect with the rest of the Pentaho community and learn more about Kettle and the other
tools that are part of the Pentaho suite.

Preface

3

What you need for this book
PDI is written in Java. Any operating system that can run JVM 1.5 or higher should be able to
run PDI. Some of the recipes will require other software, as listed:

 f Hortonworks Sandbox: This is Hadoop in a box, and consists of a great environment
to learn how to work with NoSQL solutions without having to install everything.

 f Web Server with ASP support: This is needed for two recipes to show how to work
with web services.

 f DataCleaner: This is one of the top open source data profiling tools and integrates
with Kettle.

 f MySQL: All the relational database recipes have scripts for MySQL provided. Feel free
to use another relational database for those recipes.

In addition, it's recommended to have access to Excel or Calc and a decent text editor (like
Notepad++ or gedit).

Having access to an Internet connection will be useful for some of the recipes that use
cloud services, as well as making it possible to access the additional links that provide more
information about given topics throughout the book.

Who this book is for
If you are a software developer, data scientist, or anyone else looking for a tool that will help
extract, transform, and load data as well as provide the tools to perform analytics and data
cleansing, then this book is for you! This book does not cover the basics of PDI, SQL, database
theory, data profiling, and data analytics.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Copy the
.jar file containing the driver to the lib directory inside the Kettle installation directory."

A block of code is set as follows:

"lastname","firstname","country","birthyear"
"Larsson","Stieg","Swedish",1954
"King","Stephen","American",1947
"Hiaasen","Carl ","American",1953

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 <request>
 <type>City</type>
 <query>Buenos Aires, Argentina</query>
 </request>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking on the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Working with Databases

In this chapter, we will cover:

 f Connecting to a database

 f Getting data from a database

 f Getting data from a database by providing parameters

 f Getting data from a database by running a query built at runtime

 f Inserting or updating rows in a table

 f Inserting new rows when a simple primary key has to be generated

 f Inserting new rows when the primary key has to be generated based on stored values

 f Deleting data from a table

 f Creating or altering a table from PDI (design time)

 f Creating or altering a table from PDI (runtime)

 f Inserting, deleting, or updating a table depending on a field

 f Changing the database connection at runtime

 f Loading a parent-child table

 f Building SQL queries via database metadata

 f Performing repetitive database design tasks from PDI

Introduction
Databases are broadly used by organizations to store and administer transactional data such
as customer service history, bank transactions, purchases, sales, and so on. They are also
used to store data warehouse data used for Business Intelligence solutions.

Working with Databases

8

In this chapter, you will learn to deal with databases in Kettle. The first recipe tells you how to
connect to a database, which is a prerequisite for all the other recipes. The rest of the chapter
teaches you how to perform different operations and can be read in any order according to
your needs.

The focus of this chapter is on relational databases (RDBMS).
Thus, the term database is used as a synonym for relational
database throughout the recipes.

Sample databases
Through the chapter you will use a couple of sample databases. Those databases can be
created and loaded by running the scripts available at the book's website. The scripts are
ready to run under MySQL.

If you work with a different DBMS, you may have to modify
the scripts slightly.

For more information about the structure of the sample databases and the meaning of the
tables and fields, please refer to Appendix A, Data Structures. Feel free to adapt the recipes
to different databases. You could try some well-known databases; for example, Foodmart
(available as part of the Mondrian distribution at http://sourceforge.net/projects/
mondrian/) or the MySQL sample databases (available at http://dev.mysql.com/doc/
index-other.html).

Pentaho BI platform databases
As part of the sample databases used in this chapter you will use the Pentaho BI platform
Demo databases. The Pentaho BI Platform Demo is a preconfigured installation that lets you
explore the capabilities of the Pentaho platform. It relies on the following databases:

Database name Description
hibernate Administrative information including user

authentication and authorization data.
Quartz Repository for Quartz; the scheduler used by Pentaho.
Sampledata Data for Steel Wheels, a fictional company that sells all

kind of scale replicas of vehicles.

Chapter 1

9

By default, all those databases are stored in Hypersonic (HSQLDB). The script for creating the
databases in HSQLDB can be found at http://sourceforge.net/projects/pentaho/
files. Under Business Intelligence Server | 1.7.1-stable look for pentaho_sample_data-
1.7.1.zip. While there are newer versions of the actual Business Intelligence Server, they all
use the same sample dataset.

These databases can be stored in other DBMSs as well. Scripts for creating and loading these
databases in other popular DBMSs for example, MySQL or Oracle can be found in Prashant
Raju's blog, at http://www.prashantraju.com/projects/pentaho.

Beside the scripts you will find instructions for creating and loading the databases.

Prashant Raju, an expert Pentaho developer, provides
several excellent tutorials related to the Pentaho platform.
If you are interested in knowing more about Pentaho, it's
worth taking a look at his blog.

Connecting to a database
If you intend to work with a database, either reading, writing, looking up data, and so on, the
first thing you will have to do is to create a connection to that database. This recipe will teach
you how to do this.

Getting ready
In order to create the connection, you will need to know the connection settings. At least you
will need the following:

 f Host name: Domain name or IP address of the database server.

 f Database name: The schema or other database identifier.

 f Port number: The port the database connects to. Each database has its own default
port.

 f Username: The username to access the database.

 f Password: The password to access the database.

It's recommended that you also have access to the database at the moment of creating
a connection.

Working with Databases

10

How to do it...
Open Spoon and create a new transformation.

1. Select the View option that appears in the upper-left corner of the screen, right-click
on the Database connections option, and select New. The Database Connection
dialog window appears.

2. Under Connection Type, select the database engine that matches your DBMS.

3. Fill in the Settings options and give the connection a name by typing it in the
Connection Name: textbox. Your window should look like the following:

4. Press the Test button. A message should appear informing you that the connection to
your database is OK.

If you get an error message instead, you should recheck
the data entered, as well as the availability of the database
server. The server might be down, or it might not be
reachable from your machine.

Chapter 1

11

How it works...
A database connection is the definition that allows you to access a database from Kettle.
With the data you provide, Kettle can instantiate real database connections and perform the
different operations related to databases. Once you define a database connection, you will be
able to access that database and execute arbitrary SQL statements: create schema objects
like tables, execute SELECT statements, modify rows, and so on.

In this recipe you created the connection from the Database connections tree. You may
also create a connection by pressing the New... button in the Configuration window of any
database-related step in a transformation or job entry in a job. Alternatively, there is also a
wizard accessible from the Tools menu or by pressing the F3 key.

Whichever method you choose, a Settings window, like the one you saw in the recipe, shows
up, allowing you to define the connection. This task includes the following:

 f Selecting a database engine (Connection Type:)

 f Selecting the access method (Access:)

Native (JDBC) is the recommended access method, but you
can also use a predefined ODBC data source, a JNDI data
source, or an Oracle OCI connection.

 f Providing the Host name or IP

 f Providing the database name

 f Entering the username and password for accessing the database

A database connection can only be created with a transformation or an opened job. Therefore,
in the recipe you were asked to create a transformation. The same could have been achieved
by creating a job instead.

There's more...
The recipe showed the simplest way to create a database connection. However, there is more
to know about creating database connections.

Working with Databases

12

Avoiding creating the same database connection over and
over again
If you intend to use the same database in more than one transformation and/or job, it's
recommended that you share the connection. You do this by right-clicking on the database
connection under the Database connections tree and clicking on Share. This way the
database connection will be available to be used in all transformations and jobs. Shared
database connections are recognized because they appear in bold. As an example, take a
look at the following sample screenshot:

The databases books and sampledata are shared; the others are not.

The information about shared connections is saved in a file named shared.xml located in
the Kettle home directory.

Chapter 1

13

No matter what Kettle storage method is used (repository or files), you can share connections.
If you are working with the file method, namely ktr and kjb files, the information about
shared connections are not only saved in the shared.xml file, but also saved as part of the
transformation or job files even if they don't use the connections.

You can avoid saving all the connection data as part of your
transformations and jobs by selecting the option Only save
used connections to XML? in the Kettle options window
under Tools | Options.

Avoiding modifying jobs and transformations every time a
connection changes
Instead of typing fixed values in the database connection definition, it's worth using variables.
Variables live in either of the two places: in the kettle.properties file, which lives in the
Kettle home directory, or within the transformation or job as a named parameter. For example,
instead of typing localhost as the hostname, you can define a variable named HOST_NAME,
and as the host name, type its variable notation as ${HOST_NAME} or %%HOST_NAME%%.
If you decide to move the database from the local machine to a server, you just have to
change the value of the variable and don't need to modify the transformations or jobs that
use the connection.

To edit variables stored in the kettle.properties file, just
open the kettle.properties editor, which can be found
under Edit | Edit the kettle.properties file.

This is especially useful when it's time to move your jobs and transformations between
different environments: development, test, and so on.

Specifying advanced connection properties
The recipe showed you how to provide the general properties needed to create a connection.
You may need to specify additional options; for example, a preferred schema name, or
supply some parameters to be used when the connection is initialized. In order to do that,
look for those options in the extra tab windows under the General tab of the Database
Connection window.

Working with Databases

14

Connecting to a database not supported by Kettle
Kettle offers built-in support for a vast set of database engines. The list includes commercial
databases (such as Oracle), open source (such as PostgreSQL), traditional row-oriented
databases (such as MS SQL Server), modern column-oriented databases (such as Infobright),
disk-storage based databases (such as Informix), and in-memory databases (such as
HyperSQL). However, it can happen that you want to connect to a database that is not in
that list. In that case, you might still create a connection to that database. First of all, you
have to get a JDBC driver for that DBMS. For Kettle versions previous to 5.0, copy the JAR file
containing the driver to the libext/JDBC directory inside the Kettle installation directory. For
versions after 5.0, copy the JAR file containing the driver to the lib directory. Then create the
connection. For databases not directly supported, choose the Generic database connection
type. In the Settings frame, specify the connection string (which should be explained along
with JDBC), the driver class name, and the username and password. In order to find the
values for these settings, you will have to refer to the driver documentation.

Checking the database connection at runtime
If you are not sure that the database connection will be accessible when a job or
transformation runs from outside Spoon, you might precede all database-related operations
with a Check DB connection job entry. The entry will return true or false depending on the
result of checking one or more connections.

Getting data from a database
If you're used to working with databases, one of your main objectives while working with
PDI must be getting data from your databases for transforming, loading in other databases,
generating reports, and so on. Whatever operation you intend to achieve, the first thing you
have to do after connecting to the database is to get that data and create a PDI dataset. In
this recipe, you will learn the simplest way to do that.

Getting ready
To follow these instructions, you need to have access to any DBMS. Many of the recipes in
this chapter will be connecting to a MySQL instance. It is recommended that to fully take
advantage of the book's code, (which can be found on the book's website) you have access to
a MySQL instance.

How to do it...
1. Create a transformation and drop a Table Input step into the canvas. You will find it in

the Input category of steps.

2. From the Connection drop-down list, select the connection to the database where
your data resides, or create it if it doesn't exist.

Chapter 1

15

3. In the SQL textarea, type the SQL statement that returns the data you need. So far,
you should have something like the following:

4. Click on Preview. This will bring a sample list of rows so you can confirm that the data
is as expected.

5. Click on OK to close the Table Input configuration window, and you'll be ready to use
the data for further manipulation.

How it works...
The Table Input step you used in the recipe is the main Kettle step to get data from a
database. When you run or preview the transformation, Kettle executes the SQL and pushes
the rows of data coming from the database into the output stream of the step. Each column
of the SQL statement leads to a PDI field and each row generated by the execution of the
statement becomes a row in the PDI dataset.

Once you get the data from the database, it will be available for any kind of manipulation
inside the transformation.

Working with Databases

16

There's more...
In order to save time, or in case you are not sure of the name of the tables or columns in the
database, instead of typing the SQL statement, click on the Get SQL select statement... button.
This will bring the Database Explorer window. This window allows you to explore the selected
database. By expanding the database tree and selecting the table that interests you, you will be
able to explore that table through the different options available under the Actions menu.

Double-clicking on the name of the table will generate a SELECT statement to query that
table. You will have the chance to include all the field names in the statement, or simply
generate a SELECT * statement. After bringing the SQL to the Table Input configuration
window, you will be able to modify it according to your needs.

By generating this statement, you will lose any statement
already in the SQL textarea.

See also
 f Connecting to a database

 f Getting data from a database by providing parameters

 f Getting data from a database by running a query built at runtime

Getting data from a database by providing
parameters

If you need to create a dataset with data coming from a database, you can do it just by using
a Table Input step. If the SELECT statement that retrieves the data doesn't need parameters,
you simply write it in the Table Input setting window and proceed. However, most of the times
you need flexible queries—queries that receive parameters. This recipe will show you how to
pass parameters to a SELECT statement in PDI.

Assume that you need to list all products in Steel Wheels for a given product line and scale.

Getting ready
Make sure you have access to the sampledata database.

Chapter 1

17

How to do it...
Perform the following steps to connect to a database with parameters:

1. Create a transformation.

2. Before getting the data from the database, you have to create the stream that will
provide the parameters for the statement.

3. Create a stream that builds a dataset with a single row and two columns: the product
line parameter and the scale parameter. For this exercise, we will be using a Data
Grid step, but other steps like the Generate Rows step will also work. Opening the
Data Grid step, add the productline_par and productscale_par lines to the
Meta tab. They should both be of type String:

4. Switch to the Data tab. Notice how the fields created in the Meta tab build the
row for data to be added to. Create a record with Classic Cars as the value for
productline_par and 1:10 as the value for productscale_par:

5. Now drag a Table Input step to the canvas and create a hop from the Data Grid step,
which was created previously, towards this step.

Working with Databases

18

6. Now you can configure the Table Input step. Double-click on it, select the connection
to the database, and type in the following statement:
SELECT PRODUCTLINE
 , PRODUCTSCALE
 , PRODUCTCODE
 , PRODUCTNAME
FROM PRODUCTS p
WHERE PRODUCTLINE = ?
AND PRODUCTSCALE = ?

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

7. In the Insert data from step list, select the name of the step that is linked to the
Table Input step. Close the window.

8. Select the Table Input step and do a preview of the transformation. You will see a list of
all products that match the product line and scale provided in the incoming stream:

How it works...
When you need to execute a SELECT statement with parameters, the first thing you have to do
is to build a stream that provides the parameter values needed by the statement. The stream
can be made of just one step; for example, a data grid with fixed values, or a stream made
up of several steps. The important thing is that the last step delivers the proper values to the
Table Input step.

Then, you have to link the last step in the stream to the Table Input step where you will type
the statement. What differentiates this statement from a regular statement is that you have
to provide question marks. When you preview or run the transformation, the statement is
prepared and the values coming to the Table Input step are bound to the placeholders; that
is, the place where you typed the question marks.

Chapter 1

19

Note that in the recipe the output of the stream was a single row with two fields, which is
exactly the same number of question marks as in the statement.

The number of fields coming to a Table Input step must be
exactly the same as the number of question marks found
in the query.

Also note that in the stream, the product line was in the first place and the product scale
in the second place. If you look at the highlighted lines in the recipe, you will see that the
statement expected the parameter values to be exactly in that order.

The replacement of the markers respects the order of the
incoming fields.

Any values that are used in this manner are consumed
by the Table Input step. Finally, it's important to note that
question marks can only be used to parameterize value
expressions just as you did in the recipe.

Keywords or identifiers (for example; table names) cannot
be parameterized with the question marks method.

If you need to parameterize something different from a value expression, you should take
another approach, as explained in the next recipe.

There's more...
There are a couple of situations worth discussing.

Parameters coming in more than one row
In the recipe you received the list of parameter values in a single row with as many columns
as expected parameter values. It's also possible to receive the parameter values in several
rows. If, instead of a row you had one parameter by row, as shown in the following screenshot,
the behavior of the transformation wouldn't have changed:

Working with Databases

20

The statement would have pulled the values for the two parameters from the incoming stream
in the same order as the data appeared. It would have bound the first question mark with the
value in the first row, and the second question mark with the value coming in the second row.

Note that this approach is less flexible than the previous one. For example, if you have to
provide values for parameters with different data types, you will not be able to put them in the
same column and different rows.

Executing the SELECT statement several times, each for a
different set of parameters
Suppose that you not only want to list the Classic Cars in 1:10 scale, but also the Motorcycles
in 1:10 and 1:12 scales. You don't have to run the transformation three times in order to do
this. You can have a dataset with three rows, one for each set of parameters, as shown in the
following screenshot:

Then, in the Table Input setting window you have to check the Execute for each row? option.
This way, the statement will be prepared and the values coming to the Table Input step will
be bound to the placeholders, once for each row in the dataset coming to the step. For this
example, the result would look like the following:

See also
 f Getting data from a database by running a query built at runtime

Chapter 1

21

Getting data from a database by running
a query built at runtime

When you work with databases, most of the time you start by writing an SQL statement that
gets the data you need. However, there are situations in which you don't know that statement
exactly. Maybe the name of the columns to query are in a file, or the name of the columns by
which you will sort will come as a parameter from outside the transformation, or the name of
the main table to query changes depending on the data stored in it (for example sales2010).
PDI allows you to have any part of the SQL statement as a variable, so you don't need to know
the literal SQL statement text at design time.

Assume the following situation: you have a database with data about books and their authors,
and you want to generate a file with a list of titles. Whether to retrieve the data ordered by title or
by genre is a choice that you want to postpone until the moment you execute the transformation.

Getting ready
You will need a book database with the structure as explained in Appendix A, Data Structures.

How to do it...
1. Create a transformation.
2. The column that will define the order of the rows will be a named parameter. So, define

a named parameter named ORDER_COLUMN, and put title as its default value.

Remember that named parameters are defined in the
Transformation setting window and their role is the same
as the role of any Kettle variable. If you prefer, you can skip
this step and define a standard variable for this purpose.

3. Now drag a Table Input step to the canvas. Then create and select the connection
to the book's database.

4. In the SQL frame, type the following statement:
SELECT * FROM books ORDER BY ${ORDER_COLUMN}

5. Check the option Replace variables in script? and close the window.
6. Use an Output step such as a Text file output step to send the results to a file, save

the transformation, and run it.
7. Open the generated file and you will see the books ordered by title.
8. Now try again. Press the F9 key to run the transformation one more time.
9. This time, change the value of the ORDER_COLUMN parameter typing genre as the

new value.

Working with Databases

22

10. Click on the Launch button.

11. Open the generated file. This time you will see the titles ordered by genre.

How it works...
You can use Kettle variables in any part of the SELECT statement inside a Table Input step.
When the transformation is initialized, PDI replaces the variables by their values provided that
the Replace variables in script? option is checked.

In the recipe, the first time you ran the transformation, Kettle replaced the variable
ORDER_COLUMN with the word title and the statement executed was as follows:

SELECT * FROM books ORDER BY title

The second time, the variable was replaced by genre and the executed statement was
as follows:

SELECT * FROM books ORDER BY genre

As mentioned in the recipe, any predefined Kettle variable can
be used instead of a named parameter.

There's more...
You may use variables not only for the ORDER BY clause, but in any part of the statement:
table names, columns, and so on. You could even hold the full statement in a variable. Note
however that you need to be cautious when implementing this.

A wrong assumption about the metadata generated by those
predefined statements can make your transformation crash.

You can also use the same variable more than once in the same statement. This is an
advantage of using variables as an alternative to question marks when you need to execute
parameterized SELECT statements.

Named parameters are another option to store parts of statements. They are part of the job
or transformation and allow for default values and clear definitions for what the parameter is.
To add or edit named parameters, right-click on the transformation or job, go into its settings,
and switch to the Parameters tab.

See also
 f Getting data from a database by providing parameters

Chapter 1

23

Inserting or updating rows in a table
Two of the most common operations on databases, besides retrieving data, are inserting and
updating rows in a table.

PDI has several steps that allow you to perform these operations. In this recipe you will learn
to use the Insert/Update step. Before inserting or updating rows in a table by using this step,
it is critical that you know which field or fields in the table uniquely identify a row in the table.

If you don't have a way to uniquely identify the records,
you should consider other steps, as explained in the
There's more... section.

Assume this situation: you have a file with new employees of Steel Wheels. You have to insert
those employees in the database. The file also contains old employees that have changed
either the office where they work, the extension number, or other basic information. You will
take the opportunity to update that information as well.

Getting ready
Download the material for the recipe from the book's site. Take a look at the file you will use:

EMPLOYEE_NUMBER, LASTNAME, FIRSTNAME, EXTENSION, OFFICE, REPORTS,
TITLE
1188, Firrelli, Julianne,x2174,2,1143, Sales Manager
1619, King, Tom,x103,6,1088,Sales Rep
1810, Lundberg, Anna,x910,2,1143,Sales Rep
1811, Schulz, Chris,x951,2,1143,Sales Rep

Explore the Steel Wheels database, in particular the employees table, so you know what you
have before running the transformation. Execute the following MySQL statement:

SELECT

 EMPLOYEENUMBER ENUM

 , CONCAT(FIRSTNAME,' ',LASTNAME) NAME

 , EXTENSION EXT

 , OFFICECODE OFF

 , REPORTSTO REPTO

 , JOBTITLE

 FROM EMPLOYEES

 WHERE EMPLOYEENUMBER IN (1188, 1619, 1810, 1811);

Working with Databases

24

+------+----------------+-------+-----+-------+-----------+

| ENUM | NAME | EXT | OFF | REPTO | JOBTITLE |

+------+----------------+-------+-----+-------+-----------+

| 1188 | Julie Firrelli | x2173 | 2 | 1143 | Sales Rep |

| 1619 | Tom King | x103 | 6 | 1088 | Sales Rep |

+------+----------------+-------+-----+-------+-----------+

2 rows in set (0.00 sec)

How to do it...
Perform the following steps to insert or update rows in a table:

1. Create a transformation and use a Text File input step to read the file employees.
txt. Provide the name and location of the file, specify comma as the separator, and
fill in the Fields grid.

Remember that you can quickly fill the grid by clicking on
the Get Fields button.

2. Now, you will do the inserts and updates with an Insert/Update step. So, expand the
Output category of steps, look for the Insert/Update step, drag it to the canvas, and
create a hop from the Text File input step toward this one.

3. Double-click on the Insert/Update step and select the connection to the Steel
Wheels database, or create it if it doesn't exist. As target table, type EMPLOYEES.

4. Fill the grids as shown in the following screenshot:

Chapter 1

25

5. Save and run the transformation.

6. Explore the employees table by running the query executed earlier. You will see
that one employee was updated, two were inserted, and one remained untouched
because the file had the same data as the database for that employee:

+------+---------------+-------+-----+-------+--------------+

| ENUM | NAME | EXT | OFF | REPTO | JOBTITLE |

+------+---------------+-------+-----+-------+--------------+

| 1188 | Julie Firrelli| x2174 | 2 | 1143 |Sales Manager |

| 1619 | Tom King | x103 | 6 | 1088 |Sales Rep |

| 1810 | Anna Lundberg | x910 | 2 | 1143 |Sales Rep |

| 1811 | Chris Schulz | x951 | 2 | 1143 |Sales Rep |

+------+---------------+-------+-----+-------+--------------+

4 rows in set (0.00 sec)

How it works...
The Insert/Update step, as its name implies, serves for both inserting or updating rows. For
each row in your stream, Kettle looks for a row in the table that matches the condition you put
in the upper grid—the grid labeled The key(s) to look up the value(s):. Take for example the
last row in your input file:

1811, Schulz, Chris,x951,2,1143,Sales Rep

When this row comes to the Insert/Update step, Kettle looks for a row where
EMPLOYEENUMBER equals 1811. When it doesn't find one, it inserts a row following the
directions you put in the lower grid. For this sample row, the equivalent INSERT statement
would be as follows:

INSERT INTO EMPLOYEES (EMPLOYEENUMBER, LASTNAME, FIRSTNAME,
 EXTENSION, OFFICECODE, REPORTSTO, JOBTITLE)
 VALUES (1811, 'Schulz', 'Chris',
 'x951', 2, 1143, 'Sales Rep')

Now look at the first row:

1188, Firrelli, Julianne,x2174,2,1143, Sales Manager

Working with Databases

26

When Kettle looks for a row with EMPLOYEENUMBER equal to 1188, it finds it. Then, it updates
that row according to what you put in the lower grid. It only updates the columns where you
put Y under the Update column. For this sample row, the equivalent UPDATE statement would
be as follows:

UPDATE EMPLOYEES SET EXTENSION = 'x2174'
 , OFFICECODE = 2
 , REPORTSTO = 1143
 , JOBTITLE = 'Sales Manager'
WHERE EMPLOYEENUMBER = 1188

Note that the name of this employee in the file (Julianne) is different from the name in
the table (Julie), but, as you put N under the column Update for the field FIRSTNAME, this
column was not updated.

If you run the transformation with the log level Detailed, in the
log you will be able to see the real prepared statements that
Kettle performs when inserting or updating rows in a table.

There's more...
Here there are two alternative solutions to this use case.

Alternative solution if you just want to insert records
If you just want to insert records, you shouldn't use the Insert/Update step but the Table
Output step. This would be faster because you would be avoiding unnecessary lookup
operations; however, the Table Output step does not check for duplicated records. The Table
Output step is really simple to configure; just select the database connection and the table
where you want to insert the records. If the names of the fields coming to the Table Output
step have the same name as the columns in the table, you are done. If not, you should check
the Specify database fields option, and fill the Database fields tab exactly as you filled the
lower grid in the Insert/Update step, except that here there is no Update column.

Alternative solution if you just want to update rows
If you just want to update rows, instead of using the Insert/Update step, you should use the
Update step. You configure the Update step just as you configure the Insert/Update step,
except that here there is no Update column.

Chapter 1

27

Alternative way for inserting and updating
The following is an alternative way for inserting and updating rows in a table.

This alternative only works if the columns in the Key field's grid
of the Insert/Update step are a unique key in the database.

You may replace the Insert/Update step by a Table Output step and, as the error handling
stream coming out of the Table Output step, put an Update step.

In order to handle the error when creating the hop from the
Table Output step towards the Update step, select the Error
handling of step option.

Alternatively, right-click on the Table Output step, select Define error handling..., and
configure the Step error handling settings window that shows up. Your transformation would
look like the following:

In the Table Output step, select the table EMPLOYEES, check the Specify database fields
option, and fill the Database fields tab just as you filled the lower grid in the Insert/Update
step, except that here there is no Update column.

In the Update step, select the same table and fill the upper grid—let's call it the Key fields
grid—just as you filled the Key fields grid in the Insert/Update step. Finally, fill the lower
grid with those fields that you want to update, that is, those rows that had Y under the
Update column.

In this case, Kettle tries to insert all records coming to the Table Output step. The rows for
which the insert fails go to the Update step, and get updated.

If the columns in the Key fields grid of the Insert/Update step are not a unique key in the
database, this alternative approach doesn't work. The Table Output would insert all the rows.
Those that already existed would be duplicated instead of getting updated.

This strategy for performing inserts and updates has been proven to be much faster than the
use of the Insert/Update step whenever the ratio of updates to inserts is low. In general, for
best practice reasons, this is not an advisable solution.

Working with Databases

28

See also
 f Inserting new rows where a simple primary key has to be generated

 f Inserting new rows where the primary key has to be generated based on stored values

Inserting new rows where a simple primary
key has to be generated

It's very common to have tables in a database, where the values for the primary key column
can be generated by using a database sequence (in those DBMSs that have that feature; for
example, Oracle) or simply by adding 1 to the maximum value in the table. Loading data into
these tables is very simple. This recipe teaches you how to do this through the following exercise.

There are new offices at Steel Wheels. You have the data of the offices in a file that looks like
the following:

CITY;PHONE;ADDRESS;COUNTRY;POSTALCODE
Sao Paulo;11 3289-3703;Avenida Paulista 1330;Brazil;01310-200
Sao Paulo;11 3104-1116;Rua Boa Vista, 51;Brazil;01014-001
Buenos Aires;11 4582-6700;Cabildo 2127;Argentina;C1428AAT

You have to insert that data into the Steel Wheels database.

Getting ready
For this recipe, you will use the Pentaho sample database. If you don't have that database,
you'll have to follow the instructions in the introduction of this chapter.

As you will insert records into the office table, it would be good if you explore that table before
doing any insert operations. The following is a sample query:

SELECT

 OFFICECODE

 , ADDRESSLINE1

 , CITY

 , COUNTRY

FROM OFFICES

ORDER BY OFFICECODE;

Chapter 1

29

+------------+--------------------------+---------------+-----------+

| OFFICECODE | ADDRESSLINE1 | CITY | COUNTRY |

+------------+--------------------------+---------------+-----------+

| 1 | 100 Market Street | San Francisco | USA |

| 2 | 1550 Court Place | Boston | USA |

| 3 | 523 East 53rd Street | NYC | USA |

| 4 | 43 Rue Jouffroy D'abbans | Paris | France |

| 5 | 4-1 Kioicho | Tokyo | Japan |

| 6 | 5-11 Wentworth Avenue | Sydney | Australia |

| 7 | 25 Old Broad Street | London | UK |

+------------+--------------------------+---------------+-----------+

7 rows in set (0.00 sec)

How to do it...
1. Create a transformation and create a connection to the sampledata database.

2. Use a Text file input to read the offices.txt file with data about the new offices.

3. From the Data Warehouse category drag-and-drop a Combination lookup/update
step and create a hop from the previous step towards this one.

4. Double-click on the step, select the connection to the sampledata database, and
type offices as the Target table.

5. Fill the Key fields grid as shown:

6. In the Technical key field type OFFICECODE. For the Creation of technical key fields,
leave the default values. Close the window.

7. From the Output category of steps, add an Update step.

8. Double-click on the step, select the connection to the sampledata database, and
type OFFICES as the Target table.

9. In the first grid, add rows with the text OFFICECODE both under Table field and under
Stream field1. As Comparator choose =. This way, you will update the rows where
OFFICECODE is equal to the office code in your stream.

10. In the lower grid, add a row and type PHONE both under Table field and Stream field.
Add a second row and type POSTALCODE in both columns.

Working with Databases

30

11. Close the window.

12. It's time to save the transformation and run it to see what happens.

13. As you might guess, three new offices have been added, with primary keys 8, 9,
and 10. The results are as follows:

SELECT

 OFFICECODE

 , ADDRESSLINE1

 , CITY

 , COUNTRY

FROM OFFICES

ORDER BY CAST(OFFICECODE AS UNSIGNED);

+------------+--------------------------+---------------+-----------+

| OFFICECODE | ADDRESSLINE1 | CITY | COUNTRY |

+------------+--------------------------+---------------+-----------+

| 1 | 100 Market Street | San Francisco | USA |

| 10 | Cabildo 2127 | Buenos Aires | Argentina |

| 2 | 1550 Court Place | Boston | USA |

| 3 | 523 East 53rd Street | NYC | USA |

| 4 | 43 Rue Jouffroy D'abbans | Paris | France |

| 5 | 4-1 Kioicho | Tokyo | Japan |

| 6 | 5-11 Wentworth Avenue | Sydney | Australia |

| 7 | 25 Old Broad Street | London | UK |

| 8 | Avenida Paulista 1330 | Sao Paulo | Brazil |

| 9 | Rua Boa Vista, 51 | Sao Paulo | Brazil |

+------------+--------------------------+---------------+-----------+

10 rows in set (0.01 sec)

How it works...
In many situations, before inserting data into a table you have to generate the primary key. If
the primary key is a simple sequence or the maximum primary key plus one, you can generate
it by using a Combination lookup/update step.

In the recipe, for each row in your file, with the Combination lookup/update step, you look for
a record in the offices table with the same values for address, city, and country.

Chapter 1

31

Because the offices are new, (there aren't offices in the table with the same combination of
address, city, and country values) the lookup fails. As a consequence, the step generates
a key value as the maximum OFFICECODE in the table, plus 1. Then, it inserts a row with the
generated primary key and the fields you typed in the grid.

Finally, the step adds the generated primary key value to the stream.

As a last task, we used that key to update the other fields coming into the file: POSTALCODE
and PHONE.

There's more...
The Combination lookup/update step is within the Data Warehouse category, because it is
mainly used for loading junk dimension tables. But, as you could see, it can also be used in
the particular situation where you have to generate a primary key.

In this recipe you generated the primary key as the maximum plus 1, but, as you can see in
the settings window, a database sequence can also be used instead.

When you use the Combination lookup/update step for inserting,
make sure that the columns that are not part of the list of key
fields are nullable or have default values.

Using the Combination lookup/update for looking up
In the recipe the Combination lookup/update step just inserted new rows. Now suppose
that you have a row that existed in the table. In that case, the lookup would have succeeded
and the step wouldn't have inserted a new row. Instead, it would just have returned the found
OFFICECODE. That field would have been added to the stream, ready to be used further in
the transformation, for example, for updating other fields, as you did in the recipe, or for being
used for inserting data in a related table.

Note that this is a potentially slow step, as it uses all the
values for the comparison.

See also
 f Inserting new rows where the primary key has to be generated based on stored values

Working with Databases

32

Inserting new rows where the primary key
has to be generated based on stored values

There are tables where the primary key is not a database sequence nor a consecutive integer,
but a column which is built based on a rule or pattern that depends on the keys already
inserted. For example, imagine a table where the values for the primary key are A00001,
A00002, and A00003. In this case, you can guess the rule: putting an A followed by a
sequence. The next in the sequence would be A00004. This seems too simple, but doing it in
PDI is not trivial. This recipe will teach you how to load a table where a primary key has to be
generated based on existing rows.

Suppose that you have to load author data into the book's database. You have the main data
for the authors, and you have to generate the primary key as in the previous example.

Getting ready
Run the script that creates and loads data into the books database. You'll find it at
http://packtpub.com/support. If the book's earlier example from this chapter
has been run, the database and author data should already have been created.

Before proceeding, verify the current values for the primary keys in the table where you will
insert data:

SELECT MAX(id_author)

FROM authors;

+----------------+

| MAX(id_author) |

+----------------+

| A00009 |

+----------------+

1 row in set (0.00 sec)

How to do it...
Perform the following steps to generate keys for inserted database records:

1. Create a transformation and create a connection to the book's database.

2. Use a Text file input step to read the authors.txt file.

For simplicity, the authors.txt file only has new authors,
that is, authors who are not in the table.

Chapter 1

33

3. To generate the next primary key, you need to know the current maximum. So,
use a Table Input step to get it. In this case, the following statement will give you
that number:
SELECT
CAST(MAX(RIGHT(id_author, 5)) AS UNSIGNED) max_id
FROM authors

Alternatively, you can simply get the id_author field
and transform the field with the Kettle steps until you
get the current maximum. You will have a simple clear
transformation, but it will take several Kettle steps to do it.

4. By using a Join Rows (Cartesian product) step, join both streams. Your
transformation should look like the following:

5. Add an Add sequence step. Replace the default value valuename with
delta_value. For the rest of the fields in the setting window, leave the
default values.

6. Add a Calculator step to build the keys. You do it by filling the setting window
as shown:

7. In order to insert the rows, add a Table output step, double-click on it, and select the
connection to the books database.

8. As Target table type authors.

Working with Databases

34

9. Check the option Specify database fields.

10. Select the Database fields tab and fill the grid as follows:

11. Save and run the transformation.

12. Explore the authors table. You should see the new authors:
SELECT * FROM authors ORDER BY id_author;

+----------+-----------+-------------+-----------+----------+

| lastname | firstname | nationality | birthyear | id_author|

+----------+-----------+-------------+-----------+----------+

| Larsson | Stieg | Swedish | 1954 | A00001 |

| King | Stephen | American | 1947 | A00002 |

| Hiaasen | Carl | American | 1953 | A00003 |

| Handler | Chelsea | American | 1975 | A00004 |

| Ingraham | Laura | American | 1964 | A00005 |

| Ramsey | Dave | American | 1960 | A00006 |

| Kiyosaki | Robert | American | 1947 | A00007 |

| Rowling | Joanne | English | 1965 | A00008 |

| Riordan | Rick | American | 1964 | A00009 |

| Gilbert | Elizabeth | unknown | 1900 | A00010 |

| Franzen | Jonathan | unknown | 1900 | A00011 |

| Collins | Suzanne | unknown | 1900 | A00012 |

| Blair | Tony | unknown | 1900 | A00013 |

+----------+-----------+-------------+-----------+----------+

13 rows in set (0.00 sec)

How it works...
When you have to generate a primary key based on the existing primary keys, there is no
direct way to do it in Kettle, unless the new primary key is simple to generate by adding
one to the maximum. One possible solution is the one shown in the recipe—getting the last
primary key in the table, combining it with your main stream, and using those two sources for
generating the new primary keys. This is how it worked in this example.

Chapter 1

35

First, by using a Table Input step, you found out the last primary key in the table. In fact,
you got only the numeric part needed to build the new key. In this exercise, the value was 9.
With the Join Rows (Cartesian product) step, you added that value as a new column in your
main stream.

Taking that number as a starting point, you needed to build the new primary keys as A00010,
A00011, and so on. You did this by generating a sequence (1, 2, 3, and so on), adding this
sequence to the max_id (that led to values 10, 11, 12, and so on), and finally formatting the
key with the use of the calculator.

Note that in the Calculator step, the first A+B performs an arithmetic calculation. It adds the
max_id with the delta_value sequence. Then it converts the result to a String giving it
the format with the mask 0000. This led to the values 00010, 00011, and so on.

The second A+B is a string concatenation. It concatenates the literal A with the previously
calculated ID.

Note that this approach works as long as you have a single user scenario. If you run multiple
instances of the transformation, they can select the same maximum value and try to insert
rows with the same PK leading to a primary key constraint violation.

There's more...
The key in this exercise is to get the last or maximum primary key in the table, join it to your
main stream, and use that data to build the new key. After the join, the mechanism for
building the final key would depend on your particular case.

See also
 f Inserting new rows where a simple primary key has to be generated

Deleting data from a table
Sometimes you might have to delete data from a table. If the operation to do it is simple, for
example:

DELETE FROM LOG_TABLE WHERE VALID='N'

Or

DELETE FROM TMP_TABLE

You could simply execute it by using an SQL job entry or an Execute SQL script step. If you
face the second of the above situations, you can even use a Truncate table job entry.

Working with Databases

36

For more complex situations, you should use the Delete step. Let's suppose the following
situation: you have a database with outdoor products. Each product belongs to a category:
tools, tents, sleeping bags, and so on. Now you want to delete all the products for a given list
of categories, where the price is less than or equal to $50.

Getting ready
In order to follow the recipe, you should download the material for this chapter: a script for
creating and loading the database, and an Excel file with the list of categories involved.

After creating the outdoor database and loading data by running the script provided, explore
the database before following the recipe. In particular, execute the following statement:

SELECT category

 , COUNT(*) quantity

FROM products p

JOIN categories c ON p.id_category=c.id_category

WHERE price<=50

GROUP BY p.id_category;

+---------------+----------+

| category | quantity |

+---------------+----------+

| kitchen | 19 |

| lights | 14 |

| sleeping bags | 5 |

| tents | 4 |

| tools | 8 |

+---------------+----------+

5 rows in set (0.00 sec)

SELECT category

 , COUNT(*) quantity

FROM products p

JOIN categories c ON p.id_category=c.id_category

WHERE price>50

GROUP BY p.id_category;

+---------------+----------+

| category | quantity |

Chapter 1

37

+---------------+----------+

| kitchen | 5 |

| lights | 1 |

| sleeping bags | 1 |

| tents | 8 |

| tools | 2 |

+---------------+----------+

5 rows in set (0.00 sec)

The highlighted lines belong to the products that you intend to delete.

How to do it...
1. Create a transformation.

2. The value to which you will compare the price before deleting will be stored as a
named parameter. So right-click within the transformation and select Transformation
settings. Switch to the Parameters tab and create a parameter named MAX_PRICE.
Set the default value to 50.

3. Drag to the canvas an Excel Input step to read the Excel file with the list of categories.

4. Drag to the canvas a Get Variables step to get the named variable as a field named
max_price with type Number.

5. After that, add a Database lookup step. Configure it to get the id_category fields
based on the category descriptions in the Excel file. So far, the transformation looks
like the following:

For higher volumes, it's better to get the variable just once
in a separate stream and join the two streams with a Join
Rows (Cartesian product) step.

Working with Databases

38

6. Select the Database lookup step and do a preview. You should see the following:

7. Finally, add a Delete step. You will find it under the Output category of steps.

8. Double-click on the Delete step, select the outdoor connection, and fill in the
key grid as follows:

9. Save and run the transformation.

10. Explore the database. If you run the same statements that you ran before starting the
recipe, you'll note that all products belonging to the categories in the Excel file with
price less than or equal to $50 have been deleted. The following is what you will see:

SELECT category

 , COUNT(*) quantity

FROM products p

JOIN categories c ON p.id_category=c.id_category

WHERE price<=50

GROUP BY p.id_category;

+---------------+----------+

| category | quantity |

+---------------+----------+

| kitchen | 19 |

| lights | 14 |

| sleeping bags | 5 |

+---------------+----------+

3 rows in set (0.00 sec)

Chapter 1

39

SELECT category

 , COUNT(*) quantity

FROM products p

JOIN categories c ON p.id_category=c.id_category

WHERE price>50

GROUP BY p.id_category;

+---------------+----------+

| category | quantity |

+---------------+----------+

| kitchen | 5 |

| lights | 1 |

| sleeping bags | 1 |

| tents | 8 |

| tools | 2 |

+---------------+----------+

5 rows in set (0.00 sec)

How it works...
The Delete step allows you to delete rows in a table in a database based on certain
conditions. In this case, you intended to delete rows from the table products where the price
was less than or equal to 50, and the category was in a list of categories, so the Delete step is
the right choice. This is how it works:

PDI builds a prepared statement for the DELETE operation. Then, for each row in your stream,
PDI binds the values of the row to the variables in the prepared statement.

Let's see it by example. In the transformation you built a stream where each row had a single
category and the value for the price.

If you run the transformation with the log level Detailed and look at the log, you will see the
statement that is executed:

DELETE FROM products
WHERE price < ?
AND id_category = ?

The WHERE clause is built based on the conditions you entered in the Delete configuration
window. For every row, the values of the fields you typed in the grid—max_price and
id_category—are bound to the question marks in the prepared statement.

Working with Databases

40

Note that the conditions in the Delete step are based on fields in the same table. In this case,
as you were provided with category descriptions and the products table that does not have
the descriptions but the ID for the categories, you had to use an extra step to get that ID—a
Database lookup.

Suppose that the first row in the Excel file had the value tents. As the ID for the category
tents is 4, the execution of the prepared statement with the values in this row has the same
effect as the execution of the following SQL statement:

DELETE FROM products
WHERE price < 50
AND id_category = 4

See also
 f The Looking for values in a database table recipe in Chapter 6, Looking for Data

Creating or altering a database table from
PDI (design time)

It's not uncommon that someone asks you to load a table that doesn't exist yet. The following
are some use cases:

 f You receive a flat file and have to load the full content in a temporary table

 f You have to create and load a dimension table with data coming from another database

You could write a CREATE TABLE statement from scratch and then create the transformation
that loads the table, or you could do all that in an easier way from Spoon.

In this case, suppose that you received a file with data about countries and the languages
spoken in those countries. You need to load the full content into a temporary table. The table
doesn't exist and you have to create it based on the content of the file.

Getting ready
In order to follow the instructions, you will need the countries.xml file available for
downloads from the book's site.

How to do it...
Perform the following steps to create or alter a database table:

1. Create a transformation and create a connection to the database where you will save
the data.

Chapter 1

41

2. In order to read the countries.xml file, use a Get data from XML step. As Loop
XPath type /world/country/language.

3. Fill the Fields grid as follows:

The @ symbol preceding the field isofficial is optional.
By selecting Attribute as Element, Kettle automatically
understands that this is an attribute.

4. From the Output category, drag-and-drop a Table Output step into the transformation.

5. Create a hop from the Get data from XML step to this new step.

6. Double-click on the Table Output step and select the connection you just created.

7. In the Target table textbox type countries_stage.

8. Click on the SQL button. A window will appear with the following script:

CREATE TABLE countries_stage
(
 country TINYTEXT
, capital TINYTEXT
, language TINYTEXT
, isofficial TINYTEXT
)
;

The syntax may be different for different DBMSs.

9. Because you know that isofficial is just a simple flag with values Y/N, replace
isofficial TINYTEXT with isofficial CHAR(1).

10. After clicking on Execute, a window will show up telling that the statement has been
executed, that is, the table has been created.

11. Save and run the transformation. All the information coming from the XML file is
saved into the table just created.

Working with Databases

42

How it works...
PDI allows you to create or alter tables in your databases depending on the tasks
implemented in your transformations or jobs. To understand what this is about, let's
explain the previous example.

A Table Output step causes Kettle to execute an INSERT statement against the database.
The insert is made based on the data coming to the Table Output and the data you put in
the Table Output configuration window, for example, the name of the table or the mapping
of the fields.

When you click on the SQL button in the Table Output setting window, this is what happens:
Kettle builds the statements needed to execute that insert successfully. As in this example,
the table doesn't exist, and hence the statement generated by clicking on the button is a
CREATE TABLE statement.

When the window with the generated statement appeared, you executed it. This caused the
table to be created, so you could safely run the transformation and insert into the new table
the data coming from the file to the step.

There's more...
The SQL button is present in several database-related steps. In all cases, its purpose is
the same: to determine the statements to be executed in order to run the transformation
successfully. In the recipe, the statement was a CREATE TABLE, but there are other
situations. The following are some examples:

 f If you use an Insert/Update step and fill the Update fields: grid with a field that
doesn't exist, Kettle generates an ALTER TABLE statement in order to add that field
as a new column in the table.

 f If you use an Update step and use the names of columns that are not indexed
in the The key(s) to look up the value(s): grid type, Kettle generates a
CREATE INDEX statement.

Note that in this case, the execution of the statement is not
mandatory but recommended.

 f If you use a Dimension Lookup/Update step in order to load a slowly changing
dimension, Kettle generates a CREATE TABLE statement including all the fields
that are needed in order to keep that kind of dimension updated. Slowly changing
dimensions are a data warehousing construct that stores historical data and keeps
versions of the data in the same table.

Chapter 1

43

You can execute the SQL as it is generated, you can modify it before executing it (as you did
in the recipe), or you can just ignore it. Sometimes the SQL generated includes dropping a
column just because the column exists in the table but is not used in the transformation. In
that case you shouldn't execute it.

Read the generated statement carefully, before
executing it.

Finally, you must know that if you run the statement from outside Spoon, in order to see the
changes inside the tool you either have to clear the cache by right-clicking on the database
connection and selecting the Clear DB Cache option, or restart Spoon.

See also
 f Creating or altering a database table from PDI (runtime)

Creating or altering a database table from
PDI (runtime)

When you are developing with PDI, you know (or have the means to find out) if the tables you
need exist or not, and if they have all the columns you will read or update. If they don't exist or
don't meet your requirements, you can create or modify them, and then proceed. Assume the
following scenarios:

 f You need to load some data into a temporary table. The table exists but you need to
add some new columns to it before proceeding.

 f You have to load a dimension table. This task is part of a new requirement, so this
table doesn't exist.

While you are creating the transformations and jobs, you have the chance to create or modify
those tables. But, if these transformations and jobs are to be run in batch mode in a different
environment, nobody will be there to do these verifications or create or modify the tables. You
need to adapt your work so these things are done automatically.

Suppose that you need to do some calculations and store the results in a temporary table that
will be used later in another process. As this is a new requirement, it is likely that the table
doesn't exist in the target database. You can create a job that takes care of this.

Working with Databases

44

How to do it...
1. Create a job, and add a Start job entry.

2. From the Conditions category, drag-and-drop a Table exists entry, an SQL entry from
Scripting, and a DUMMY entry from General.

3. Link all the entries as shown:

4. Double-click on the Table exists entry, choose the books database connection, and
as Table name type my_tmp_table.

5. Double-click on the SQL entry, choose the same database connection, and in the SQL
Script: type the following:
CREATE TABLE my_tmp_table (
CALC_1 NUMERIC(10,2),
CALC_2 NUMERIC(10,2),
CALC_3 NUMERIC(10,2)
);

The preceding statement is written with MySQL syntax.
Please review and fix it if needed, because you are
using a different DBMS.

6. Save the job and run it.

7. The table my_tmp_table should have been created.

8. Run the job again.

9. Nothing should happen.

Chapter 1

45

How it works...
The Table exists entry, as implied by its name, verifies if a table exists in your database. As
with any job entry, this entry either succeeds or fails. If it fails, the job creates the table with
an SQL entry. If it succeeds, the job does nothing.

There's more...
The SQL entry is very useful, not only for creating tables as you did in the recipe, but also
for executing very simple statements, as for example, setting a flag before or after running a
transformation. Its main use, however, is executing DDL statements.

On the other side, in order to decide if it was necessary to create the table or not, you used
a Table exists entry. In addition to this entry and before verifying the existence of the table,
you could have used the Check Db connections. This entry allows you to see if the database
is available.

Now, let's suppose the table exists, but it is an old version that doesn't have all the columns
you need. In this case you can use an extra useful entry: Columns exist in a table. If you can
detect that a column is not present, you can alter the table by adding that column, also with
an SQL job entry.

Creating or altering tables is not a task that should be done as
part of a regular ETL process. Kettle allows you to do it but you
should be careful when using these features.

See also
 f Creating or altering a database table from PDI (design time)

Inserting, deleting, or updating a table
depending on a field

PDI allows you to perform basic operations that modify the data in your tables, that is:
insert, update, and delete records. For each of those operations you have at least one step
that allows you to do the task. It may happen that you have to do one or another operation
depending on the value of a field. That is possible with a rather unknown step named
Synchronize after merge.

Suppose you have a database with books. You received a file with a list of books. In that list
there are books you already have and there are books you don't have.

For the books you already have, you intend to update the prices.

Working with Databases

46

Among the other books, you will insert in your database only those which have been published
recently. You will recognize them because they have the text NEW in the Comment field.

Getting ready
For this recipe, you will need the database which can be created and filled by running the
script books_2.sql. You also will need the file books_news.txt that accompanies the
material for this chapter.

As the recipe will modify the data in the database, before proceeding, explore the database to
see what is inside. In particular, run the following statements and pay attention to the results:

SELECT count(*)

FROM books;

+----------+

| count(*) |

+----------+

| 34 |

+----------+

1 row in set (0.00 sec)

SELECT id_title, title, price

FROM books

WHERE author_id='A00001';

+----------+--+-------+

| id_title | title | price |

+----------+--+-------+

| 123-400 | The Girl with the Dragon Tattoo | 37 |

| 123-401 | The Girl who Played with Fire | 35.9 |

| 123-402 | The Girl who Kicked the Hornett's Nest | 39 |

+----------+--+-------+

3 rows in set (0.00 sec)

SELECT *

FROM books

WHERE title="Mockingjay";

Empty set (0.00 sec)

Chapter 1

47

How to do it...
1. Create a new transformation and create a connection to the books database.

2. Drop a Text file input step to the canvas and use the step to read the books_news.
txt file. As separator, type |. Read all fields as String except the price that has to
be read as a Number with 0.00 as the Format.

3. Do a preview to verify you have read the file properly. You should see the following:

4. Use a Split Fields step to split the name field into two: firstname and lastname.

5. Use a Database lookup step to look up in the authors table for an author that
matches the firstname and lastname fields. As the value for Values to return
from the lookup table: add id_author.

6. Check the option Do not pass the row if the lookup fails and close the window.

7. From the Output category of steps drag-and-drop a Synchronize after merge step to
the canvas and create a hop from the last step toward this one. Your transformation
looks like the following:

8. Double-click on the step. For the Connection field, select the books connection. As
Target table, type books.

Working with Databases

48

9. Fill the grids as shown:

Remember that you can avoid typing by clicking on
the Get Fields and Get update fields buttons to the
right-hand side.

10. Select the Advanced tab.

11. As Operation fieldname, select comment. As Insert when value equal, type NEW. As
Update when value equal, type In Stock. Leave the other fields blank.

12. Close the window and save the transformation.

13. Then run the transformation.

14. Explore the database again. In particular, run for the second time the same
statements you ran before doing the recipe. Now you will get the following:

SELECT count(*)

FROM books;

+----------+

| count(*) |

+----------+

| 38 |

+----------+

1 row in set (0.00 sec)

SELECT id_title, title, price

FROM books

Chapter 1

49

WHERE author_id='A00001';

+----------+--+-------+

| id_title | title | price |

+----------+--+-------+

| 123-400 | The Girl with the Dragon Tattoo | 34.98 |

| 123-401 | The Girl who Played with Fire | 35.99 |

| 123-402 | The Girl who Kicked the Hornett's Nest | 37.99 |

+----------+--+-------+

3 rows in set (0.00 sec)

SELECT *

FROM books

WHERE title="Mockingjay";

+----------+------------+-----------+-------+-------+

| id_title | title | id_author | price | genre |

+----------+------------+-----------+-------+-------+

| 523-110 | Mockingjay | A00012 | 37.99 | Teens |

+----------+------------+-----------+-------+-------+

1 row in set (0.00 sec)

How it works...
The Synchronize after merge step allows you to insert, update, or delete rows in a table
based on the value of a field in the stream. In the recipe, you used the Synchronize after
merge step both for inserting the new books (for example, Mockingjay) and for updating the
prices for the books you already had (for example, The Girl with the Dragon Tattoo).

In order to tell PDI whether to execute an insert or an update, you used the field comment.
Under the Advanced tab, you told PDI that it should insert the records where the comment
was equal to NEW, and update those where the comment was In Stock.

Note that, because you didn't intend to delete rows, you left the Delete when value equal
option blank. However, you could also have configured this option in the same way you
configured the others. An example of that, could be deleting the books that will stop being
published. If there are books that match the out of market criteria, you could type
out of market in the Delete when value equal option and those books would be deleted.

The inserts and updates were made based on the fields you entered in the grids under the
General tab, which work exactly as the grids in an Insert/Update or an Update step.

Working with Databases

50

There's more...
Let's see a little more about the step you used in this recipe.

Insert, update, and delete all-in-one
The Synchronize after merge step is like an all-in-one step. It allows you to insert, update,
and delete rows from a table all in a single step, based on a field present in the dataset. For
each row, Kettle uses the value of that column to decide which of the three basic operations
to execute. This happens as follows.

Suppose that the Operation fieldname is called op and the values that should cause an
insert, update, or delete are NEW, In Stock, and Discontinued respectively:

Operation How it works
Insert The insert is made for all rows where the field op is equal to NEW. The

insert is made based on the key fields just like in an Insert/Update step.
Update The update is made for all rows where the field op is equal to the value In

Stock. The update is made based on the key fields just like in an Insert/
Update or an Update step.

Delete The delete is made for all rows where the field op is equal to the value
Discontinued. The delete is made based on the key fields just like in a
Delete step. For delete operations, the content of the lower grid is ignored.

Synchronizing after merge
You may wonder what the name Synchronize after merge has to do with this, if you neither
merged nor synchronized anything. The fact is that the step was named after the Merge Rows
(diff) step, as those steps can perfectly be used together. The Merge Rows (diff) step has
the ability to find differences between two streams, and those differences are used later to
update a table by using a Synchronize after merge step.

See also
 f Deleting data from a table

 f The Comparing two streams and generating differences recipe in Chapter 7,
Understanding and Optimizing Data Flows

Chapter 1

51

Changing the database connection
at runtime

Sometimes, you have several databases with exactly the same structure serving different
purposes. These are some situations:

 f A database for the information that is being updated daily and one or more
databases for historical data.

 f A different database for each branch of your business.

 f A database for your sandbox, a second database for the staging area, and a third
database fulfilling the production server purpose.

In any of those situations, it's likely that you need access to one or the other depending on
certain conditions, or you may even have to access all of them one after the other. Not only
that, the number of databases may not be fixed; it may change over time (for example, when
a new branch is opened).

Suppose you face the second scenario: your company has several branches, and the sales
for each branch are stored in a different database. The database structure is the same for
all branches; the only difference is that each of them holds different data. Now you want to
generate a file with the total sales for the current year in every branch.

Getting ready
Download the material for this recipe. You will find a sample file with database connections to
three branches. It looks like the following:

branch,host,database
0001 (headquarters),localhost,sales2010
0002,183.43.2.33,sales
0003,233.22.1.97,sales

If you intend to run the transformation, modify the file so it points to real databases.

How to do it...
Perform the following steps to dynamically change database connections:

1. Create a transformation that uses a Text file input step that reads the file with the
connection data.

2. Add a Copy rows to results step to the transformation. Create a hop going from Text
file input to Copy rows to results.

Working with Databases

52

3. Create a second transformation and define the following named parameters:
BRANCH, HOST_NAME, and DATABASE_NAME. Named parameters can be created by
right-clicking on the transformation and selecting Transformation settings. Switch to
the Parameters tab and enter the named parameters.

4. Create a database connection. Choose the proper Connection Type:, and
fill the Settings data. Type a value for the Port Number:, the User Name:, and the
Password fields. As Host Name: type ${HOST_NAME}, and as Database Name: type
${DATABASE_NAME}.

5. Use a Table Input step for getting the total sales from the database. Use the
connection just defined.

6. Use a Text file output step for sending the sales summary to a text file. Don't
forget to check the option Append under the Content tab of the setting window.

7. Create a job with two Transformation job entries, linked one after the other.

8. Use the first entry to call the first transformation you created and the second entry to
call the second transformation. The job looks like the following:

9. Double-click on the second transformation entry, select the Advanced tab, and check
the Copy previous results to parameters? and the Execute for every input row?
checkboxes.

10. Select the Parameters tab and fill it as shown:

11. Save both transformations. Save the job and run it.

12. Open the generated text file. It should have one line with sales information for each
database in the file with the list of databases.

Chapter 1

53

How it works...
If you have to connect to several databases, and you don't know in advance which or how
many databases you will have to connect to, you can't rely on a connection with fixed values
or variables defined in a single place, for example, in the kettle.properties file (which is
located in the Kettle home directory). In those situations, the best you could do is to define a
connection with variables and set the values for the variables at runtime.

In the recipe, you created a text file with a summary sales line for each database in a list.

The transformation that wrote the sales line used a connection with variables defined as
named parameters. This means that whoever calls the transformation has to provide the
proper values.

The main job loops on the list of database connections. For each row in that list, it calls the
transformation copying the values from the file to the parameters in the transformation. In
other words, each time the transformation runs, the named parameters are instantiated with
the values coming from the file.

There's more...
In the recipe, you changed the host and the name of the database. You could have
parameterized any of the values that made up a database connection, for example,
the username and password.

See also
 f Connecting to a database

 f The Executing part of a job once for every row in a dataset recipe in Chapter 8,
Executing and Re-using Jobs and Transformations

Loading a parent-child table
A parent-child table is a table in which there is a self-referencing relationship. In other words,
there is a hierarchical relationship among its rows. A typical example of this is a table with
employees, in which one of the columns contains references to the employee that is above
each employee in the hierarchy.

Working with Databases

54

In this recipe you will load the parent-child table of the employees of Steel Wheels.
The hierarchy of roles in Steel Wheels is as follows:

 f A sales representative reports to a sales manager

 f A sales manager reports to the vice-president

 f A vice-president reports to the president

 f The president is the highest level in the hierarchy. There is a single employee
with this role

You will load all employees from a file. The following are the sample rows in that file:

EMPLOYEENUMBER|LASTNAME|FIRSTNAME|EXTENSION|EMAIL|OFFICECODE|JOBTITLE
|REP_TO

1002|Murphy|Diane|x5800|dmurphy@classicmodelcars.com |1|President|

1056|Patterson|Mary|x4611|mpatterso@classicmodelcars.com |1|VP
Sales|dmurphy@classicmodelcars.com

1076|Firrelli|Jeff|x9273|jfirrelli@classicmodelcars.com |1|VP
Marketing|dmurphy@classicmodelcars.com

1088|Patterson|William|x4871|wpatterson@classicmodelcars.com |6|Sales
Manager (JAPAN, APAC)|mpatterso@classicmodelcars.com

...

As you can see, among the fields you have the e-mail of the employee who is above in the
hierarchy. For example, Gerar Bondur is a Sales Manager, and reports to the employee
with e-mail mpatterso@classicmodelcars.com, that is, Mary Patterson.

Getting ready
In order to run this recipe, either truncate the employees table in Steel Wheels, or create the
table employees in a different database.

How to do it...
1. Create a transformation that inserts the record for the president who is first in the

hierarchy and doesn't report to anyone. The transformation should read the file, filter
the record with JOBTITLE=President, and insert the data into the employees table.

2. Create another transformation to load the rest of the employees. Define a named
parameter named LEVEL that will represent the role of the employees being loaded.

3. Use a Text file input step to read the file of employees.

Chapter 1

55

4. Use a Get Variables step to add the variable LEVEL as a new field named level.

5. Use a Join rows step to merge the employee data with the level the
transformation will be filtering on. Leave the condition field empty so that the level
from the Get Variables step will be added to each record.

6. Add a Filter rows step to filter the employees to load based on their role. In
order to do that, enter the following condition: JOBTITLE REGEXP level.

7. Add a Database lookup step to find out the employee number of the employee
who is one above in the hierarchy. In the upper grid, add a row with the condition
EMAIL = REP_TO. Use the lower grid to get the field EMPLOYEENUMBER and
rename it to REPORTSTO.

8. Add a Dummy step to send employee records that do not have an employee
record parent to. This step will act as an error handling step.

9. Add a Table Output step and use it to insert the records in the table employees.
Your final transformation looks like the following:

10. Finally, create a job to put everything together. Drag a START entry and four
Transformation job entries to the work area. Link all of them in a row.

11. Use the first Transformation entry to execute the transformation that loads
the president.

12. Double-click on the second Transformation entry and configure it to run the
transformation that loads the other employees. Under the Parameters tab, add
a parameter named LEVEL with value VP.*.

13. Repeat step 12 for the third Transformation entry, but this time, type .*Manager.*
as the value for the LEVEL parameter.

Working with Databases

56

14. Repeat step 12 for the fourth Transformation entry, but this time, type Sales
Rep.* as the value for the LEVEL parameter.

15. Save and run the job. The table should have all employees loaded, as you
can see in the following query:
SELECT

 EMPLOYEENUMBER N

 , LASTNAME

 , REPORTSTO

 , JOBTITLE

FROM employees;

+------+-----------+-----------+----------------------------+

| N | LASTNAME | REPORTSTO | JOBTITLE |

+------+-----------+-----------+----------------------------+

| 1002 | Murphy | NULL | President |

| 1056 | Patterson | 1002 | VP Sales |

| 1076 | Firrelli | 1002 | VP Marketing |

| 1088 | Patterson | 1056 | Sales Manager (JAPAN, APAC)|

| 1102 | Bondur | 1056 | Sale Manager (EMEA) |

| 1143 | Bow | 1056 | Sales Manager (NA) |

| 1165 | Jennings | 1143 | Sales Rep |

| 1166 | Thompson | 1143 | Sales Rep |

| 1188 | Firrelli | 1143 | Sales Rep | |
... | ... | ... | ... |

+------+-----------+-----------+----------------------------+

23 rows in set (0.00 sec)

How it works...
If you have to load a table with parent-child relationships, loading all at once is not always
feasible. Look at the sampledata database. There is no physical foreign key from the
REPORTSTO column to the EMPLOYEENUMBER column, but if the foreign key had existed, it
would fail because of the foreign key constraint. Not only that; in this case loading all at once
would be impossible because in the file you missed the ID of the parent employee loading all
records needed for the REPORTSTO column.

Chapter 1

57

So, in this recipe there was one possible solution for loading the table. We loaded all
employees, one role at a time, beginning with the president and followed by the roles below
in the hierarchy. The transformation that loaded the other roles simply read the file, kept only
the employees with the role being loaded, looked for the ID of the parent employee in the
hierarchy, and inserted the records. For the roles you could have used fixed values, but you
used regular expressions instead. In doing so, you avoided calling the transformation once for
each different role. For example, for loading the vice-presidents you called the transformation
once with the regular expression VP.* which matched both VP Sales and VP Marketing.

See also
 f Inserting or updating rows in a table

Building SQL queries via database metadata
While working with source database systems, developers have to remain constantly vigilant
for new system changes as they happen. Utilizing the source metadata that can be found
within the database system can help generate SQL statements that remain constantly up-to-
date. This will allow for source data to be captured even if the rest of an ETL transformation
fails due to the new changes.

In this recipe you will create a dynamic data extracting transformation that will extract data
from the books database created earlier in the chapter.

Getting ready
For this recipe you will need the database which can be created and filled by running the
script books.sql. This can be found in the code for this chapter.

As the recipe will read metadata from the books database, before proceeding, explore the
database's metadata repository to see what is inside. In particular, run these statements and
pay attention to the results:

SELECT

 TABLE_NAME

 , TABLE_TYPE

 , ENGINE

 , VERSION

 , ROW_FORMAT

 , TABLE_ROWS

 , AVG_ROW_LENGTH

 , DATA_LENGTH

Working with Databases

58

FROM information_schema.TABLES

WHERE TABLE_SCHEMA = 'books';

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

| TABLE_NAME | TABLE_TYPE | ENGINE | VERSION | ROW_FORMAT | TABLE_ROWS
| AVG_ROW_LENGTH | DATA_LENGTH |

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

| authors | BASE TABLE | InnoDB | 10 | Compact | 13
| 1260 | 16384 |

| books | BASE TABLE | InnoDB | 10 | Compact | 34
| 481 | 16384 |

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

2 rows in set (0.00 sec)

SELECT

 TABLE_NAME

 , COLUMN_NAME

 , ORDINAL_POSITION

 , COLUMN_DEFAULT

 , IS_NULLABLE

 , DATA_TYPE

FROM information_schema.COLUMNS

WHERE TABLE_SCHEMA = 'books';

+--------------+-------------+------------------+----------------+-------
------+-----------+

| TABLE_NAME | COLUMN_NAME | ORDINAL_POSITION | COLUMN_DEFAULT | IS_
NULLABLE | DATA_TYPE |

+--------------+-------------+------------------+----------------+-------
------+-----------+

| authors | lastname | 1 | NULL | NO
| tinytext |

| authors | firstname | 2 | NULL | NO
| tinytext |

| authors | nationality | 3 | unknown | YES
| varchar |

Chapter 1

59

| authors | birthyear | 4 | 1900 | YES
| int |

| authors | id_author | 5 | NULL | NO
| char |

| books | id_title | 1 | NULL | NO
| char |

| books | title | 2 | NULL | NO
| tinytext |

| books | id_author | 3 | NULL | NO
| tinytext |

| books | price | 4 | 0 | YES
| double |

| books | genre | 5 | unknown | YES
| varchar |

+--------------+-------------+------------------+----------------+-------
------+-----------+

10 rows in set (0.00 sec)

The preceding statement is written with the MySQL
syntax. Please review and fix it if needed if you are
using a different DBMS.

Compare how the data in the information_schema database matches the CREATE DDL
statements found in the books.sql file. Notice how the same parameters in the statements
used to create the tables translate into the TABLES and COLUMNS tables.

How to do It...
1. Create a new transformation and add a Table Input step that can connect to the

information_schema database.

2. Create a query that selects the TABLE_NAME and COLUMN_NAME columns from the
COLUMNS table, making sure to filter only on the books TABLE_SCHEMA.

3. Add a constant value using the Add constants step found under the Transform
category. The value should be named grouper with type Integer and value of 1.
Create a hop from the Table Input step to the Add constants step:

Working with Databases

60

4. Add a Denormaliser step found under the Transform category. The Key field
should be the grouper column created in the last step. The Group field should
be TABLE_NAME. Fill in the Target fields: information like the following:

5. Preview the Denormaliser step. For each table in the books database, you should
see a record with a comma-separated list of column names.

6. Now finish this transformation by adding a Copy rows to result step and create a hop
from the Row denormaliser step to the Copy rows to result step.

7. Since we will be building a SQL query from these columns, the simplest
way will be to use them as variables. Variables can not be used in the same
transformation as they are set, plus we will have multiple sets of variables, so we
need to create a sub job and a parent job. Sub jobs are jobs within other jobs. Let's
continue building the transformations needed and then we will build the two jobs
required to run this process.

8. Create a second transformation. Add a Table Input step that will use the variables
we will be creating from the data in the first transformation. Be sure to select the
Replace variables in script? checkbox. The query should look like the following:
SELECT ${column_list_par}
FROM ${table_name_par}

9. Add a Text file output step. For the Filename field, point to a location where the
database table extracts can be dumped to. The Filename can also use parameters.
Use the table_name_par as the file's name. The Text file output step will store
whatever data is in the stream without declaring any Fields, so leave the Fields
tab empty.

Chapter 1

61

10. Create one last transformation that will use the Get rows from result step and load
the variables column_list_par and table_name_par with the Set Variables
step. The Set Variables step should be filled in like the following:

11. Create a job. This will be the sub job that will take each record and execute a
query. Bring over a START step, two Transformation steps, and a Success step.
The first Transformation step should point to the transformation that sets the
parameters used in the query. The second Transformation step should point to the
transformation that uses the parameters and extracts the query output into a text file.
This job should look similar to the following:

12. Create another job. This will be the parent job to the whole process. Bring over
a START step, a Transformation step, a Job step, and a Success step. The
Transformation step should point to the transformation that is extracting data from
the information_schema database. The Job step will be pointing to the job we
created previously. Make sure that the Execute for every input row? checkbox is
checked under the Advanced tab for the job. Your final job should look similar to
the following:

13. Now execute the parent job. There should be a number of text files with an output
equal to the number of tables in the books database.

Working with Databases

62

How it works...
Most databases have a metadata repository that details tables and columns. This can be
used to build dynamic queries to extract data for further processing. In this instance, once
the books database was created, the database application stored the metadata inside
the information_schema database. We then queried that database and used a Row
denormaliser step to merge the column details into a single field so that our query would
execute properly.

See also
 f Getting data from a database by providing parameters

 f Getting data from a database by running a query built at runtime

 f Performing repetitive database design tasks from PDI

 f The Executing part of a job once for every row in a dataset recipe in Chapter 8,
Executing and Re-using Jobs and Transformations

Performing repetitive database design tasks
from PDI

While we have cautioned that database design tasks should not normally be performed using
PDI, sometimes there are certain tasks that are very repetitive and it can save a lot of time by
creating a simple transformation to execute such tasks. For instance, maybe there are some
new auditing columns that need to be added to all the tables of a given database. With PDI,
and using a database's metadata repository, it is very straightforward to add the columns.

In this recipe we will be creating a transformation that will read a list of tables from the books
database in the database's metadata repository and build dynamic queries for each table.

Getting ready
For this recipe you will need the database which can be created and filled by running the
script books.sql. This can be found in the code for this chapter.

As the recipe will read metadata from the books database, before proceeding, explore
the database's metadata repository to see what is inside. In particular, run the following
statement to see what tables are available in the books database:

SELECT

 TABLE_NAME

 , TABLE_TYPE

 , ENGINE

Chapter 1

63

 , VERSION

 , ROW_FORMAT

 , TABLE_ROWS

 , AVG_ROW_LENGTH

 , DATA_LENGTH

FROM information_schema.TABLES

WHERE TABLE_SCHEMA = 'books';

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

| TABLE_NAME | TABLE_TYPE | ENGINE | VERSION | ROW_FORMAT | TABLE_ROWS
| AVG_ROW_LENGTH | DATA_LENGTH |

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

| authors | BASE TABLE | InnoDB | 10 | Compact | 13
| 1260 | 16384 |

| books | BASE TABLE | InnoDB | 10 | Compact | 34
| 481 | 16384 |

+--------------+------------+--------+---------+------------+------------
+----------------+-------------+

2 rows in set (0.00 sec)

The preceding statement and the following tutorial is
written with MySQL syntax. Please review and fix it if
needed because you are using a different DBMS.

How to do It...
1. Create a transformation. Add a Table Input step that reads the TABLE_NAME from

the TABLES table from MySQL's information_schema database.

2. From the Scripting category, add an Execute SQL script step. Check the option
Execute for each row? and add TABLE_NAME to the Parameters: section. For the
SQL script to execute, use the following:
ALTER TABLE ?
 ADD COLUMN create_date DATETIME DEFAULT '1900-01-01 00:00:00',
 ADD COLUMN update_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP

Working with Databases

64

3. Create a hop between the Table Input and Execute SQL script steps. Save and run
the transformation. When completed, check the tables in the books database. All of
them should now have a create_date and an update_date column added.

How it works...
Using a database's metadata repository is a very powerful and effective way to know the
structure of a given source database. With this transformation we took advantage of that by
reading out a list of all the tables from the books database and ran a variable-based query
that added two columns to each table based on the table name.

Try adding additional filters to specify certain tables from the books database. MySQL's
information_schema database also has a table that details the columns of each table
(aptly named COLUMNS). For larger databases, you may want to filter just a subset of tables
based on given columns or types.

While it has been stated before, it bears mentioning again
that this technique must be used with extreme caution
since it can drastically alter your database depending on
the type of query executed!

See also
 f Getting data from a database by running a query built at runtime

 f The Executing part of a job once for every row in a dataset recipe in Chapter 8,
Executing and Re-using Jobs and Transformations

 f Building SQL queries based on database metadata

2
Reading and
Writing Files

In this chapter we will cover:

 f Reading a simple file

 f Reading several files at the same time

 f Reading semi-structured files

 f Reading files having one field per row

 f Reading files having some fields occupying two or more rows

 f Writing a simple file

 f Writing a semi-structured file

 f Providing the name of a file (for reading or writing) dynamically

 f Using the name of a file (or part of it) as a field

 f Reading an Excel file

 f Getting the value of specific cells in an Excel file

 f Writing an Excel file with several sheets

 f Writing an Excel file with a dynamic number of sheets

 f Reading data from an AWS S3 Instance

Reading and Writing Files

66

Introduction
Files are the most primitive, but also the most used format to store and interchange data. PDI
has the ability to read data from all kinds of files and different formats. It also allows you to
write back to files in different formats as well.

Reading and writing simple files is a very straightforward task. There are several steps under
the input and output categories of steps that allow you to do it. You pick the step, configure
it quickly, and you are done. However, when the files you have to read or create are not
simple—and that happens most of the time—the task of reading or writing can become a
tedious exercise, if you don't know the tricks. In this chapter, you will learn not only the basics
for reading and writing files, but also all the how-tos for dealing with them.

This chapter covers plain files (.txt, .csv, and fixed width) and
Excel files. For recipes on reading and writing XML files, refer to
Chapter 4, Manipulating XML Structures.

Reading a simple file
In this recipe, you will learn the use of the Text file input step. In the example, you have to read
a simple file with a list of authors' information like the following:

"lastname","firstname","country","birthyear"
"Larsson","Stieg","Swedish",1954
"King","Stephen","American",1947
"Hiaasen","Carl ","American",1953
"Handler","Chelsea ","American",1975
"Ingraham","Laura ","American",1964

Getting ready
In order to continue with the exercise, you must have a file named authors.txt similar to
the one shown in the introduction section of this recipe.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Text file input step to the canvas.

3. Now, you have to type the name of the file (authors.txt) with its complete path.
You do it in the File or directory textbox.

Chapter 2

67

Alternatively, you can select the file by clicking on the Browse
button and looking for the file. The textbox will be populated
with the complete path of the file.

4. Click on the Add button. The complete text will be moved from the File or directory
textbox to the grid.

5. Select the Content tab and fill in the required fields, as shown in the
following screenshot:

Depending on what operating system the file was created on, your
format type will have to be changed. DOS is the default format,
with Unix being for any of the *nix based operating systems. The
format type can be changed on the Content tab under Format.

6. Select the Fields tab and click on the Get Fields button to get the definitions of the
fields automatically. The grid will be populated, as shown in the following screenshot:

Kettle doesn't always guess the data types, size, or format as
expected. So, after getting the fields, you may change the data
to what you consider more appropriate.

When you read a file, it's not mandatory to keep the names of
the columns as they are in the file. You are free to change the
names of the fields as well.

7. Click on the Preview button and you will see some sample rows built with the data
in your file.

Reading and Writing Files

68

How it works...
You use Text file input in order to read text files, in this case, the authors.txt file.

Looking at the content of the file, you can see that the first line contains the header of the
columns. In order to recognize that header, you have to check the Header checkbox under the
Content tab, and type 1 in the Number of header lines textbox. You also have to indicate the
field's separator. The separator can be made of one or more characters; the most used being
the semicolon, colon, or a tab. Finally, you can indicate the Enclosure string, in this case,
".PDI takes all that information and uses it to parse the text file and fill the fields correctly.

There's more...
To work with these kinds of delimited text files, you could choose the CSV file input step. This
step has a less powerful configuration, but it provides a better performance.

If you explore the tabs of the Text file input setting window, you will see that there are more
options to set, but the ones just explained are, by far, the most used. But, there are a couple
of additional features that may interest you:

Alternative notation for a separator
Instead of typing the separator for the fields, you can use the following notation:

$[H1, H2, ...]

Where the values H1, H2, ... are the hexadecimal codes for the separators. For example,
for specifying a tilde (~) as the separator instead of typing it, you could type $[7E]. However,
this notation makes more sense when your separators are non printable characters.

For the enclosure string, the hexadecimal notation is also allowed. Just follow the same rules
listed for hexadecimal codes for separators.

About file format and encoding
If you are trying to read a file without success, and you have already checked the most common
settings, that is, the name of the file, the header, the separator, and the fields, you should
take a look at and try to fix the other available settings. Among those, you have Format and
Encoding. Format allows you to specify the format of your file(s): DOS (default value) or UNIX.
If your file has a Unix format, you should change this setting. If you don't know the format but
you cannot guarantee that the format will be DOS, you can choose the mixed option. Encoding
allows you to specify the character encoding to use. If you leave it blank, Kettle will use the
default encoding on your system. Alternatively, if you know the encoding and it is different from
the default, you should select the proper option from the drop-down list.

Chapter 2

69

About data types and formats
When you read a file and tell Kettle which fields to get from that file, you have to provide at
least a name and a data type for those fields. In order to tell Kettle how to read and interpret
the data, you have more options. Most of them are self-explanatory, but the format, length,
and precision deserve an explanation:

If you are reading a number, and the numbers in your file have separators, dollar signs, and
so on, you should specify a format to tell Kettle how to interpret that number. The format is
a combination of patterns and symbols, as explained in the Oracle Java API documentation
at the following URL: http://docs.oracle.com/javase/7/docs/api/java/text/
DecimalFormat.html.

If you don't specify a format for your numbers, you may still provide a length and precision.
Length is the total number of significant figures, while precision is the number of floating
point digits.

If you don't specify format, length, or precision, Kettle will
do its best to interpret the number, but this could lead to
unexpected results.

In the case of dates, the same thing happens. When your text file has a date, you have to
select or type a format mask, so Kettle can recognize the different components of the date in
the field. For a complete reference on date formats, check the Oracle Java API documentation,
located at the following URL: http://docs.oracle.com/javase/7/docs/api/java/
text/SimpleDateFormat.html.

Altering the names, order, or metadata of the fields coming
from the file
If you want to reorder or delete some of the columns you read, you have to add another step
to the transformation. Suppose you want to move the country name to the end of the list of
columns, changing it to a more suitable field name, such as nationality.

In this case, add a Select values step. The Select values step allows you to select, rename,
reorder, and delete fields, or change the metadata of a field.

Reading and Writing Files

70

Under the Select & Alter tab, select all the fields and manipulate those according to your
needs, as shown in the following example:

If you just want to rename the columns, you don't need
a Select values step. You can do it in the Text file input
step by typing the names manually:

Reading files with fixed width fields
In the example, you read a CSV (Comma Separated Values) file type. This is the default
value for the type of file, as you can see under the Content tab. You have another option here
named Fixed for reading files with fixed-width columns. If you choose this option, a different
helper GUI will appear when you click on the Get fields button. In the wizard, you can visually
set the position for each of your fields.

There is also another step named Fixed file input in the Input category to apply in these
cases. It provides better performance and has a simpler, but less flexible configuration.

Reading several files at the same time
Sometimes, you have several files to read, all with the same structure, but different data. In
this recipe, you will see how to read those files in a single step. The example uses a list of files
containing names of museums in Italy.

Getting ready
You must have a group of text files in a directory, all with the same format. In this recipe,
the names of these files start with museums_italy_, for example, museums_italy_1,
museums_italy_2, museums_italy_roma, museums_italy_genova, and so on.

Each file has a list of names of museums, one museum on each line.

Chapter 2

71

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Text file input step onto the work area.

3. Under the File or directory tab, type the directory where the files are.

4. In the Regular Expression textbox, type museums_italy_.*\.txt.

5. Then, click on the Add button. The grid will be populated, as shown in the
following screenshot:

${Internal.Transformation.Filename.Directory}
is a variable that will be replaced at runtime with the full
path of the current transformation. Note that the variable will
be undefined until you save the transformation. Therefore,
it's necessary that you save before running a preview of the
step. If you are running a script in multiple environments,
it is recommended to set variables for the path instead of
using ${Internal.Transformation.Filename.
Directory}.You don't have to type the complete name of the
${Internal.Transformation.Filename.Directory}
variable. It can be selected from a list automatically created
when pressing Ctrl + Space.

To set a variable, you can create a variable/value pair in the
kettle.properties file, which is located in the Kettle
home directory.

6. Under the Fields tab, add one row; type museum for the Name column and String
under the Type column.

7. Save the transformation in the same place, where the museum directory is located.
Previewing the step, you will obtain a dataset with the content of all files with the
names of museums.

Reading and Writing Files

72

How it works...
With Kettle, it is possible to read more than one file at a time using a single
Text File Input step.

In order to get the content of several files, you can add names to the grid row by row. If
the names of files share the path and some part of their names, you can also specify
the names of the files by using regular expressions, as shown in the recipe. If you enter
a regular expression, Kettle will take all the files whose names match it. In the recipe, the
files that matched museums_italy_.*\.txt were considered as input files.

museums_italy_.*\.txt means all the files starting with museum_italy_ and having
the TXT extension. You can test if the regular expression is correct by clicking on the Show
filename(s)… button. That will show you a list of all files in that folder that match the expression.
If you fill the grid with the names of several files (with or without using regular expressions),
Kettle will create a dataset with the content of all of those files one after the other.

To learn more about regular expressions, you can visit the following URLs: http://www.
regular-expressions.info/quickstart.html and http://docs.oracle.com/
javase/tutorial/essential/regex/.

There's more...
In the recipe you read several files. It might happen that you have to read just one file, but you
don't know the exact name of the file. One example of that is a file whose name is a fixed text
followed by the current year and month as in samplefile_201012.txt. The recipe is useful
in cases like that as well. In this example, if you don't know the name of the file, you will still
be able to read it by typing the following regular expression: samplefile_20[0-9][0-9]
(0[1-9]|1[0-2])\.txt.

Reading semi-structured files
The simplest files for reading are those where all rows follow the same pattern: Each row
has a fixed number of columns, and all columns have the same kind of data in every row.
However, it is common to have files where the information does not have that format. On many
occasions, the files have little or no structure. This is also called "semi-structured" formatting.
Suppose you have a file with roller coaster descriptions, and the file looks like the following:

JOURNEY TO ATLANTIS
SeaWorld Orlando

Journey to Atlantis is a unique thrill ride since it is ...
Roller Coaster Stats
Drop: 60 feet

Chapter 2

73

Trains: 8 passenger boats
Train Mfg: Mack

KRAKEN
SeaWorld Orlando

Named after a legendary sea monster, Kraken is a ...
Kraken begins with a plunge from a height of 15-stories ...
Roller Coaster Stats
Height: 151 feet
Drop: 144 feet
Top Speed: 65 mph
Length: 4,177 feet
Inversions: 7
Trains: 3 - 32 passenger
Ride Time: 2 minutes, 2 seconds

KUMBA
Busch Gardens Tampa
...

As you can see, the preceding file is far from being the typical structured file that you can read
simply by configuring a Text file input step. Following this recipe, you will learn how to deal
with this kind of file.

Getting ready
When you have to read an unstructured file, such as the preceding sample file, the first thing
to do is to take a detailed look at it. Try to understand how the data is organized; despite being
unstructured, it has a hidden format that you have to discover in order to be able to read it.

So, let's analyze the sample file, which is available for download from Packt's site.

The file has data about several roller coasters. Let's take note of the characteristics of the file:

As a useful exercise, you could do this yourself before reading
the following list.

Each roller coaster spans several lines. There are blank lines, which should be eliminated.

What allows us to distinguish the first line for each roller coaster from the rest, is that it is
written in uppercase letters.

The first line below the name of the roller coaster is the name of the amusement park where
it is located.

Reading and Writing Files

74

Most of the lines have a property of the roller coaster in the format of code:description,
as for example Drop: 60 feet.

Above the properties, there is a line with the text Roller Coaster Stats, which doesn't add
any information. It should be discarded.

There are lines with additional information about the roller coaster. There is nothing that
distinguishes these lines. They simply do not fall into any of the other kinds of lines (lines
with the name of the park, lines with properties of the roller coaster, and so on). Once you
understand the content of your file, you are ready to read it, and parse it.

How to do it...
Carry out the following steps:

1. Create a transformation and drag a Text file input step.

2. Use that step to read the file named rollercoasters_II.txt. Under the Content
tab, uncheck the Header option and under the Separator tab, type |. Under the Fields
tab, enter a single field named text of type String. As the character | is not present
in any part of the file, you are sure that the whole line will be read as a single field.

Picking the right separator when building files can be tricky.
Try to find the right character or characters that are never
used within the dataset that is being stored.

3. From the Scripting category of steps, add a Modified Java Script Value step,
double-click it, and under the Main tab window, type the following snippet of code:
var attraction;
trans_Status=CONTINUE_TRANSFORMATION;

if (getProcessCount('r') == 1) attraction = '';
if (text == upper(removeDigits(text))) {
 attraction = text;
 trans_Status=SKIP_TRANSFORMATION;
 }
else if (text == 'Roller Coaster Stats')
 trans_Status=SKIP_TRANSFORMATION;

4. Click on the Get variables button to populate the grid with the variable attraction.

5. From the Transform category, add an Add value fields changing sequence
step. Create a hop from Modified Java Script Value to the step Add value fields
changing sequence.

Chapter 2

75

6. Double-click the step. As Result field type line_nr. In the first row of the grid,
type attraction.

7. Do a preview on this last step. You will see the following:

So far, you've read the file, and identified all the rows belonging to each roller coaster. It's time
to parse the different lines. In the first place, let's parse the lines that contain properties:

1. Add a Filter rows step and enter the condition text REGEXP (.+):(.+).

2. From the Scripting category, add a Regex Evaluation step. Create a hop from the
Filter rows step to the Regex Evaluation step and make the hop be of the type Main
output of step. This will pass all rows that match the condition in the Filter rows step.

3. Configure the step as follows: As Field to evaluate select text. Check the Create
fields for capture groups option. As Regular expression: type (.+):(.+).

4. Fill the lower grid with two rows: as New field type code in the first row and desc in
the second. In both rows, under Type, select String, and under Trim select both.

5. Finally, add a Select values step to select the fields: attraction, code, desc,
and line_nr.

In order to do a preview to see how the steps are transforming
your data, you can add a Dummy step and send the false rows of
the Filter rows step towards it. The only purpose of this is to avoid
the transformation crashing before the preview can complete.

Now, you will parse the other lines: the lines that contain the park name, and the
additional comments:

1. Add another Filter rows step, and send the false rows of the other Filter rows step
toward this one.

Reading and Writing Files

76

2. Add two Add constants steps, and a Select values step, and link all the steps, as
shown in the following diagram:

3. In the Filter rows enter the condition line_nr=1. Open the first Add constants step
and add a String field named code with the value park. Make sure the true rows of
the Filter rows step go toward this step.

4. In the other Add constants step, add a String field named code with the value
additional_information. Make sure the false rows of the Filter rows step go
toward this step. Use the Select values step that joins the two Add constants steps
to select the fields attraction, code, text, and line_nr. In the same step,
rename text as desc.

Make sure that the fields are in this exact order. The metadata
of both Select values steps must coincide.

Now that you have parsed all the types of rows it's time to join the rows together:

1. Join both Select values with a Sort rows step. Sort the rows by attraction
and line_nr.

Chapter 2

77

2. Select the Sort rows step and do a preview. You should see the following:

How it works...
When you have a semi-structured file (a file with little to no real formatting), the first thing to
do is understand its content, in order to be able to parse the file properly.

If the entities described in the file (roller coasters in this example) are spanned over several
lines, the very first task is to identify the rows that make up a single entity. The usual method
is to do it with a JavaScript step. In this example, with the JavaScript code, you used the fact
that the first line of each roller coaster was written with uppercase letters, to create and add a
field named attraction. In the same code, you removed unwanted lines.

In this example, as you needed to know which row was the first in each group, you added an
Add value fields changing sequence step.

After doing this, which as noted is only necessary for a particular kind of file, you have to
parse the lines. If the lines do not follow the same pattern, you have to split your stream in
as many streams as kind of rows you have. In this example, you split the main stream into
three, as follows:

1. One for parsing the lines with properties, for example, Drop: 60 feet.

2. One for setting the name of the amusement park where the roller coaster was.

3. One for keeping the additional information.

In each stream, you proceeded differently according to the format of the line.

The most useful step for parsing individual unstructured fields is the Regexp Evaluation
step. It both validates if a field follows a given pattern (provided as a regular expression)
and optionally, it captures groups. In this case, you used that step to capture a code and a
description. In the preceding example (Drop: 60 feet), the Regexp Evaluation step allowed
you to build two fields: code with value Drop, and desc with value 60 feet.

Reading and Writing Files

78

Once you parsed the line with Regexp Evaluation or the step of your choice, you can continue
transforming or modifying the fields according to your needs and the characteristics of your
particular file. In the same way, depending on the purpose of your transformation, you can
leave the streams separated or join them back together as you did in the recipe.

There's more...
There are some common kinds of files that can be parsed in the way you parsed the roller
coasters' file:

Master/detail files
Suppose that you have a file of invoices such as the following:

INV.0001-0045;02/28/2010;$323.99
CSD-031;2;$34.00
CSA-110;1;$100.99
LSK-092;1;$189.00
INV.0001-0046;02/28/2010;$53.99
DSD-031;2;$13.00
CXA-110;1;$40.99
INV.0001-0047;02/28/2010;$1149.33
...

The lines beginning with INV. are the invoice headers; the lines following the headers are the
details of those invoices.

Files like these are not uncommon. If you have a file like this with records that represent
headers followed by records that represent details about those headers, and the header
and detail records have different structures, you could parse it as explained in the recipe.

Read the file, do whatever is necessary to find out if a row is a header or a detail, and split the
stream in two. After that, parse header rows and detail rows accordingly.

Logfiles
Logfiles are among the most common kinds of unstructured files. They are typically used to
monitor processes, click-stream analysis, user downloads, and so on. Being able to process
through the mountain of details produced can help identify what customers are looking at or
what users are frequently doing on given websites. For example, let us look at the following
sample lines belonging to a Pentaho Server log:

...
2010-09-30 13:01:30,437 DEBUG [org.pentaho.platform.engine.
 services.solution.SolutionEngine] fd386728-ccab-11df-9...
2010-09-30 13:01:30,484 INFO [org.pentaho.platform.reposit
 ory.solution.SolutionRepositoryBase] Solution Reposito...

Chapter 2

79

2010-09-30 13:01:30,484 INFO [org.pentaho.platform.reposit
 ory.solution.SolutionRepositoryBase] Solution Reposit...
2010-09-30 13:01:30,515 INFO [org.pentaho.platform.reposit
 ory.solution.SolutionRepositoryBase] Could not find d...
2010-09-30 13:01:30,531 ERROR [org.pentaho.platform.engine.
 services.solution.SolutionEngine] fd386728-ccab-11df-...
2010-09-30 13:01:42,515 WARN [org.hibernate.cache.EhCacheP
 rovider] Could not find configuration [file]; using d...

In this case, all lines begin with a timestamp, followed by the level of log (DEBUG, INFO, and
so on), and then the details of the log.

Despite being unstructured, the lines in a logfile—the one shown above—have some text
that lets you know what kind of data is in those lines. Using that knowledge, you can parse
different lines, as explained in the recipe.

In this particular example, you could read the file as containing two fields: one for the
timestamp, the other with the rest of the line. Then, you can parse the second field splitting
it in two: the kind of log (DEBUG, INFO, and so on) and the detail. Optionally, if you wanted to
treat each level of log differently, you could split the stream with a Switch case step or nested
Filter rows steps and proceed.

See also
 f Executing part of a job several times until a condition is true recipe in Chapter 8,

Executing and Re-using Jobs and Transformations

Reading files having one field per row
When you use one of the Kettle steps meant for reading files, Kettle expects the data to be
organized in rows, where the columns are the fields. Suppose that instead of having a file
with that structure, your file has one attribute per row, as in the following example:

Mastering Joomla! 1.5 Extension and Framework Development
Published: November 2007
Our price: $30.99

CakePHP 1.3 Application Development Cookbook: RAW
Expected: December 2010
Our price: $24.99

Firebug 1.5: Editing, Debugging, and Monitoring Web Pages
Published: April 2010
Our price: $21.99

jQuery Reference Guide
...

Reading and Writing Files

80

This file contains book information. In the file, each book is described in three rows: one for
the title, one for the published or expected publishing date, and one row for the price.

There is no direct way to tell Kettle how to interpret these rows, but a simple transformation
can do the trick.

Getting ready
Create a file containing the preceding text or download the sample file from Packt's site.

How to do it...
Carry out the following steps:

1. Create a transformation and use a Text file input step to read the file
packt_books.txt. Under the Content tab, uncheck the Header option and as
Separator, type |. Under the Fields tab, enter a single String field named text.

2. From the Transform category, add a Row flattener step.

3. Double-click the step. As The field to flatten type or select text. Fill the grid with three
rows with values title, publishing_date, and price.

4. Do a preview on the last step. You'll see the following:

You already have the fields as columns! Now, you can go a little further and do some
cleansing, as follows:

1. From the Scripting category, add a Regexp Evaluation step.

2. Configure the step as follows: As Field to evaluate type or select publishing_date.
Check the option Create fields for capture groups. As Regular expression: type
(Published|Expected):(.+).

Chapter 2

81

3. In the Capture Group Fields grid, add two rows. In the first row, create a new String
field named status. In the second, create a Date field named pub_date with
Format MMM yyy. In both rows, under the Trim column, select both.

4. From the Transform category, add a Replace in string step. In the grid, add a row
with the value price under the column In stream field, and Our price: under the
column Search.

5. Finally, use a Select values step to change the metadata of the Price field: Change it
to Number. As Format, type $#.00. Do a preview and you'll see the following:

In the sample file, the months are written in English.
Therefore, you put the mask MMM yyy when capturing
groups. If you get an error because of the Date format,
there is a high possibility that you do not have English
as the preferred language in your regional settings.
Consequently, Kettle is not able to parse those dates.

How it works...
The Row flattener step is a simple step intended to flatten consecutive rows and is perfect for
reading files such as the one in the recipe. In this case, you had a file with book information,
each book occupying three consecutive rows. The Row flattener step flattened the field text
into three different new fields: title, publishing_date, and price.

This way, after every three rows, it generated a single one.

Note that if one book has a different number of rows (for example, if it lacks the price row),
then you get unexpected results.

The Row flattener step flattens the rows as indicated
in its setting window, no matter the content of the
field being flattened.

Reading and Writing Files

82

There's more...
If you are not sure about the content of the file, you'd best avoid this simple solution and go
for a more sophisticated one, for example, a solution that uses a Row denormalizer step.
Row denormalizer takes a normalized data stream (like a key/value pairing) and denormalizes
it so that the data for a given entity will be part of one row. A great example and overview of
this step can be found on the Pentaho wiki at http://wiki.pentaho.com/display/
EAI/Row+De-normalizer.

See also
 f Reading semi-structured files

Reading files with some fields occupying
two or more rows

When you use one of the Kettle steps devoted for reading files, Kettle expects one entity
per row. For example, if you are reading a file with a list of customers, then Kettle expects
one customer per row. Suppose that you have a file organized by rows, where the fields are
in different columns, but some of the fields span several rows, as in the following example
containing data about roller coasters:

Roller Coaster Speed Location Year
Kingda Ka 128 mph Six Flags Great Adventure
 Jackson, New Jersey 2005
Top Thrill Dragster 120 mph Cedar Point
 Sandusky, Ohio 2003
Dodonpa 106.8 mph Fuji-Q Highland
 FujiYoshida-shi 2001
 Japan
Steel Dragon 2000 95 mph Nagashima Spa Land
 Mie 2000
 Japan
Millennium Force 93 mph Cedar Point
 Sandusky, Ohio 2000
Intimidator 305 90 mph Kings Dominion
...

The first row for each roller coaster has the name of the attraction, the speed, and the location
in three different columns. The location, however, spans over two or three rows. Finally, the
year is not in the first row as you would expect, but in the second one. How to read this file?
Not with just a single Text file input, but by combining it with a couple of extra steps, as you
will learn in this recipe.

Chapter 2

83

Getting ready
Create a file containing the preceding text or download the sample file from Packt's website.

How to do it...
Carry out the following steps:

1. Create a transformation and use a Text file input step to read the file
rollercoasters.txt. Under the Content tab, select Fixed as Filetype.

2. Fill in the Fields tab. You can either click on Get Fields to use the wizard that lets you
configure the fixed-width columns, or you can type the fields' properties directly into
the grid. Under Trim type, select both for all rows. Under Repeat, select Y for the first
two fields: Roller_Coaster and Speed. Configure the Year field with Format #.

3. From the Statistics category, add a Group by step. In the grid The fields that make
up the group: enter two rows with values Roller_Coaster and Speed. Fill the
Aggregates: grid, as shown in the following screenshot:

The Type field is Concatenate string separated by in both
rows. The separators are | and space respectively. Do not
confuse this type with Concatenate string separated by ","
where the separator is a comma.

4. From the Transform category, add a Split Fields step. Double-click on it and configure
it as follows: As Field to split type, select Location. For Delimiter, type |. Fill the
Fields grid with three rows. Under New field type park, location, and country.

5. Close the window and do a preview on it. You will see the following:

Reading and Writing Files

84

How it works...
If you have to read a file and some of the fields in your file span over several rows, you have to
find a way to group all those fields together. The word group makes you think about the Group
by step. First of all, in order to group rows, the rows should have a field or fields in common.
In the sample file, you know that the rows following the one containing the name of the roller
coaster belong to the same roller coaster, but Kettle does not. So, you selected Y under the
Repeat field; this makes Kettle repeat the value of the Roller_Coaster and Speed fields
in the rows, where the field is empty. If you do preview the data in the Text file input step, you
see the following:

This way, you are able to group all rows that share the same values for the Roller_Coaster
and Speed fields. With the Group by step, you do that and concatenate the different values
for the Location and year fields.

You know that the different rows for the Location field belong to the name of the park,
where the attraction is located, the city or state, and the country. Therefore, the last thing
you do is to split the location into three fields: park, location, and country.

See also
 f Reading files having one field per row

Writing a simple file
In this recipe, you will learn the use of the Text file output step for writing text files.

Let's assume that you have a database with outdoor products and you want to export
a catalog of products to a text file.

Chapter 2

85

Getting ready
For this recipe, you will need a database with outdoor products with the structure explained in
Appendix A, Data Structures.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Table input step into the canvas. Enter the following SQL statement:
SELECT innerj.desc_product, categories.category, innerj.price FROM
products innerj
INNER JOIN categories
ON innerj.id_category = categories.id_category

3. From the Output category, add a Text file output step.

4. In the Filename textbox under the File tab, type or browse to the name of the
destination file.

5. In the Extension textbox, leave the default value txt.

6. Check the Do not create file at start checkbox. This checkbox prevents the creation
of the file when there is no data to write to it.

If you want to create the file anyway, uncheck the Do not create file
at start checkbox and a file with at least 0 bytes will be created.

7. Under the Content tab, leave the default values.

If you want to add lines to an existing file, select the Append
check box.

8. Under the Fields tab, fill in the grid, as shown in the following screenshot:

9. Run the transformation, a new text file will be created containing the list of products.

Reading and Writing Files

86

How it works...
The Text file output step allows you to generate files. In this recipe, you used it to generate
a CSV file with data coming from a database.

Under the File tab, you entered the path and name of the file. Here, you also have several
options to include the date or time in different formats as part of the name of the file. For
this example, you didn't have to use those textboxes.

In the generated file you can see that the first column contains a line with the headers.
Those headers are generated when the Header option from the Content tab is checked.

Under the Fields tab of this step, you must include the destination fields, including their types
and formats. If you need it, you can include a field more than once.

If you don't specify any field, the step will write all the fields
from the previous step. This could be useful when you don't
know the exact names of the fields or when these fields
change dynamically.

Under this same tab, the Null column specifies the string that will be written in case of
a null value.

Finally, if you specify the Length field of each column, a fixed width file will be created.

There's more...
Here are some considerations that make the process of writing files more flexible.

Changing headers
If you want to change the name of a header, you could insert a Select values step from the
Transform category just before the Text file output step. Under the Select & Alter tab, select
the fields you want to rename and give them a better description. For example, you could
select the desc_product fieldname and rename the field as Product.

In order to send all the other fields toward the Text file output step, you also have to check the
Include unspecified fields, ordered by name option.

Giving the output fields a format
When you write a file and tell Kettle which fields to write to that file, you have the option
of specifying the format to apply to those fields. That is particularly useful when you have
numeric or date fields.

In both cases, you may specify a format using a mask of patterns and symbols.

Chapter 2

87

In the case of numeric fields, you can find more information about formats at the following URL:
http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html.

In the case of date fields, you will find a complete reference at the following URL: http://
docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html.

Writing a semi-structured file
A standard file generated with Kettle is a file with several columns, which may vary according
to how you configured the Fields tab of the Output step and one row for each row in your
dataset, all with the same structure. If you want the file to have a header, the header is
automatically created with the names of the fields. What if you want to generate a file
somehow different from that? Suppose that you have a file with a list of topics for a writing
examination. When a student has to take the examination, you take that list of topics and
generate a sheet like the following:

Student name: Mary Williams

Choose one of the following topics and write a paragraph about it
(write at least 300 words)

1. Should animals be used for medical research?
2. What do you think about the amount of violence on TV?
3. What does your country mean to you?
4. What would happen if there were no televisions?
5. What would you do if you found a magic wand?

Getting ready
Create a file with a list of topics or download the sample file from Packt's site.

How to do it...
Carry out the following steps:

1. Create a transformation and read the file writing_topics.txt using a Text
file input step. Under the Content tab, uncheck the Header option, check the
Rownum in output? option and as Rownum fieldname, type topic_num. Under the
Fields tab, enter a single field named text.

2. From the Scripting category, drag a User Defined Java Expression (UDJE). Use it to
replace the text field with this: topic_num +". " + text. Create a hop from the
Text file input step to the User Defined Java Expression step.

Reading and Writing Files

88

3. With a Select rows step, select the text field and you have the list of topics. Now, you
need to add the custom header. Create a hop from the User Defined Java Expression
step to the Select rows step.

4. With a Get System Info step, get the student name from the command line. Under
Name type text and under type select command line argument 1.

5. Add a UDJE for replacing the text field with the following: "Student name: " + text.

6. From the Input category, add a Data Grid step. Under the Meta tab, add a String field
named text. Fill in the Data tab, as shown in the following screenshot (including the
empty fourth line):

7. From the Flow category, add the two Append streams steps and link them to the
already created streams, as shown in the following screenshot:

8. Double-click on the first Append streams step, as Head hop, select the name of the
UDJE step, as Tail hop, select the name of the Data Grid step.

9. Double-click on the second Append streams step, as Head hop, select the name of the
previous Append streams step, as Tail hop select the name of the Select values step.

Chapter 2

89

10. After this last Append streams step, add a Text file output step, enter a path and
name for the output file, and as fields, type the name of the only field that exists:
the field named text.

11. Run the transformation. Don't forget to provide a student name as the first
command-line argument. For instance, running the job from the terminal in the
Kettle install directory would look like sh pan.sh /file:<file_path_and_
name_here>.ktr <Student Name>. See the generated file; it should look
exactly as the one shown in the introduction.

How it works...
When you generate a file with any of the Kettle output steps, the rows have to be homogeneous,
that is, all of them have to have the same format, the same number of columns, the same type
of data, and so on. This recipe showed you one of the ways for creating a file with rows that differ
in structure. In this case, you had a main stream with two columns: a number and a writing
topic. However, you also had several lines that made up a header for those topics. What you did
was to build separate streams; in each stream you concatenated the different fields that you
wanted to send to the file, creating a single field named text. Then, you joined the streams by
using Append streams steps, and sent the final dataset to a file with a single column.

There's more...
The approach used in the recipe is useful for creating files with custom headers or footers.
Now, suppose that you face any of the following scenarios:

 f You have to generate a file with a custom header, but your main dataset has multiple
columns and you want to take advantage of the formatting capabilities of the Kettle
Output steps.

 f You have more than one dataset, all with a different structure (different number
or type of columns) and you want to send all of them to the same file, one after
each other.

In these situations, the problem can be addressed in a different way: create a different
transformation for each stream (one for the header, one for each different dataset), and call
them one after the other from a main job. Every transformation should append the rows to the
same file (don't forget to check the Append option in the Text file output step). Creating this
takes a little more time, but gives you much more flexibility.

Reading and Writing Files

90

Providing the name of a file (for reading
or writing) dynamically

Sometimes, you don't have the complete name of the file that you intend to read or write
in your transformation. That can be because the name of the file depends on a field or on
external information. Suppose you receive a text file with information about new books to
process. This file is sent to you on a daily basis and the date is part of its name (for example,
newBooks_20100927.txt).

Getting ready
In order to follow this recipe, you must have a text file named newBooks_20100927.txt
with sample book information such as the following:

"Title","Author","Price","Genre"
"The Da Vinci Code","Dan Brown","25.00","Fiction"
"Breaking Dawn","Stephenie Meyer","21.00","Children"
"Foundation","Isaac Asimov","38.50","Fiction"
"I, Robot","Isaac Asimov","39.99","Fiction"

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Get System Info step from the Input category into the canvas. Add a new field
named today, and in the Type listbox, select System date (variable).

3. From the Transform category, add a Selected values step, in order to give the date
the desired format. Click on the Meta-data tab and fill in the first row as follows:

 � As Fieldname, type or select today

 � As Type select String

 � As Format type yyyyMMdd

4. In the recipe, the file is saved in the same directory as the transformation. In order
to get this directory, you have to get it as a field in your dataset. That's the purpose
of the next step. Add the Get Variables step from the Job category. In the grid, add a
new field named path. In the Variable column, press Ctrl + Space in order to show
the list of possible variables, and select Internal.Transformation.Filename.Directory.

5. From the Scripting category, add a User Defined Java Expression step from now on.

Chapter 2

91

6. In the step setting window, add a field named filename (type it in the New field
column), and type path + "/newBooks_" + today +".txt" in the Java Expression
column. Previewing this step, you will obtain the complete path for the file, for
example, file:///C:/myDocuments/newBooks_20100927.txt.

The recipe uses the UDJE for its simplicity and performance.
However, you can obtain this calculated field in other ways,
for example, using the Calculator step from the Transform
category or the Formula step from the Scripting category.

7. Now that you have the filename, let's read the file. Add a Text file input step.
Your transformation should look like the one shown in the following screenshot
(except possibly for the step names):

8. Double-click on the step. Under the File tab, go to the bottom section and check on
the Accept filenames from previous step checkbox.

9. In the Step to read filenames from textbox, type or select the name of the UDJE step
created earlier. In the Field in input to use as filename textbox, type filename.

10. Select the Content tab. Type , in the Separator, and set the header to 1 line.

11. Under the Fields tab, add the following Names and Types: Title (String), Author
(String), Price (Number), and Genre (String).

You can't use the Get Fields button in this case because the
name of the file will be set dynamically. In order to obtain the
headers automatically, you can fill the File tab with the name of a
sample file. Then, clicking on the Get Fields button, the grid will be
populated. Finally, you must remove the sample file from the File
tab and set the Accept filenames from previous step section again.

Run the transformation, you will obtain a data source with the text file information
whose name was resolved dynamically.

How it works...
When you have to read a file and the filename is known only at the moment you run the
transformation, you cannot set the filename explicitly in the grid located under the File tab
of the Input step. However, there is a way to provide the name of the file.

Reading and Writing Files

92

First, you have to create a field with the name of the file including its complete path.

Once you have that field, the only thing to do is to configure the Accept filenames from
previous step section of the Input step, specifying the step from which that field comes and
the name of the field.

In the recipe, you didn't know the complete name because part of the name was the system
date, as for example, C:/myDocuments/newBooks_20100927.txt. In order to build a field
with that name, you did the following:

 f Getting the date of today (Get System Info step)

 f Formatting this date as yyyyMMdd (Selected values step)

 f Getting the path where the file were located (Get Variables step)

 f Concatenating the path and the formatted date (UDJE step), generating the final field
named filename

These steps are among the most used for these situations. However, the steps and the way of
building the field will depend on your particular case.

In the recipe, you used a Text file input step, but the same applies for other Input steps:
Excel Input, Property Input, and so on.

It may happen that you want to read a file with a CSV file input step, but notice that it doesn't
have the option of accepting the name of the file from a previous step. Don't worry! If you
create a hop from any step toward this step, the textbox named The filename field (data from
previous steps) will magically show up, allowing the name to be provided dynamically.

This method for providing the name of the file also applies when you write a file by using a
Text file output step.

There's more...
What follows is a little background about the Get System Info step used in the recipe.
After that, you will see how the Accept file name from field? feature can be used in the
generation of files.

Get System Info
You can use the Get System Info step to retrieve information from the PDI environment. In the
recipe, it was used to get the system date, but you can use it for bringing and adding to the
dataset other environmental information, for example, the arguments from the command line,
the transformation's name, and so on.

You can get further information about this step at the following URL:
http://wiki.pentaho.com/display/EAI/Get+System+Info.

Chapter 2

93

Generating several files simultaneously with the same structure,
but different names
Let's assume that you want to write files with book information, but a different file for each
genre. For example, a file named fiction.txt with all the fiction books, another file named
children.txt with the children's books, and so on. To do this, you must create the name
of the file dynamically, as shown in the recipe. In this case, supposing that your dataset has
a field with the genre of the book, you could create a Java expression that concatenates
the path, the field that has the genre, and the string .txt. Another solution could be
concatenating the path, genre field, and .txt via the Calculator step. Then, in the Text file
output step, you should check the check box named Accept file name from field? and in the
File name field listbox, select the field just created.

Running this transformation will generate different text files with the book's information; one
file for each genre.

Using the name of a file (or part of it)
as a field

There are some occasions where you need to include the name of a file as a column in your
dataset for further processing. With Kettle, you can do it in a very simple way.

In this example, you have several text files about camping products. Each file belongs to a
different category and you know the category from the filename. For example, tents.txt
contains tent products. You want to obtain a single dataset with all the products from these
files including a field indicating the category of every product.

Getting ready
In order to run this exercise, you need a directory (campingProducts) with text files named
kitchen.txt, lights.txt, sleeping_bags.txt, tents.txt, and tools.txt. Each
file contains descriptions of the products and their price separated with a |. Consider the
following example:

Swedish Firesteel - Army Model|$19.97
Mountain House #10 Can Freeze-Dried Food|$53.50
Coleman 70-Quart Xtreme Cooler (Blue)|$59.99
Kelsyus Floating Cooler|$26.99
Lodge LCC3 Logic Pre-Seasoned Combo Cooker|$41.99
Guyot Designs SplashGuard-Universal|$7.96

Reading and Writing Files

94

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Text file input step into the work area and use it to read the files. Under the
File tab, type or browse to the campingProducts directory in the File or directory
textbox, and use .*\.txt as Regular Expression. Click on the Add button.

3. Under the Content tab, type | as the Separator and complete the Fields tab as follows:

4. Under the Additional output fields tab, type filename in the field Short
filename field.

5. Previewing this step, you can see that there is a new field named filename with the
name of the file (for example: kitchen.txt).

6. Now, you must split the filename text to get the category. Add a Split Fields from the
Transform category, double-click on it and fill the setting windows, as shown in the
following screenshot:

7. Previewing the last step of the transformation, you will see a dataset with the
camping products, their price, and also a column named category with the
proper product category.

Chapter 2

95

How it works...
This recipe showed you the way to convert the names of the files into a new field named
category. The source directory you entered in the Text file input step contains several
files whose names are the categories of the products. Under the Additional output fields
tab, you incorporated the Short filename as a field (for example tents.txt); you could
also have included the extension, size, or full path among other fields. The next step in the
transformation, a Split Fields step uses a period (.) as the Delimiter value to use from the
field only the first part, which is the category (tents in the example). It eliminates the second
part, which is the extension of the filename (.txt). If you don't want to discard the extension,
you must add another field in the grid (for example, a field named fileExtension). Note that
for this field, you set the type, but you can also specify a format, length, and so on.

Reading an Excel file
Kettle provides the Excel input step, in order to read data from Excel files. In this recipe, you
will use this step to read an Excel file regarding museums in Italy. The file has a sheet with one
column for the name of the museum and an other for the city where it is located. The data
starts in the C3 cell (as shown in the screenshot in the next section).

Getting ready
For this example, you need an Excel file named museumsItaly.xls with a museums sheet,
as shown in the following screenshot:

You can download a sample file from Packt's website.

Reading and Writing Files

96

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop an Excel input step from the Input category.

3. Under the Files tab, browse to the museumsItaly.xls file and click on the Add
button. This will cause the name of the file to be moved to the grid below.

4. Under the Sheet tab, fill in the first row as follows: type museums in the Sheet name
column, 2 in the Start row, and 2 in the Start column.

The rows and columns are numeric values (you cannot define
the column with the identification letter you see in Excel). These
values are zero-based (they start at the number 0).

5. Under the Content tab, leave the Header checked.

6. Under the Fields tab, click on the Get fields from header row… button to obtain the
name and city fields.

7. Previewing the step, you will obtain a dataset with the museums data coming from
the Excel sheet.

How it works...
The Excel input step allows you to read Excel files. Starting with Kettle 4.1.0, you can also use
this step to read OpenOffice calc files.

This recipe showed you the way to read a simple Excel file, with a single sheet. However, the
Excel input step allows you to read several Excel files at the same time. You do it just by adding
more filename specifications to the grid located under the File tab. The step also allows you to
read multiple sheets. You can click on the Get Sheetname(s) button to select from the list of
sheets to read. If you don't specify any sheet in the grid, the step will read all of them.

Take care when you leave the sheet name blank or when you
select more than one sheet, because if the sheets have different
structures, you will get an error.

Except for the sheet information, configuring an Excel input step for reading an Excel file is
quite the same as configuring a Text file input step. You should not have any troubles making
it work.

Chapter 2

97

See also
 f Reading a simple file
 f Using the name of a file (or part of it) as a field
 f Getting the value of specific cells in an Excel file

Getting the value of specific cells in an
Excel file

One of the good things about Excel files is that they give you the freedom to write anywhere on
the sheets, which sometimes is good if you want to prioritize the look and feel. However, that
could cause troubles when it's time to automatically process the data in those files. Suppose
that you have an Excel file with values for a couple of variables you'd like to set, as shown in
the following screenshot:

In this example, you want to set values for three variables: Year, ProductLine, and Origin.
The problem is, that you don't know where in the sheet that table is. It can be anywhere, near
the upper left corner of the sheet. As you cannot ask Kettle to scan somewhere near the
upper-left corner, you will learn in this recipe how to get that data with a simple transformation.

Getting ready
Create an Excel file with the preceding table. Feel free to write the values anywhere within the
first rows and columns, as long as the labels and values are in adjacent columns.

How to do it...
Carry out the following steps:

1. Create a transformation and drag an Excel Input step into the canvas.

2. Double-click on the step and type or browse to the path and name of the Excel file
you just created.

Reading and Writing Files

98

3. Under the Content tab, uncheck the Header option, just in case one of the variables
is in the very first row.

4. Select the Field tab, and add 10 rows. As Name type a, b, c, ..., j. As Type, select
String for the 10 rows.

5. From the Transform category of steps, drag into the canvas Row Normalizer and a
Row denormalizer step.

6. From the Statistics category, drag Analytic Query, and link all the steps, as shown in
the following screenshot:

7. Double-click on Row Normalizer; click on Get Fields and the grid will be filled
automatically with 10 rows. Fill the last column, new field, typing in all rows the
value cell.

8. Double-click on the Analytic Query step. In the lower grid, add a row with the
following values:

 � Under New field Name, type value.

 � Under Subject type or select cell.

 � Under Type, select LEAD "N" rows FORWARD and get Subject.

9. Under N type 1. Double-click on Row denormalizer. In the Key field, type or select
cell. Fill the lower grid as follows:

10. Do a preview on the last step. You should see the following:

Chapter 2

99

How it works...
The trick for getting data from an Excel sheet, if you don't know exactly where in the sheet the
data is located, is to get rid of the leading rows and columns. Getting rid of rows is easy: just
leave the No empty rows option on. The problem is getting rid of the columns.

In this recipe, you had an Excel file with some values: year, product line, and origin. You
didn't know where exactly in the sheet the values were, but you had two clues: They were
somewhere in the first cells and the values were next to the labels that identified them.

So, in order to find what you were looking for, you read the first 10 columns by using generic
names a, b, c, and so on. By normalizing the cells, you put the cells row by row. This way, each
value remained in the row just beneath its label. For example, if the cell with the value YEAR
remained in the tenth row, the cell with value 2010 was in row 11. You can confirm this by
doing a preview on the Row Normalizer step.

For each row, the Analytic Query step went forward to get the value of the row below and
brought it in as a new field in the current row. This way, the labels and the values were again
next to each other, as shown in the following screenshot:

Reading and Writing Files

100

The result of combining these two steps was to remove the
leading columns both to the right and to the left of our table.

Now, you could just remove the useless rows by keeping only those with labels equal to Year,
ProductLine, or Origin, or do what was done in the recipe: denormalize the data to get
just one row. This row is ready to be used for setting the variables Year, ProductLine, and
Origin just by adding a Set Variables step at the end of the stream.

There's more...
As you don't know which columns will hold which kind of data, the advice is to read all as
string. This way, you avoid unexpected errors. However, after getting the data, you can change
the metadata accordingly by using a Select values step.

You only read the first 10 columns. If you cannot be sure that
the values are going to be in this range of cells, feel free to
increase that value.

The following are the two use cases related to the main example.

Labels and values are horizontally arranged. What if, instead of having the labels and values
as in the recipe, you have them horizontally arranged, as shown in the following screenshot?:

The recipe still works if you make a simple modification. Edit the Analytic Query step and
change the 1 to 10. This is how it works: when you denormalize the rows, the labels and their
values remain 10 rows apart from each other. So, instead of looking for the next row, the
Analytic Query step has to look 10 rows forward and get the values on those rows. You can
see it in the following screenshot, which is the result of a preview on this step:

Chapter 2

101

Looking for a given cell
If you just have to look for a specific cell, for example D5, the solution is quite different, but
fortunately pretty straightforward. Firstly, you have to know the number of the column and row
where your data is. As Excel starts counting at zero, you conclude that the sample cell D5 is
in the third column, fourth row. Then, you take an Excel input step and enter the name of the
Excel file to read. In the grid located under the Sheets tab, add a row. Under the Start row
and Start column type, the number of the row and column of interest are 4 and 3 in this case.
Under the Content tab, uncheck the Header and the No empty rows options, checked by
default, and in the Limit textbox, type 1. Under the Fields tab, add a single field to hold your
value. You are done. Do a preview of the Excel file and you will see the following:

Writing an Excel file with several sheets
Writing an Excel file with Kettle has a lot in common with writing a text file. Except for a
couple of settings specific to Excel files, configuring an Excel Output step is quite similar to
configuring a Text file output step. One of the differences is that when you write an Excel file,
you add a sheet to the file. What if you want to write more than one sheet in the same file?

Suppose you have a data source containing books and their authors and you want to create
an Excel file with two sheets. In the first sheet, you want the authors and in the second, the
books' titles. This recipe teaches you how to do this.

Reading and Writing Files

102

Getting ready
In order to run this recipe, you will need a database with books and authors with the structure
described in Appendix A, Data Structures.

How to do it...
Carry out the following steps, in order to create the sheet with the authors' details:

1. Create a new transformation.

2. Drop a Table Input step into the canvas, in order to read the author information:
SELECT * FROM Authors order by lastname

3. Add an Excel Output step.

4. In the Filename textbox under the File tab, write the destination path and
the name of the file (Books).

5. As the Extension, leave the default value xls.

6. Under the Content tab, make sure the Header checkbox is selected.

7. In the Sheet name textbox, type Authors. Select the Fields tab and click on the
Get fields button to fill the grid with the author data. The grid should look like the
one shown in the following screenshot:

If you find that the default types or formats of the fields
are not correct, you can fix them manually.

Carry out the following steps, in order to create the sheet with the books' details:

1. Create a new transformation.

2. Drop a Table Input step into the canvas, in order to read the book's title's information:
SELECT * FROM Books order by title

Chapter 2

103

3. Add an Excel Output step and set the same filename and extension configured in the
previous transformation (Books and xls).

Alternatively, you can use a new step named Excel Writer.
You will find it in the Experimental category in Kettle 4.2
or later. This step allows writing Excel spreadsheets with
more flexibility. One of its main features is the support for
template files or sheets.

4. Under the Content tab, make sure the Header checkbox is selected.

5. In the Sheet name textbox, type Titles.

6. Under the same tab, make sure to check the Append checkbox. Select the Fields tab
and press the Get fields button to fill the grid with book titles. The grid should look
like the one shown in the following screenshot:

7. Create a job and drop a Start job entry into the canvas.

8. Then, add two Transformation job entries and configure them for running the
two transformations you created in the previous steps. The job should look like
the following:

Reading and Writing Files

104

9. Run the job. It will generate an Excel file with two sheets: one for authors and the
other for titles. It should look like the following screenshot:

How it works...
The intuitive way to generate an Excel file with two sheets would be to create a single
transformation with the two Excel Output steps, one for each sheet. However, that approach
does not work because Kettle cannot manage concurrent access to the same Excel file in a
single transformation.

One way to avoid this issue is to create different transformations, one for each sheet, and
then calling these transformations from a job. With this approach, the transformations are
executed sequentially, which means that the sheets are generated one at a time, avoiding
the concurrency problem.

There's more...
Another way to assure the sequential generation of the sheets would be using the Block
this step until steps finish step from the Flow category. Using this step, the writing of the
second sheet will wait for the first sheet to complete its writing process. For our recipe, the
transformation should look like the following:

Chapter 2

105

See also
 f Writing an Excel file with a dynamic number of sheets

Writing an Excel file with a dynamic number
of sheets

When you generate an Excel file, you usually generate it with a single sheet. You can,
however, generate a file with more sheets. With PDI, you can generate an Excel file with
several sheets, even if you don't know in advance how many sheets you will generate, or
the name of those sheets.

In this recipe, you will create such an Excel file. Your file will have book title information
separated in different sheets depending on the genre of the books.

Getting ready
You will need a database containing books and authors with the structure described in
Appendix A, Data Structures.

How to do it...
Carry out the following steps:

1. Create a new job.

2. From the File Management category, drop a Delete file job entry into the work area.

3. In the File name textbox, type the path and name of the Excel file you will
create, in order to remove the file if it exists.

4. Then, you have to add the two Transformation entries: one for selecting the book's
categories (Transf_Categories) and another to write the specific sheet for each
category (Trans_BookByCategory). The job should look like the following:

5. Create the transformation named Transf_Categories.

6. In this transformation, drop a Table input step, in order to obtain the
different book's categories. The SQL statement, should be similar to the following:
SELECT DISTINCT genre FROM Books ORDER BY genre

Reading and Writing Files

106

7. Add a Copy rows to result from the Job folder and create a hop from the Table input
step towards this one.

8. Create the second transformation called Trans_BookByCategory.
In Transformation settings (Ctrl + T), go to the Parameters tab, and add a new
parameter named GENRE without default.

9. Drop a Table input step into the canvas. In the SQL frame, type the following
statement, in order to select the books depending on the GENRE parameter:
SELECT * FROM Books WHERE genre='${GENRE}'

10. In this step, check the prompt Replace variables in script?.

11. Add an Excel output step.

12. In the Filename textbox under the File tab, type the destination path and
file. In the Extension textbox, leave the default value xls.

13. Under the Content tab, be sure to check Append.

14. Also here, in the Sheet name textbox, type ${GENRE}.

15. Under the Field tab, click on the Get Fields button.

16. Come back to the job; edit the job entry details for the transformation
Trans_BookByCategory. Go to the Advanced tab and check the Copy previous
result to parameters? and Execute for every input row? checkboxes.

17. Under the Parameters tab, add a new value: type GENRE in the Parameter
column, and genre for the Stream column name.

18. When you run the job, the Excel file created should have a different sheet for each
category, as shown in the following screenshot:

Chapter 2

107

How it works...
When you have to execute the same task over and over again, the solution is to create a loop
that executes a single transformation or job, as many times as needed. In this case, the goal
was to create a new Excel sheet for each book category. So, the solution was as follows:

 f Creating a transformation (Transf_Categories) that builds the list of categories

 f Creating another transformation (Trans_BookByCategory) that appends a single
sheet to the Excel file

 f Calling the second transformation once for each category in the list by copying the
rows to result in the first transformation, and checking the Execute for every input
row checkbox in the Job entry belonging to the second transformation

The main task was in the second transformation. In order
to know which book categories to write each time, in that
transformation, you defined a parameter named GENRE.
Then, you used the GENRE parameter for filtering in the
SQL statement and also for naming the Excel file sheet. The
parameter is sent to the transformation because in the job, you
set the Copy previous result to parameters? checkbox, and
configured the Parameters tab properly. Note that in the Excel
Output step, you checked the Append option, so that every time
the transformation is executed, it creates a new sheet without
losing the sheets previously generated. Also note that you
deleted the file at the beginning for cleaning purposes.

See also
 f Writing an Excel file with several sheets

 f The Executing part of a job once for every row in the dataset recipe in Chapter 8,
Executing and Re-using Jobs and Transformations

Reading data from an AWS S3 Instance
Amazon Web Services has helped to reshape server management by providing infinite
flexibility with virtual machines that can be spun up or shut down almost as fast as a simple
command. S3 is a scalable storage space that can be shared across virtual instances and is a
common location for files to be processed. With this recipe, we will be reading information out
of a file in an S3 instance.

Reading and Writing Files

108

This recipe will require access to AWS, which does have a free
tier for new users. If you have already used AWS in the past and
do not have access to the free tier, the recipe will not deal with
large transfers of data so the expense will be minimal.

Getting ready
You will need to have access to the files for this recipe, which are available on Packt's website.
You will also need to create an S3 bucket to upload the files to.

1. Go to http://aws.amazon.com and create an account or log in.
2. Once logged in, you should now see the AWS Console. Click on S3 under the Storage

and Content Delivery option.
3. Click on Create Bucket and give the bucket a unique name. For the recipe, we will be

using the naming convention <yourname>.pdicb2.test.bucket.
4. Select a region that is closest to you.

Pricing will be different per region.

5. Click on the Create button. Your S3 bucket will be created and we can load our test
files into it.

6. Click on your bucket's name. The contents of the bucket will now be displayed. Click
on the Upload button and load the books.csv file into the bucket.

Security keys are required to access the S3 storage space. Use the following steps to access
your keys.

We are using the root account keys for this recipe. Please follow
the AWS documentation regarding best practices with security
accounts when setting this up outside of learning and testing.

1. Go to the Security page of the AWS Console: https://console.aws.amazon.
com/iam/home?#security_credential.

2. Click through the pop ups regarding the AWS best practices (but note the links for
setting this up in a live environment).

3. Under the section labeled Access Keys, find the S3 Access key and copy it for
later use.

4. The S3 CSV Input step requires an S3 secret key. This can be obtained using the legacy
page: https://portal.aws.amazon.com/gp/aws/securityCredentials.
Also copy it for later use.

Chapter 2

109

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. From the Input category, bring over an S3 Input step onto the canvas.

3. Open the S3 Input step. Copy the S3 Access key and S3 Secret key into
their matching fields.

4. Click on the Select bucket button. If the keys are active, a listing of available
buckets should appear. Select <yourname>/pdicb2.test.bucket from the list.

5. Click on the Browse button to find the books.csv file.

6. Click on the Get Fields button. This will pull the field metadata from the file
and load it into the Fields grid.

7. Click on Preview to see the data in the books.csv file.

How it works...
The S3 CSV Input step works very similarly to the CSV Input or Text File Input steps, in that it
parses data out based on the format of the CSV file. The biggest difference is that to access
the file, not only does the file have to be located, but the bucket name and the dual keys to
access the bucket must be provided before the data can be pulled into the transformation.

Another powerful feature of the step is that it allows for files to be retrieved in parallel—meaning
that very large files can be broken down into much more manageable chunks to be processed.
The S3 CSV Input step does not allow for compressed files or for processing multiple files.
Potential solutions for this could include storing the file name field value of the step into a
parameter and looping over the list or mounting the S3 bucket directly into a file system that
Kettle can access.

See also
 f Reading a simple file

3
Working with Big Data

and Cloud Sources

In this chapter, we will cover:

 f Loading data into Salesforce.com

 f Getting data from Salesforce.com

 f Loading data into Hadoop

 f Getting data from Hadoop

 f Loading data into HBase

 f Getting data from HBase

 f Loading data into MongoDB

 f Getting data from MongoDB

Introduction
While flat files and databases are the most common type of source that developers using
Kettle interact with, there are many other types of data sources that are capable of being
used. Data warehouses are now starting to leverage the capabilities of tools such as Hadoop,
NoSQL databases, and cloud services such as Amazon Web Services and SalesForce.

In this chapter, you will learn to interact with these Big Data sources in Kettle. The recipes
in this chapter are grouped into various data sources, with each grouping covering how to
connect, read data from, and load data into the given data source.

Working with Big Data and Cloud Sources

112

The focus of this chapter is on data sources that are usually larger than can be set up for
working through exercises. For each data source, the recipe Connecting to a database in
Chapter 1, Working with Databases, will cover how to connect to the given data source, as
well as recommendations for setting up a test environment in which to work in.

Loading data into Salesforce.com
Salesforce.com is best known for their customer relationship management suite, making it
an increasingly common data source to work with. This type of data source utilizes a web API,
that developers can interface with the data within the massive cloud service.

Sometimes, the data that is generated from within Salesforce.com is only part of the story
around managing customer relationships, and greater benefit can be had by loading in data
from other sources to aid in generating sales. This recipe will teach you how to set up and
connect to a development Salesforce.com instance and load data into it.

Getting ready
Before we can cover how to interact with Salesforce.com, you will need to register for a
developer environment that looks and feels like a full-blown production environment, albeit
on a smaller scale. Navigate to http://www.developerforce.com/events/regular/
registration.php and fill out the form to register. We will be using the already constructed
applications of the developer environment for the recipe. The data we will be loading can be
found in the code for this chapter.

Any time you want to create a connection to Salesforce.com, you will need the following:

 f Username

 f Password

 f Security token

 f Salesforce Webservice URL (a default is entered, but can be changed if a different
version of the API is being used)

It is also recommended that you have the development environment up, so that you can
troubleshoot if needed.

Every account that connects through the Salesforce.com API
must use both the account password and a security token.
Tokens can be generated through Account | Setup | My
Personal Information | Reset My Security Token. Any time
the account password is reset, a new token is generated.

Chapter 3

113

How to do it...
Perform the following steps to load data into Salesforce.com:

1. Open Spoon and create a new transformation.

2. Add a Text file Input option from the Input category. Browse to the accounts.csv
file found in the code for this chapter.

3. Make sure on the Content tab that the Separator field matches the separator of the
file downloaded. Also make sure that Format matches the file.

4. On the Fields tab, click on Get Fields. The step will try and make a best guess on the
column names, or bring over the column headers if there is a header row.

5. Click on OK and close the step.

6. Add a Salesforce Insert step from the Output category and connect the Text file
Input step to it via a hop.

7. Open the Salesforce Insert step. Enter your Salesforce.com username in the
Username field and your password with security token in the Password field.

It is recommended that for steps that require login information
(such as the Salesforce Input, Insert, Upsert, and Delete
steps), that those details be stored in parameters, so that
when they change, you don't have to remember every place
that they are in use.

8. Click on Test Connection to verify that the step can connect to Salesforce.com.

9. In the Settings section, select Account in the Module listbox. Since this dataset is
small, we can leave the Batch Size field set to 10. The maximum number of records
that can be loaded into a batch is 200, as per the Salesforce.com API documentation
(http://www.salesforce.com/us/developer/docs/apexcode/Content/
apex_gov_limits.htm).

10. In the Fields grid, click on Edit mapping and map the stream fields to the object
fields. Click on OK to save the mapping and OK again to exit the step.

11. Save and launch the step. The account data should now load into the Salesforce.com
Account object.

Working with Big Data and Cloud Sources

114

How it works...
The Salesforce steps in Kettle take advantage of the web API to interface with the backend
data structure. We can take data from outside of the Salesforce.com environment and load
it in, to perform more advanced analytics on the data that lives both within the customer
relationship management aspect, as well as the new data from outside. The only limits, as to
how much data that can be stored and accessed are, the number of API calls available, and
how much space has been allocated to the Salesforce.com account.

See also
 f Getting data from Salesforce.com

Getting data from Salesforce.com
In the previous recipe, we loaded data into the Account object. Pulling data back out from
Salesforce.com becomes a bit more complicated, when going for filtered data instead of
an entire object's dataset. Fortunately, the Salesforce.com API allows for querying data in a
similar manner to the WHERE clauses in SQL. For this recipe, we will be filtering the Account
object to get a subset of the records.

While this recipe does not deal with a large amount of data,
keep in mind that API calls are limited to the caps on the
account being used.

Getting ready
While we can perform more filtering if the account.csv data is loaded as per the Loading
data into Salesforce.com recipe, there is enough dummy data in the developer environment's
Account object, for us to dig into. It will be handy to also have the developer environment open
in case any troubleshooting is necessary.

How to do it...
1. Create a new transformation.

2. From the Input category, select the Salesforce Input step and bring it onto the canvas.

3. On the Settings tab, fill in the Username and Password fields with your username,
password, and security token.

4. Click on Test Connection to verify the connection to Salesforce.com.

5. Under the Settings section, choose Account in the Module listbox.

Chapter 3

115

6. For Query condition, enter billingStreet != null. We want to make sure that
we get customers that have a billing address entered.

7. Switch to the Fields tab and click on Get fields. All of the fields for the object should
be populated into the grid.

8. Click on Preview rows to see the dataset that is returned from the query. Click on OK.

9. Add a Text File Output step from the Output category. Add a hop from the Salesforce
Input to the Text File Output step.

10. Open the Text File Output step and for the Filename field, choose a location for the
text file to be created.

11. Switch to the Fields tab and click on Get fields. All the stream fields should populate
the grid.

12. Run the transformation and the text file should be populated with the dataset.

How it works...
The Salesforce API includes a query language that has similar logic to SQL, called SOQL,
that allows for complex querying of data objects to filter out data for specific use. The
Salesforce Input step allows for the use of these filters to enter data into a normal Kettle
data stream. The data can be further cleansed and processed as needed to integrate into
a data warehouse, report, or other end user tool.

To learn more about SOQL, check out the Salesforce.
com docs at http://www.salesforce.com/us/
developer/docs/soql_sosl/.

See also
 f Loading data into Salesforce.com

 f The recipe Writing a simple file in Chapter 2, Reading and Writing Files

Loading data into Hadoop
Hadoop is at the heart of the Big Data movement. Being derived from Google's white papers
on MapReduce and Google File System, Hadoop is able to scale up beyond petabytes of data
and provide the backbone for fast and effective data analysis.

Pentaho was one of the first companies to provide support for Hadoop and has open sourced
those capabilities, along with steps for other Big Data sources.

Working with Big Data and Cloud Sources

116

There are a lot of great tutorials and videos on Pentaho's Big Data
wiki available at http://wiki.pentaho.com/display/BAD/
Pentaho+Big+Data+Community+Home.

Getting ready
Before we actually try to connect to Hadoop, we have to set up an appropriate environment.
Companies like Hortonworks and Cloudera have been at the forefront of providing new
features and functionality to the Hadoop ecosystem, including Sandbox environments, to
learn about the various tools. We will be using Hortonworks' Sandbox environment for this
chapter's Hadoop recipes.

Hortonworks' Sandbox environment is available at http://
hortonworks.com/products/hortonworks-sandbox/
after registering with their site. These recipes are applicable to
any Hadoop cluster, but there are not that many ways to set up
a local cluster that quickly.

Once you have the sandbox set up and ready to run, we have to provide Kettle with a
configuration setup. These setups are called shims, which give Kettle all the necessary drivers
to communicate with a given Hadoop or other Big Data stack. An overview of which versions of
Hadoop are officially supported, can be found at http://wiki.pentaho.com/display/
BAD/Configuring+Pentaho+for+your+Hadoop+Distro+and+Version.

To build a custom shim for Kettle, we start with the basic hadoop-20 shim provided by
Pentaho (which can be located in Kettle's plugin directory | pentaho-big-data-
plugin | hadoop-configurations). The .jar files under the lib directory have to
be updated to match the versions of the various tools within the Hortonworks' Sandbox.

More details on how to set up shims in Kettle can be found
at Matt Burgess' blog at http://funpdi.blogspot.
com/2013/03/pentaho-data-integration-44-
and-hadoop.html. We have also provided a working shim
for the sandbox out on GitHub at https://github.com/
dbaAlex/hortonworks_pentaho_shim. It is likely with
Version 5.0 that Kettle should work with the Hortonworks'
Sandbox without having to build a custom shim.

Now we only need a dataset in which to load our newly minted Hadoop environment.
Fortunately, there are quite a few large datasets for us to play with. For the exercises in
this chapter, we will be using the Baseball Database found at http://seanlahman.com/
files/database/lahman2012-csv.zip.

Chapter 3

117

Sean Lahman's Baseball Database goes all the way back to 1871
and is one of the most complete baseball statistics sets available
to the public. As an added plus, this data is also used for some of
the tutorials provided as part of the Hortonworks Sandbox VM.

How to do it...
Perform the following steps to load the data into Hadoop:

1. Open Spoon and create a new job.

2. Bring a Start step and from the Big Data section. Bring over a Hadoop Copy Files
step. Connect the two steps together with a hop going from the Start step to the
Hadoop Copy Files step.

3. Open the Hadoop Copy Files step. Tick the Create destination folder checkbox.

4. Add the location where you downloaded the baseball data in the File/Folder source
text field. Be sure to uncompress the dataset so that Kettle will grab the actual file.

5. The Hortonworks Sandbox will try to use a local IP address, which should have
displayed on startup of the box. The File/Folder destination text field will have
the connection of the sandbox and will tell Kettle where to load the data. Use
the connection string: hdfs://<your_sandbox_ip_address>:8020/user/
sandbox/baseball/raw. Your step should look similar to the following screenshot:

Working with Big Data and Cloud Sources

118

While the sandbox will not require a username or password,
production environments will likely need one. It is better to store
those values in parameters, since they are displayed in plain text.

6. Save and run the job. The Baseball database is now loading into your sandbox
environment. You can monitor the process of the job via the command line from
the sandbox:
hadoop fs -ls /user/sandbox/baseball/raw

If you receive an error message from PDI, ensure that the sandbox is operational and that
there are no connectivity issues.

How it works...
Kettle's Hadoop Copy Files step provides an easy to use interface to push data into the
Hadoop File System (HDFS). The connection string used in step 5 actually does several things:

 f Declare the protocol being used (HDFS)

 f Identify the Hadoop server (192.168.56.101)

 f Identify the port (8020)

 f Define where the data will be stored (/user/sandbox/baseball/raw)

All of the data gets loaded into that location for further processing, or using it through other
tools such as Hive, HBase, and so on.

There's more...
While this step is designed to load the Hadoop File System with data, it can also load data
directly into Hive (a SQL-like layer for Hadoop). There is a great tutorial on this functionality
at http://wiki.pentaho.com/display/BAD/Loading+Data+into+Hive. Hive is a
translation layer used to interface with data stored in Hadoop, allowing users to write queries
that are similar to SQL in a custom language called HiveQL. While Hadoop Copy Files makes
loading massive quantities of data easier, we can also use more traditional means like Table
Output, Insert/Update, and Update with a database connection.

See also
 f Getting data from Hadoop

 f Loading data into HBase

Chapter 3

119

Getting data from Hadoop
Just as Kettle simplifies loading data into Hadoop, pulling data back out from the Hadoop File
System is just as easy. In fact, we can treat it just like any other data source that is a flat file.

Getting ready
For this recipe, we will be using the Baseball Dataset loaded into Hadoop in the recipe
Loading data into Hadoop (also in this chapter). It is recommended that this recipe is
performed before continuing.

We will be focusing on the Salaries.csv and the Master.csv datasets. Let us find out
just how much money each player earned over the course of their careers.

How to do it...
Perform the following steps to retrieve the baseball data from Hadoop:

1. Open Spoon and create a new transformation.

2. In the Design tab, under the Big Data section, select and bring over two Hadoop File
Input steps. We will use one for each of the .csv files we wish to merge together.

3. Edit one of the Hadoop File Input steps. This will be used to pull in the
Salaries.csv information.

4. For the File or directory text field, enter the connection information to get to the
Salaries.csv data. For instance, if the data was stored under the sandbox user's
baseball/raw folder, use hdfs://<your_sandbox_ip_address>:8020/
user/sandbox/baseball/raw/Salaries.csv.

5. Switch to the Content tab and change the Separator from ; to ,.

6. Switch to the Fields tab and click on Get Fields. Click on OK on the Number of lines
to sample prompt. Kettle provides a best guess to the fields in the file.

7. Click on Preview rows to view the data stored in the file.

8. Repeat steps 3 through 7 for the Master.csv file.

9. Now we need to filter out the fields we do not need. From the Transform section, bring
over two Select Values steps. Connect one to each of the Hadoop File Input steps.

10. For the Salaries data, we want to remove the yearID, teamID, and lgID fields.

11. For the Master data, we want to remove all but the playerID, nameFirst, and
nameLast fields.

Working with Big Data and Cloud Sources

120

12. Add a Sort rows step and sort the Salaries data on playerID. We also need to
add another Sort rows step for the Master data and also sort on playerID.

13. Under Statistics, select and bring over a Group by step from the Statistics section.
For the Group field, add playerID. Under the Aggregates: section, add the
following details:

 � Name: salary_sum

 � Subject: salary

 � Type: Sum

The Group by step should now look similar to the following screenshot:

14. Now the two datasets can be merged with a Merge Join step. Add hops to bring both
streams into the Merge Join step. The Key field for both steps will be playerID. The
Join Type will be INNER. The step should now look similar to the following screenshot:

Chapter 3

121

15. Finally, add a Text File Output step and connect it to the Merge Join step. Your
transformation should look similar to the following screenshot:

16. Run the transformation and look at the csv file created. Just like the source csv
files were stored locally, we were able to access them and build a small aggregated
dataset in Kettle.

How it works...
Hadoop is a giant distributed filesystem. In this recipe, we read data from the Hadoop File
System and used Kettle's data integration capabilities to aggregate the data by player, and
merge it with the players' names. While the two Hadoop File Input steps were calling on a
specific file, if the data were across many files, we could just as easily have added a Regular
Expression to bring in the files we needed. The data could effectively live throughout the
Hadoop cluster, but we only have to call out to the cluster with our request and the step
does the rest.

See also
 f Loading data into HBase

 f The recipe Writing a simple file in Chapter 2, Reading and Writing Files

 f The recipe Joining two or more streams based on given conditions in Chapter 7,
Understanding and Optimizing Data Flows

Working with Big Data and Cloud Sources

122

Loading data into HBase
HBase is another component in the Hadoop ecosystem. It is a columnar database, which stores
datasets based on the columns, instead of the rows that make it up. This allows for higher
compression and faster searching, making columnar databases ideal for the kinds of analytical
queries that can cause significant performance issues in traditional relational databases.

For this recipe we will be using the Baseball Dataset loaded
into Hadoop in the recipe Loading data into Hadoop, (also
in this chapter). It is recommended that the recipe Loading
data into Hadoop is performed before continuing.

Getting ready
In this recipe, we will be loading the Schools.csv, Master.csv, and SchoolsPlayers.
csv files. The data relates (via the SchoolsPlayers.csv file) schools (found in the
Schools.csv file) to players (found in the Master.csv file). This data is designed for a
relational database, so we will be tweaking the data to take advantage of Hbase's data store
capabilities. Before we can load anything into HBase, we need to create the schema in which
the data will be stored. Let us first look at the relational model for these three datasets:

School

Primary Key schoolID

columns schoolName

schoolCity
schoolState
schoolNick

Primary Key playerID
schoolID

Columns yearMin

yearMax
lehmanID

SchoolsPlayers

Primary Key playerID

Columns firstName

lastName
birthYear
birthMonth
birthDay
...

Players

The relationship can be classified as a Many to Many. There are many players, and many
schools, with some players going to more than one school. The challenge with using tools
like HBase are that they do not have a concept of relational modeling. Joining datasets can
become quite cumbersome both for developers, as well as for performance. The solution is to
denormalize the data so that it will meet our query demands. It is important to architect the
model for the kinds of queries we are going to be running. For this recipe, we want to find the
players who attended at a school for a given year. With that in mind, our data model turns into
the following:

Chapter 3

123

School

row key key

columns schoolName

schoolCity
schoolState
schoolNick
playerID
nameFirst
nameLast
nameNick
yearMin
yearMax

We now have a flat dataset in which to answer our queries. The schema script to run within
the HBase Shell is the following:

create 'school', 'key', 'schoolID',

'schoolName', 'schoolCity', 'schoolState',

'schoolNick', 'playerID', 'nameFirst', 'nameLast', 'nameNick', 'yearMin',

'yearMax'

This is HBase shorthand to create a table named school, with a key column named key, and
11 column families (schoolID, schoolName, schoolCity, schoolState, schoolNick,
playerID, nameFirst, nameLast, nameNick, yearMin, and yearMax). Another way
to model the data would be to take advantage of an advanced feature of HBase, which is
the ability to nest datasets together. This somewhat mimics the Many to Many relationship
modeled in the relational database, but can make it a challenge to query data if the nested
data goes more than one or two levels in. The model would look like the following figure:

School

row key schoolID

columns schoolName

schoolCity
schoolState
schoolNick

row key playerID

columns firstName

lastName
birthYear
birthMonth
birthDay
...
yearMin
yearMax

Player

Working with Big Data and Cloud Sources

124

Where the Player object would just be another column family within the School table.

Ian Varley created an awesome presentation covering
Hbase's schema model for HBase Con 2012. It is definitely
a recommended read, that goes into detail about nested
objects, column families, and other advanced options. The
presentation is available at http://ianvarley.com/
coding/HBaseSchema_HBaseCon2012.pdf.

How to do it...
Perform the following steps to load the baseball data into HBase:

1. Open Spoon and create a new transformation.

2. Bring over three Hadoop File Input steps from the Big Data category to load the
Master.csv, School.csv, and the SchoolsPlayers.csv files.

3. Before we can join the datasets together, we must sort each dataset with a Sort rows
step per file. Sort the data based on the keys for that dataset. For School, the key
would be SchoolID, Master would have playerID, and so on.

4. Now to merge the datasets together, starting with the Master and
SchoolsPlayers datasets. The two sets can be merged via playerID.

5. The Master/SchoolsPlayers dataset needs to be sorted by schoolID so that it
can be merged with the School data. Add another Sort rows step to sort the data.

6. Add another Merge Join step to merge the Master/SchoolsPlayers dataset with
the School data. The two sets can be merged via schoolID.

7. Add a Calculator step from the Transform category. This step will create the values
for the key field by combining the schoolID and playerID fields with a | delimiter.
Add two rows in the Fields: grid, as shown in the following screenshot:

Chapter 3

125

8. Before we load data into HBase, we need to remove any fields that we do not want
to store into the database. Bring over a Select Values step from the Transformation
section. Select the Remove tab and click on Get fields to remove. This will add all the
stream fields into the Fields to remove: grid. We need to keep the fields that match
the column family names listed earlier (CschoolID, schoolName, and so on).

9. Finally, add an HBase Output step, which can be found under the Big Data category.
On the Configure connection tab, enter the sandbox's IP address and port. The
default should be 2181 for the port.

10. Switch to the Create/Edit mappings tab. Click on Get table names and select the
School table from the dropdown.

11. In the Mapping name field, enter player.

12. Click on Get incoming fields. This will bring the stream fields into the mapping. Find
the key row and change the Key value to Y, leaving the Column family and Column
name fields blank. The Type field should be changed to String.

13. All of the other fields (schoolCity, schoolName, schoolNick, and so on) can be
added to the column families of the same name. The mapping should look similar to
the following screenshot:

14. Click on Save mapping. A prompt will appear asking to save the mapping for the
School table. Click on Yes and switch back to the Configure connection tab.

Working with Big Data and Cloud Sources

126

15. For the HBase table name field, enter school. Select player for the Mapping
name field. Click on OK. The final transformation should look similar to the
following screenshot:

How it works...
Building on the recipe, Loading data into Hadoop, we take the data from Hadoop and use
Kettle's built in capabilities to sort and join the data and build a denormalized dataset that
can help us to answer queries regarding player statistics based on schools.

It is important to note that HBase is not like typical databases; in that it can be quite difficult
to join across tables and column families. As new requirements for given datasets come in,
it is very likely that the same data will be restructured across multiple tables and many
column families.

There's more...
While we took advantage of the work done in the recipe, Loading data into Hadoop we could
just as easily have used the original csv files, another database, or even spreadsheets to load
into HBase. Just like with any of the more common data sources, once the data is part of a
PDI stream, it is treated all the same.

See also
 f Getting data from HBase

 f Getting data from Hadoop

 f The recipe Joining two or more streams based on given conditions in Chapter 7,
Understanding and Optimizing Data Flows

Chapter 3

127

Getting data from HBase
Sources like HBase are dynamically loaded and can have data structured in very different
ways than what typical sources are known for. Unlike flat files or traditional relational
databases, where there is a somewhat rigid data model, tables in a NoSQL database can be
free form. There are several ways in which to query such a database, from writing Java code,
using Hive to translate a SQL-like statement into an executable plan, or using a tool like Kettle
to extract the needed data. For this recipe, we will be utilizing the HBase Input step to load
data from HBase.

Getting ready
In order to follow this recipe, you will need to perform the Loading data into HBase recipe.
We will be using the dataset created in HBase with that recipe, to answer the question posed
while designing the data model—which players attended what school at a given year?

How to do it...
Perform the following steps to get the baseball data from HBase:

1. Create a new transformation.

2. Place an HBase Input step from the Big Data category into the canvas. On the
Configure query tab, enter the IP address of the Zookeeper host(s) and the port for
the Zookeeper port. For the sandbox, enter in your sandbox's IP address and the port
number 2181 respectively.

3. Find the HBase table name field and click on Get mapped table names. This will
provide a drop-down list of tables from HBase. Select the school table.

4. Click on the Get mappings for the specified table button beside the Mapping name
field and select the player mapping.

Working with Big Data and Cloud Sources

128

5. Click on Get Key/Fields Info. All the fields for the school player mapping should
populate in the grid on this tab. The grid should match the following screenshot:

6. Switch to the Filter result set tab. Add filters for yearMax and yearMin so that it
matches the following screenshot:

7. Make sure that Match all is selected and then click on OK to close the step.

8. Add a Sort rows step and connect the HBase input step to it with a hop.

9. In the Sort rows step, sort the data in ascending order by schoolName, nameLast,
and nameFirst. This will provide an ordered list by both school and player.

10. Bring a Text file output step over. Under the Fields tab, click on Get Fields and add all
the stream fields. The final transformation should look like the following screenshot:

11. Execute the transformation. You should see a text file produced with all of the players
that were at a school during the year 1989. You can rerun the transformation with
different filter criteria and receive matching result sets.

Chapter 3

129

How it works...
By combining the datasets into one flat structure, we are able to use HBase to quickly
query the data for the given filter criteria. We can query the same table against many
different mappings to best suite the types of queries we wish to run. The mapping shown
in the Configure query tab is based on the mappings created or edited on the Create/Edit
mappings tab. This same functionality can be found in the HBase Output step. The Filter
result set tab allows for complex filtering of the dataset.

See also
 f Loading data into MongoDB

 f Loading data into HBase

 f The recipe Writing a simple file in Chapter 2, Reading and Writing Files

Loading data into MongoDB
MongoDB is a type of NoSQL database, called a document store. Data is stored in JSON-like
arrays in a format called BSON (binary JSON), which allows for quick and scalable queries.
Java Script Object Notation (JSON), are name/value pairs that can be nested to store
complex data. Another way of thinking of a MongoDB document is that they are akin to a
multidimensional array. Like many NoSQL databases, the schema structure is dynamic.
This means that the descriptors of a dataset can be added, removed, or not even required
for records to be stored into a given document.

Getting ready
We will continue to use the Lahman's Baseball Database mentioned earlier in the chapter
to load MongoDB and later use it to query for specific data. Before we can do anything
else though, we need to make sure that we have an instance of MongoDB to play with,
either locally on a virtual machine or elsewhere. To download a copy of MongoDB, check
out the website at http://www.monodb/org/downloads. There is also some great
documentation there if you wish to advance beyond the basics.

How to do it...
Follow the steps to load the baseball data into MongoDB:

1. Create a new transformation.

2. Bring a CSV file input step over and open the step.

3. Browse to the Batting.csv file from the Lahman Baseball dataset. Click on
Get Fields to add all the fields to the data grid. Click on OK to exit the step.

Working with Big Data and Cloud Sources

130

4. Add a MongoDb Output step from the Big Data category. Connect the CSV file input
step to it with a hop. Open the step.

5. Point to your MongoDB instance by entering the Host name or IP address and Port
that MongoDB is running on.

6. For the Database field, enter baseball.

7. For the Collection field, enter batting.

8. Switch to the Mongo document fields tab and click on Get fields. The stream fields
will be populated into the grid. Click on OK.

9. Run the transformation. The Batting data should load into the baseball database.

How it works...
By using the MongoDB Output step, Kettle is able to define the data stream into a MongoDB
document structure, even if the data is nested in a complex manner. To ensure that the
data structure matches the schema of an already existing document store, there is an extra
feature on the Mongo document fields tab called Preview document structure that will
show the document's data structure, so that if the Mongo document path column needs to
be tweaked beforehand, the developer can do so. Remember, the step will not necessarily
fail if the document structure does not match. It will load a bad structure right alongside the
good structure, because MongoDB only sees data. Also note that most NoSQL databases
are not defined as an ACID compliant. ACID is the standard used to determine if data will be
lost, overwritten, or otherwise manipulated in a controlled manner. While MongoDB and other
NoSQL databases provide huge boosts in performance for querying huge datasets, it does
come at some cost.

See also
 f Getting data from MongoDB

Getting data from MongoDB
Moving data out of MongoDB is a tad trickier than putting data into the NoSQL database.
Fortunately, we are able to filter out data to produce a smaller subset of a source
document store.

Getting ready
We will be pulling a subset of data from the batting dataset loaded from the Lahman's
Baseball Database in the recipe, Loading data into MongoDB. It will also be beneficial to read
more on MongoDB's data model. There is a good overview provided by the MongoDB website
at http://docs.mongodb.org/manual/core/data-modeling/.

Chapter 3

131

How to do it...
1. Open a new transformation.

2. Under the Big Data category, select the MongoDb input step and bring it over to
the canvas.

3. Open the step and add the MongoDB instance connection information to the Host
name or IP address and Port.

4. Enter baseball for the Database field and batting for the Collection field.

5. For the Query expression (JSON) field, enter {"$query" : {"G_batting" :
{"$gte" : 10 }}, "$orderby" : {"playerID" : 1, "yearID": 1} }.
This is telling MongoDB to find any players who batted at least 10 games in a given
year, and sort the data by playerID and yearID in ascending order.

6. For the Fields expression (JSON) field, enter {"playerID":1, "yearID":1,"G_
batting":1}. This is telling MongoDB to only include the playerID, yearID,
teamID, and G_batting fields.

7. Click on Preview to view a sample of the filtered dataset. Notice that the data is
returning in JSON format. Click on OK to exit the field.

8. The data must be translated from JSON for Kettle to be able to do more with it. Under
the Input category, find the Json Input step and add it to the canvas. Add a hop from
the MongoDB Input step to the Json Input step.

9. Open the Json Input step. Click on the Source is defined in a field? checkbox to true.
The Get source from field dropdown should have the json field selected that was
created with the MongoDB Input step.

10. Switch to the Fields tab and enter the stream data as shown in the
following screenshot:

11. Click on OK. Add a Text File Output step and add a hop between the Json Input step
and the Text File Output step.

12. Open the Text File Output step and give a file path for the output file.

13. Switch to the Fields tab and click on Get Fields. This will populate the grid with the
stream fields.

14. Save and run the transformation. You now have a file listing the playerIDs and the
years in which they batted at more than 10 games.

Working with Big Data and Cloud Sources

132

How it works...
The MongoDB Input step is able to translate JSON queries (which are the standard way of
querying MongoDB) and pull the data back into the stream. The result set is also a JSON array
that needs just a touch more interpretation before it can be further used by Kettle, so a Json
Input step is required to turn the JSON array into something more manageable. From there, we
can use all of Kettle's capabilities to transform and cleanse the data to match our requirements.

For more details on how to query and filter MongoDB, check
out the documentation at http://docs.mongodb.org/
manual/core/read-operations/.

See also
 f Loading data into MongoDB

 f Getting data from HBase

 f The Writing a simple file recipe in Chapter 2, Reading and Writing Files

4
Manipulating

XML Structures

In this chapter, we will cover:

 f Reading simple XML files

 f Specifying fields by using the Path notation

 f Validating well-formed XML files

 f Validating an XML file against DTD definitions

 f Validating an XML file against an XSD schema

 f Generating a simple XML document

 f Generating complex XML structures

 f Generating an HTML page using XML and XSL transformations

 f Reading an RSS Feed

 f Generating an RSS Feed

Introduction
XML (Extensible Markup Language) is a markup language used to describe data in a format
that both humans and machines can understand; the opposite of HTML which was designed
only to display data in a web browser. It is a self-descriptive language because its tags are
not predefined. XML documents are not only used to store data, but also to exchange data
between systems.

Manipulating XML Structures

134

XML is recommended by W3C (World Wide Web Consortium). You will find the details at the
following URL: http://www.w3.org/XML/. PEDI (Pentaho Data Integration) has a rich
set of steps and job entries for manipulating XML structures. The recipes in this chapter are
meant to teach you how to read, write, and validate XML using those features.

Most of the recipes are based on a database with books and
authors. To learn more about the structure of that database,
see the Appendix A, Data Structures, or the examples in
Chapter 1, Working with Databases.

The recipes assume that you know the basics of XML, that is, you know what XML is, what
an attribute is, and so on. If you don't, you should start by reading something about it before
proceeding. The following tutorial is a good start: http://www.w3schools.com/xml/.

Reading simple XML files
PEDI has a step named Get XML Data used to read XML structures. This recipe shows how to
read an XML file containing information about museums using this step.

Getting ready
In this exercise, you will use a file named museum.xml with the following structure:

<museums>
 <museum id_museum= '…'>
 <name>…</name>
 <city>…</city>
 <country>…</country>
 </museum>
</museums>

We will be making use of Path, which is used to query XML documents to retrieve and
compute information. If you are new to Path, it is recommended to check out the excellent
tutorials over at http://www.w3schools.com/xpath/ to get a better understanding of
Path before digging into the recipe.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Get data from XML step from the Input category into the canvas.

Chapter 4

135

3. Under the File tab, you must select the XML document. Browse for the file museums.
xml and click on the Add button.

4. Under the Content tab, type /museums/museum in the Loop Path textbox. This will
be the current node.text box

Alternatively, you can click on the Get Path nodes
and select it.

Under the Fields tab, you need to specify the fields by using Path notation. Use the Get Fields
button to get them automatically. You should get a result similar to the following:

In the case of XML attributes, if you include the @ character in the Path as a prefix
(for example, @id_museum), it is not necessary to select Attribute under the Element
column. The @ character is used in Path to denote that an attribute is being queried for:

Doing a preview on this step, you will obtain the following results:

Manipulating XML Structures

136

How it works...
The Get XML Data step allows reading data in XML format by using a Path specification. In
this recipe, you read a single file. However, as in any input step, you have the option to read a
whole directory, multiple files, or even use a regular expression to specify which files to read.
Alternatively, you can use this step to read XML structures from other sources, such as fields
or URLs. For more details, see the section XML data in a field later in this recipe.

In order to tell Kettle where to get the fields from, the first thing you have to do is to fill the
Loop Path textbox. You can do that by typing it or by clicking on the Get Path nodes button
and selecting it from the list of available nodes. For generating the dataset, Kettle will loop
over the selected node.

For each element that matches the selected node, Kettle
will generate a new row.

The Path and Element columns in the Field grid are the fields used to define the origin of
the fields. The Path should be relative to the current node. The Element column simply tells
Kettle if the element is a node or an attribute. The rest of the columns in the grid should be
filled just as you would in any input step, providing the type, format, and so on. If you are using
this step for reading a file, you have the option to fill this grid automatically, by clicking on the
Get fields button.

There's more...
By default, XML files are interpreted through unicode encoding. If none is specified, you have
the option of selecting the encoding under the Content tab. For more on encoding, follow the
link at http://en.wikipedia.org/wiki/Character_encoding.

If you have large XML files, then see the recommendations at http://wiki.pentaho.com/
display/EAI/Get+Data+from+XML+-+Handling+Large+Files.

XML data in a field
In some situations, you don't have the XML as a file, but as a field in your dataset. An example
of this is a transformation, where you call a web service that returns the result in XML format.
In these situations, instead of specifying the name of the file, you must complete the section
XML source from field under the File tab of the Get data from XML step. Checking the option
XML source is defined in a field? will enable the dropdown list named get XML source from
a field. From that list, you have to select the field that contains the data in XML format.

Chapter 4

137

The rest of the tabs should be filled exactly as when you read a file. The main difference
is that the Get fields button will not be enabled. Consequently, you will have to fill the grid
manually, or follow this tip:

Copy the content of the field that contains the XML structure
and save it in a file. Read that file by using the Get data from
XML step, and use the Get fields button to fill the Fields grid
automatically. Finally, change the settings under the File tab,
in order to read the structure from the desired field.

XML file name in a field
It may happen that your XML structure is in a file, but you don't know its name in advance. If
the name of the file is in a field, you still may read it by using the Get data from XML step. For
reading the file, you must complete the section XML source from field under the File tab of
the Get data from XML step. Check the two options: XML source is defined in a field? and
XML source is a filename?. The get XML source from a field dropdown list will be filled with
the names of the incoming fields. From that list, select the field that contains the name of the
file. As in the previous section, the Get fields button will be disabled. For advice on filling the
Fields grid, read the preceding tip.

See also
 f Specifying fields by using the Path notation

Specifying fields by using the Path notation
If you intend to read or write XML structures, it's mandatory that you understand at least the
basics of Path, the language for finding information in an XML document, or defining parts of
an XML document. In this recipe you will be introduced to the Path notation, so that you will
find it easier to work with the rest of the recipes in the chapter. Suppose you have an XML
structure such as the following:

<wound>
 <data>
 <request>
 <type>City</type>
 <query>Buenos Aires, Argentina</query>
 </request>
 <current_condition>
 <observation_time>08:12 PM</observation_time>
 <temp scale="C">19</temp>
 <temp scale="F">66</temp>
 <weatherDesc>Sunny</weatherDesc>

Manipulating XML Structures

138

 <windspeed unit="Miles">8</windspeed>
 <windspeed unit="Kmph">13</windspeed>
 <dirDegree>70</dirDegree>
 <dir16Point>ENE</dir16Point>
 ...
 </current_condition>
 <weather>
 <date>2010-10-24</date>
 <tempMaxC>23</tempMaxC>
 ...
 </weather>
 <weather>
 <date>2010-10-25</date>
 ...
 </weather>
 ...
 </data>
 <data>
 <request>
 <type>City</type>
 <query>Montevideo, Uruguay</query>
 </request>
 ...
 </data>
 <data>
 ...
 </data>
 ...
</wound>

This structure contains the weather forecast for a group of cities. For each city, you have the
current weather and the forecast for the next three days.

The sample XML was obtained by using a free local
weather API. To learn how to use that API, visit
www.worldweatheronline.com. Note that the
sample is a slightly modified version of the original result.

Now, you want to specify the Path for the following data (highlighted in the sample structure):

 f City

 f Observation time

 f Temperature (scale and degrees)

 f Weather description

Chapter 4

139

Getting ready
This recipe is theoretical and has the purpose of helping you when it's time to enter a Path
notation. You will not develop a transformation here. However, for a better understanding of
what's being explained, you can do the following:

1. Download the sample XML file.

2. Read it by using the Get data from XML step.

3. Try introducing the different Path notations in the Fields grid, as they are explained.

4. To check if you are entering the correct notations, do a preview and check it for yourself.

How to do it...
Perform the following steps:

1. Pick the node that will be the base for specifying your fields. In the sample data, the
node will be /wound/data.

For each desired element, repeat steps 2 and 3.

2. Look at the XML structure to see if it is a node or an attribute. In the sample data, the
temperature scale and the units for the wind speed are attributes. The rest of
the fields are nodes.

3. Identify the absolute location of the element, that is, the complete path from the root
element to the desired element. For example, for city the absolute location would be
/wound/data/request/query. If the element is an attribute, prepend @ to the name.

4. Identify the location relative to the base node identified in step 1. For example, for the
city the relative location would be request/query. If the element is an attribute,
prepend @ to the name.

The following table shows the absolute and relative locations for the sample data:

Data Absolute Location Relative Location
City /wound/data/request/query request/query

Observation time /wound/data/current_cond/

observation_time

current_cond/

observation_time

Temperature(degrees) /wound/data/current_cond/temp current_cond/temp

Temperature(scale) /wound/data/current_cond/

temp/@scale

current_cond/
temp/@scale

Weather description /wound/data/current_cond/

weatherDesc

current_cond/
weatherDesc

Manipulating XML Structures

140

The preceding locations are the Path notations for the selected data in the sample
XML structure.

How it works...
Path is a set of rules used for getting information from an XML document. Path treats an XML
structure as a tree of nodes. The tree can be compared to a directory tree in your system. The
way you specify relative or absolute locations in that tree is much the same in both cases.

In Kettle, you use Path both for getting data from XML structures and for generating
XML structures.

The reason for specifying both absolute and relative locations in the recipe is that in Kettle
you need one or the other depending on what you are doing. For example, when you read an
XML structure, you have to select a node and define the fields as locations relative to that
node. When you join two XML structures, the Path statement that you need to specify is an
absolute location.

There's more...
The Path notations in the recipe are the simplest Path notations you will find, but Path
allows you to write really complex expressions. The next sections provide you with more
detail about specifying nodes with Path notation. For more information on Path, you can
follow this link: http://www.w3schools.com/Path/ or see the W3C recommendation:
http://www.w3.org/TR/xpath.

Getting data from a different path
When you read an XML structure, you don't specify absolute paths, but paths relative to a
node selected as the current node. In the sample recipe, the current node was /wound/
data. If the fields are inside that node, you get the relative location just by cutting the root
part from the absolute location. For example, the absolute path for the weather description
is /wound/data/current_cond/weatherDesc.

Then, for getting the location relative to the current node, just cut /wound/data/ and you get
current_cond/weatherDesc.

If the data you need is not in the tree below the selected node, you have to use the ..
notation, which is used to specify the parent of the current node. For example, suppose that
the current node is /wound/data/current_cond and you want to know the name of the
city to which this condition belongs. The city element is not inside the selected node. To
reach it, you have to type ../request/city.

Chapter 4

141

Getting data selectively
If you are reading a structure where there might be more than one element with the same
Path notation, you have the option to select just the one that interests you. Look for example
at the temperature elements in the sample structure:

 <temp scale="C">19</temp>
 <temp scale="F">66</temp>

These lines belong to the Celsius and the Fahrenheit scales respectively. Both lines share the
same Path notation. Suppose that you are interested in the Celsius line. To get that element,
you have to use a predicate. A predicate is an expression used to find a specific node or a node
that contains a specific value. In this case, you need a predicate to find a node that contains an
attribute named scale with value C. The notation for getting that node is temp[@scale='C'].
In general, for getting a node that contains a specific value, the notation is Path[condition],
that is, the Path expression followed by the condition within brackets.

Now, let's make it a bit more complicated. Suppose that you don't even know which scale to
return because the scale is part of the XML structure, as shown in the following example:

<request>
 <type>City</type>
 <query>Buenos Aires, Argentina</query>
 <preferredScale>C</preferredScale>
</request>

Each city will have its own preferred scale and you should return the temperature in Celsius
or Fahrenheit depending on the city's preferred scale. What you need is a dynamic predicate.
The way to implement this is through the use of a non-standard extension named tokens.
Let's explain it based on our example:

1. The first thing you have to do is to add the field in which the token is based:
preferredScale. So, add a field named preferredScale and for Path, type ../
request/preferred_scale.

2. Then, add a new field for the temperature in the desired scale. For Name, type
temperature and as Path type ../temp[@scale =@_preferredScale-]/
text().

3. Finally, under the Content tab, check Use tokens. If you don't, this will not work!

Manipulating XML Structures

142

Assuming that you defined the fields: city, preferredScale, temperature_C, and
temperature_F for the temperature in Celsius and Fahrenheit degrees respectively, and
temperature, if you do a preview you should see something like the following:

In general, the expression for a token is @_<tokenized_field>-, where
<tokenized_field> is the field in which the token is based and has to be
previously defined.

PEDI will build a dynamic predicate by replacing each <tokenized_field> by its current
value and then returning the proper node value.

Getting more than one node when the nodes share their
Path notation
Look at the weather nodes in the sample XML structure:

 <weather>
 <date>2010-10-24</date>
 <tempMaxC>23</tempMaxC>
 ...
 </weather>
 <weather>
 <date>2010-10-25</date>
 <tempMaxC>23</tempMaxC>
 ...
 </weather>
 <weather>
 <date>2010-10-26</date>
 <tempMaxC>24</tempMaxC>

For each node /wound/data (the current node in the example), there are three different
weather nodes.

Chapter 4

143

Suppose that you want to read all of them. In this case, you have to use a predicate just as
explained in the previous section. In this case the predicate is not used to find a node that
contains a specific value, but to find the nodes by position, you need the first, second, and
third weather nodes. The notation that you have to use is Path[position], that is, the
Path expression followed by the position of the desired element within brackets.

In the example, the notation for the first, second, and third weather nodes would be
weather[1], weather[2], and weather[3] respectively. For getting nodes inside those,
the notation is as usual. For example, for getting the date of the second node, you should
write weather[2]/date.

Note that if you are reading an XML structure, each element that you get by using this
notation may be used as a new column in the dataset. Instead of that, if you want to generate
a different row for each weather node, then you should take another approach: instead of
using this notation, simply change the current node (Loop Path element) from /wound/data
to /wound/data/weather.

Saving time when specifying Path
In most of the Kettle steps where you have to provide a Path, you must type it manually. That's
why you need to understand this notation. However, when you read an XML structure by using
the Get Data from XML step, you have the option to use the Get Fields button to get the
nodes and attributes automatically. Note that Kettle will get only the trivial elements:

 f It will get only the fields that are below the node you typed as Loop Path.

 f It will bring all the elements. For getting elements selectively, as in the temperature
example above, you'll have to modify the grid manually.

 f If there is more than one element with the same Path notation, as in the weather
example above, it will bring only the first element.

To summarize, if you fill the grid with the Get Fields button you will save time, but on most
occasions, you will still have to adjust the data in the grid manually.

Validating well-formed XML files
PEDI offers different options for validating XML documents, including the validation of a
well-formed document. The structure of an XML document is formed by tags that begin with
the character < and end with the character >. In an XML document, you can find start tags
<example tag>, end tags </example tag>, or empty element tags <example tag/>,
and these tags can be nested. An XML document is called well-formed when it follows the
following set of rules:

 f They must contain at least one element.

 f They must contain a unique root element—this means a single opening and closing
tag for the whole document.

Manipulating XML Structures

144

 f The tags are case sensitive—this means that beginning and ending tags match
(for instance, <example Tag></example Tag> versus <example Tag>
</Example Tag>). The second tag set will throw an error.

 f All of the tags must be nested properly, without overlapping.

There is a lot more that goes into consideration around what
a well-formed XML file is. Wikipedia has an overview of what
it means to have a well-formed document. Check out the
article at http://en.wikipedia.org/wiki/Well-
formed_document.

In this recipe you will learn to validate whether a document is well-formed, which is the simplest
kind of XML validation. Assume that you want to extract data from several XML documents with
museum's information, but only want to process those files that are well-formed.

Getting ready
To use this recipe, you need a set of XML files in a directory named museums. This recipe
reads a directory containing three files, where the first one has an intentional tag mistake.
You can download the sample files from Packt's site.

How to do it...
Perform the following steps:

1. Create a new job and add a Start entry.

2. Drop a Check if XML is well formed entry from the XML category into the canvas.

3. Under the General tab, you must type the path to the museum directory in the
File/Folder source textbox, and type .+\.xml in the wildcard textbox, in order
to use only the files with the .xml extension.

4. Click on the Add button to populate the File/Folder grid.

5. Under the Advanced tab, choose the following configuration:

Chapter 4

145

6. Then, create a new transformation in order to process the well-formed XML files
obtained from the previous job entry. Add this transformation as the last step in the job.

7. In the transformation, drop a GET files from result step from the Job category.

8. Add the Get data from XML step.

9. Under the File tab, set the following screenshot:

10. Under the Content tab, type /museums/museum in the Loop Path textbox.

11. Finally, the grid under the Fields tab must be completed manually, as shown in the
following screenshot:

12. When you run the job, you will obtain the museums dataset with data coming only
from the well-formed XML files. You can take a look at the Logging window to verify
this. You will see something like the following:
2010/11/01 11:56:43 - Check if XML file is well formed - ERROR
(version 4.1.0, build 13820 from 2010-08-25 07.22.27 by tomcat) :
Error while checking file [file:///C:/museums1.xml].
Exception :
2010/11/01 11:56:43 - Check if XML file is well formed - ERROR
(version 4.1.0, build 13820 from 2010-08-25 07.22.27 by tomcat) :
org.xml.sax.SAXParseException:

Element type museum must be followed by either attribute specifications, > or />.

13. Further, you can see in the Logging window that only two files out of three were read:
2010/11/01 11:56:43 - Get XMLs well-formed.0 - Finished
 processing (I=0, O=0, R=2, W=2, U=0, E=0)

Manipulating XML Structures

146

How it works...
You can use the Check if XML is well-formed job entry to check if one or more XML files
are well-formed.

In the recipe the job validates the XML files from the source directory and creates a list with
only the valid XML files.

As you saw in the logging window, only two files were added to the list and used later in the
transformation. The first file (C:/museums1.xml) had an error; it was not well-formed and
because of that it was not added to the list of files.

The Get files from result step in the transformation gets the list of well-formed XML
documents created in the job. Then, a Get data from XML step read the files for further
processing. Note that in this case, you didn't set the names of the files explicitly, but used
the field path coming from the previous step.

See also
 f Specifying fields by using the Path notation

 f Validating an XML file against DTD definitions

 f Validating an XML file against an XSD schema

Validating an XML file against DTD definitions
A Document Type Definition (DTD) defines the document structure of an XML document with
a list of elements and attributes. Kettle provides the DTD validator entry job to do a validation
against a DTD definition file.

For example, suppose you have an XML file with museum's information, as follows:

<museums>
 <museum>
 <name>Fundacion Federico Klemm</name>
 <city>Buenos Aires</city>
 <country>Argentina</country>
 </museum>
 <museum id_museum= '2'>
 <name>Fundacion Proa</name>
 <city>Buenos Aires</city>
 <country>Argentina</country>
 </museum>
 <museum id_museum= '9'>
 <name>Museu Nacional de Belas Artes</name>

Chapter 4

147

 <country>Brazil</country>
 </museum>
 <museum id_museum= '19'>
 <name>Biblioteca Luis Angel Arango</name>
 <city>Bogota</city>
 <country>Colombia</country>
 </museum>
</museums>

You want to validate it against the following DTD definition file:

<!DOCTYPE museums [
<!ELEMENT museums (museum+)>
<!ELEMENT museum (name+, city, country)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ATTLIST museum id_museum CDATA #REQUIRED >
]>

With this definition, you are declaring the museum structure elements: name, city, and
country, and defining the attribute id_museum as required.

Getting ready
For this recipe, you need a museum.xml document with DTD definition included. You can
download it from Packt's website.

You can have the DTD definition as an independent file or inside the XML document. If the DTD
is declared inside the XML file, it should be wrapped in a DOCTYPE definition with the following
syntax: <!DOCTYPE root-element [element-declarations]>.

How to do it...
Perform the following steps:

1. Create a new job and add a Start entry.

2. Drop a DTD Validator job entry from the XML category into the canvas.

3. Here, you must point to your XML file in the XML File name textbox.

4. Check the DTD Intern checkbox.

5. Run this job, so that the XML data gets validated against the DTD definitions, which
are inside the XML file.

Manipulating XML Structures

148

6. You can see the result of the validation including information about the errors under the
Logging tab in the Execution results window. In this case, the results are as follows:

 � For the first element, the job will detect this error:
Attribute "id_museum" is required and must be specified for
 element type "museum"

 � The second and fourth museum elements are correct

 � For the third element, you will receive the following message:
The content of element type "museum" must match
 "(name+,city,country)"

How it works...
The DTD Validator job entry does the entire task of validating an XML file against a DTD
definition. In the recipe, you checked the DTD Intern checkbox because the DTD definitions
were inside the XML file. Otherwise, you must fill the DTD File name textbox with the name of
the proper DTD file.

There's more...
DTD has a lot of limitations. For example, you cannot define types for the XML elements or
attributes. If you need more flexibility, another step that can be used is the XSD validatior step.

You can learn more about DTD definitions at
http://www.w3schools.com/dtd/default.asp.

See also
 f Validating an XML file against an XSD schema

 f Validating well-formed XML files

Validating an XML file against an
XSD schema

In this recipe, you will learn how to use the XSD Validator step, in order to verify a particular
XML structure using an XSD (XML Schema Definition). For example, you will use a database
of books (with the structure shown in the Appendix A, Data Structures) and an XSD schema file
with the books, structure. You want to validate each book element against the XSD schema file.

Chapter 4

149

The XSD file is named books.xsd and it looks like following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="idTitle">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{3}\-\d{3}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="positiveDecimal">
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0.0" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="genre" type="xs:string"/>
 <xs:element name="price" type="positiveDecimal"/>
 <xs:element name="author" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id_title" type="idTitle" />
 </xs:complexType>
 </xs:element>
</xs:schema>

This schema file verifies the following features:

 f Inside a sequence, there are three elements of string type: title, genre,
and author.

 f There is an element named price of a simpleType named positiveDecimal,
declared earlier as a decimal type with 0.0 as its minimum value.

 f There is a simpleType named idTitle for the id_Title attribute. This type is
declared as a string with a pattern expression. In this case, you will use \d{3}\-
\d{3} which means three decimal followed by a hyphen and then three more
decimals, for example, 123-456.

Manipulating XML Structures

150

Getting ready
You need a database with books' and authors' information. You will also need the XSD schema
as a separate file. You can download the file from Packt's site. Since we are validating the data
against an XSD, we need to edit a couple of records in the books table of the books database:

1. Remove the - in id_title for the record containing information on the book
titled Star Island.

2. Change the price of the book titled The Girl with the Dragon Tatoo to -5.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Table Input step and make a selection from the books database with the
following statement:
SELECT id_title
 , title
 , genre
 , price
 , concat(lastname,", ",firstname) author
FROM books
LEFT JOIN authors
ON authors.id_author=books.id_author

3. Use the Add XML step from the Transform category, in order to create a new column
with the data for each book in XML format.

4. Under the Content tab, type xmlBook in Output Value and book as Root
XML element.

5. Under the Fields tab, use the Get Fields button to populate the grid automatically.
Modify the Attribute field for the id_title row to Y. Then, modify the Format and
Decimal fields for the price row, as shown in the following screenshot:

Chapter 4

151

6. If you do a preview on this step, then you will see a new column with an XML structure
for each book. The following is a sample XML structure created with this step:
<book id_title="423-006">
<title>Harry Potter and the Order of the Phoenix</title>
<genre>Childrens</genre>
<price>32.00</price>
<author>Rowling, Joanne</author>
</book>

The structure is shown in several lines for clarity. In the preview,
you will see the structure in a single line.

7. Add an XSD Validator step from the Validation category.

8. In the XML field located under the Settings tab, select the column xmlBook that you
created in the previous step.

9. Under the same tab, complete the Output Fields frame, as shown in the
following screenshot:

10. In the XSD Source listbox inside the XML Schema Definition frame, select the option
is a file, let me specify filename.

Manipulating XML Structures

152

11. Then, in the XSD Filename textbox, type or select the books.xsd file. When you
run this transformation, you will obtain the dataset with books along with a field
indicating the result of the validation and the validation message in case of failure.
Assuming that you have introduced the errors from the Getting ready section, your
final dataset will look similar to the one shown in the following screenshot:

How it works...
An XSD file defines a set of rules for validating an XML document. An XSD file allows you to
verify whether a document, written in XML format, is well-formed and also respects those rules.

In this example, you created a new column with each book in XML format, and then applied
the XSD Validator step to verify this column against the books.xsd schema file.

In the result of your transformation, you could see that one book didn't follow the pattern
expected for the id_title field, because it didn't contain a hyphen. In that case, you
obtained the following message:

cvc-pattern-valid: Value '123505' is not facet-valid with respect
 to pattern '\d{3}\-\d{3}' for type 'idTitle'

Also, one book had an incorrect price (a negative one). In that case, you got the following error:

cvc-minInclusive-valid: Value '-5.00' is not facet-valid with
 respect to minInclusive '0.0' for type 'positiveDecimal'

There's more...
In the recipe, you used the XSD Validation step to validate an XML structure, which in turn
was made from a field in a database. In general, you can use this step to validate any XML
structure, both supplied as a field, or saved in a file.

In cases where you want to validate a file, you can also take advantage of the same functionality
from a job entry named XSD Validation inside the XML category. The configuration of that entry
is simple—it's just setting the paths to the XML file and the XSD schema file.

Chapter 4

153

You can learn more about XSD from the following URL: http://www.w3.org/TR/
xmlschema-0/.

See also
 f Validating well-formed XML files

 f Validating an XML file against DTD definitions

Generating a simple XML document
In order to create a new XML document, you can use the XML Output step. In this recipe you
will create a new XML file from a database containing information about books.

Getting ready
You will need a books database with the structure described in Appendix A, Data Structures.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Table Input step, in order to obtain the book's information and type the
following query:
SELECT id_title
 , title
 , genre
 , price
 , concat(lastname,", ",firstname) author
FROM books
LEFT JOIN authors
ON authors.id_author=books.id_author

3. Add an XML Output step.

4. In the Filename textbox of the File tab, type the destination filename, including
its complete path (without extension). In the Extension textbox, leave the default
value, xml.

5. Fill the Content tab as Parent XML element, type Books and as the Row XML
element, type Book.

Manipulating XML Structures

154

6. Under the Fields tab, use the Get Fields button to get the fields. In the price field,
set the Format to $0.00.

7. Run the transformation and look at the generated XML file. It should look like
the following:
<Books>
 <Book>
 <id_title>123-346</id_title>
 <title>Carrie </title>
 <genre>Fiction</genre>
 <price>$41,00</price>
 <author>King, Stephen</author>
 </Book>
 <Book>
 <id_title>123-347</id_title>
 <title>Salem›s Lot </title>
 …
 </Book>
 …
</Books>

How it works...
The XML output step does the entire task. It creates the XML file with rows coming in the
stream, using the Parent XML element and Row XML element values to complete the
structure of the XML file. It encloses each row between tags with the name you provided for
Row XML element (<Book> and </Book>), and the whole structure between tags with the
name provided for Parent XML element (<Books> and </Books>).

The XML output step has some properties in common with other output steps. For example,
there is the option to add the date and time as part of the name of the file or to split the
output into several files using the Split every ... rows textbox from the Content tab.

There's more...
In the recipe, you wrote the XML information into a file, but you may want to have the
information in XML format as a new column of your dataset. The following section explains
how to do this.

Generating fields with XML structures
If, rather than generating the XML structure in a file, you want the structure as a new field,
you should use the Add XML step from the Transform category instead of using the XML
output step.

Chapter 4

155

The Add XML step encodes several fields into an XML fragment. In this step, you must set
Root XML element (for example Book) and the name for the new column. The Fields tab is
quite similar to the same one in the XML output step, but here you can also specify if the
element is a node or an attribute. In the example, you can set the field id_title as an
attribute of the element Book, set Attribute as Y and Attribute parent name as Book, and
you will have the following XML structure:

<book id_title ="123-346">
 <title>Carrie </title>
 <genre>Fiction</genre>
 <price>41.00</price>
 <author>King, Stephen</author>
</book>

This step is particularly useful for generating complex structures, as you will see in the
next recipe.

See also
 f Generating complex XML structures

 f Validating an XML file against an XSD schema

Generating complex XML structures
In previous recipes, you learned how to read and write simple XML structures. With Kettle,
you can also generate more complex structures with different levels of information, which is
more likely to be similar to the structures you find in real case scenarios. Suppose you need to
create a complex XML structure with a hierarchy of two levels: the authors in the first level and
their books as their children. In this case, you can't use the XML output job entry, because it
only works with simple structures. For theses cases, you must learn to use the XML Join step.

The objective for the recipe is to get the following XML structure:

<result>
 <authors>
 <author id_author =…>
 <lastname>…</lastname>
 <firstname>…</firstname>
 <nationality>…</nationality>
 <birthyear>…</birthyear>
 <books>
 <book id_title =…>
 <title>…</title>
 <price>…</price>

Manipulating XML Structures

156

 <genre>…</genre>
 </book>
 </books>
 </author>
 <author id_author =…>
 ...
 </author>
 ...
 </authors>
</result>

Getting ready
In this recipe you will use a database of books with the structure shown in Appendix A,
Data Structures.

How to do it...
We can generate complex XML structures by performing the following three steps:

1. First of all, we will create an empty XML root structure.

2. Then we will add the author's information.

3. Finally, we will inject the book's information inside the authors tag.

The following steps explain how to create the XML root structure:

1. Create a new transformation.

2. Drop a Generate Rows step into the canvas, in order to create the authors tag.

3. In the Fields grid, type the Name authors and select String in the Type column.

4. For creating the root XML structure, add an Add XML step from the Transform
category. Name this step Create XML root structure.

5. Under the Content tab of this step, type xmlResult in the Output Value textbox, and
result in the Root XML element textbox.

6. Under the Fields tab, add the only field that you have: authors. Don't forget to set
the type as String. If you do a preview on this step, you will see a new field named
xmlResult with the following information:

<result><authors/></result>

Chapter 4

157

Now, the following steps explain how to create the authors piece of XML:

1. Drop a Table Input step into the canvas, and select the authors table using the
following SQL statement:
SELECT *
FROM authors

2. Use the Add constants step from the Transform folder and create the entry books
(String type). This literal will be replaced later with the books' authors.

3. Add another Add XML step. Name this step as Create Authors XML.

4. Under the Content tab, type author for Root XML element and xmlAuthors for
the Output Value.

5. Click on the Get Fields button to add to the grid all the fields (including the empty
books field). For the id_author field, select attribute as Y. Doing a preview on this
step, for each author you will see something like the following:
<author id_author="A00001">
 <lastname>Larsson</lastname>
 <firstname>Stieg</firstname>
 <nationality>Swedish</nationality>
 <birthyear> 000000000001954</birthyear>
 <books/>
</author>

In the preview, you will see the XML structure in a single line. In the examples, the structures
are shown over several lines and indented just for better understanding.

Now, you need to insert the authors' data inside the XML root structure created previously.
The next steps explain how to merge both streams:

1. Add an XML Join step from the Join category and use it to link the streams, as shown
in the following screenshot:

2. Name this step as Merge Authors and root XML.

Manipulating XML Structures

158

3. Double-click on the step and fill the Target stream properties, Source
stream properties, and Join condition properties frames, as shown in
the following screenshot:

4. In the Result XML field inside the Result Stream properties frame,
type xmlauthors2.

5. Do a preview of this step. You will see that there is a new field named xmlauthors2
containing the XML structure for the root XML and the authors. Also note that there is
an empty tag named books for each author's node:
<result>
 <authors>
 <author id_author ="A00001">
 <lastname>Larsson</lastname>
 <firstname>Stieg</firstname>
 <nationality>Swedish</nationality>
 <birthyear>1954</birthyear>
 <books/>
 </author>
 <author id_author ="A00002">
 <lastname>King</lastname>
 <firstname>Stephen</firstname>
 <nationality>American</nationality>
 ...
 </author>
...
 </authors>
</result>

Chapter 4

159

Finally, it's time to create the XML structure for the books and merge them with the
main structure:

1. Drop a Table input step into the canvas, in order to select all the books. Use the
following SQL statement:
SELECT *
FROM books
ORDER BY title

2. Add an Add XML step. Name this step as Create Books XML.

3. Under the Content tab, type book in the XML root element textbox and xmlBooks in
the Output Value textbox.

4. Under the Fields tab, use the Get Field button to obtain all the fields. Select attribute
as Y for the id_title field. Also, for the price field, set Format to $0.00.

5. Do a preview on this step. You will see a new XML field named xmlBooks with the
book's data. For example:
<book id_title ="123-346">
 <title>Carrie </title>
 <price>$41,00</price>
 <genre>Fiction</genre>
</book>

6. Finally, you must do the last merge; this time between the output of the Merge
Authors and root XML step and the output of the recently created Create Books
XML step. Add one more XML Join step and link these two steps. The transformation
should look similar to the following:

Manipulating XML Structures

160

7. In this last step, set the following properties:

8. In the Result XML field inside the Result Stream properties frame, type
xmlfinalresult. This field will contain the final result.

9. You can do a preview on this last step and you will obtain something like the following:
<result>
 <authors>
...
 <author id_author ="A00002">
 <lastname>King</lastname>
 <firstname>Stephen</firstname>
 <nationality>American</nationality>
 <birthyear>1947</birthyear>
 <books>
 <book id_title ="123-353">
 <title>Bag of Bones</title>
 <price>$40,90</price>
 <genre>Fiction</genre>
 </book>
 <book id_title=" 123-346">
 <title>Carrie</title>
 …
 </book>
 …
 </books>
 </author>
 <author id_author=" A00007">
 <lastname>Kiyosaki</lastname>
 …
 </author>
 </authors>
</result>

Chapter 4

161

How it works...
The basic idea when you have to generate a complex XML structure is to create partial XML
outputs in different steps and then use the XML Join step to create the merged structure.

The XML Join step allows you to incorporate one XML structure (with one or multiple rows)
inside another leading XML structure that must have only one row.

In the first join step of the sample transformation, you combined the XML that contains the
empty root structure with the author's XML structure. This is a simple join—the step replaces
the tag <authors/> of the root XML structure (the target stream) with all of the authors
coming from the author XML structure (the source stream). The Path expression, /result/
authors, tells Kettle which node in the root structure is to be filled with the author's structure.

The second XML Join step is a little more complex. It combines the result from the first XML
Join step and the selection of books. In this case, you have a complex join because you need
to join each group of books with their corresponding author. To do this, you must type the
condition of the join with the following Path expression: /result/authors/author[@
id_author='?']/books. The ? character is used as a placeholder. During execution, this
character will be replaced with the Join Comparison Field value (in this case, the id_author
field value). So, all books in XML format with a particular id_author will replace the tag
<books/> inside the tag <author> who have the same id_author. For example, the
following book by Stieg Larsson (already converted to the XML format) is in a row where
id_author is equal to A00001:

<book id_title="123-401">
<title>The Girl who Played with Fire</title>
<price>$35,90</price>
<genre>Fiction</genre>
</book>

Therefore, this structure will be inserted in the main XML structure in the following path:
/result/authors/author[@id_author='A00001']/books.

This is the path belonging to that author.

See also
 f Generating a simple XML document

 f Generating complex XML structures

 f Specifying fields by using the Path notation

Manipulating XML Structures

162

Generating an HTML page using XML and
XSL transformations

Sometimes, you don't have access to the source database from the web server, or you just
want static pages in your site. Under this scenario, you can create a web page through XSLT
(Extensible Stylesheet Language Transformations) and then publish it. In this recipe you will
take advantage of the XSL Transformation job entry features to do just that: taking an XML
file and transforming it into HTML.

XSLT is for more than just building HTML files from XML! It acts
as a translator, allowing for creating pretty much any kind of text
output desired. While this recipe focuses on the ability to build
HTML, don't forget that it can also build CSV and other delimited
files, semi-structured files, and yes, even other XML files! To
learn more about XSLT, check out the great introduction tutorials
over at http://www.w3schools.com/xsl.

Suppose you want to publish a books catalog on a website. In this recipe, you will generate an
HTML page, taking as its source, data that you have in a database.

Getting ready
You must have a database of books with the structure shown in Appendix A, Data Structures.

How to do it...
The first group of steps is meant for exporting the book's information from the database to an
XML file. if you already have the information in this format, then you can skip to step 7.

1. Create a new transformation.

2. Drop a Table Input step into the canvas and select the book's information. Use the
following SQL statement:
SELECT *
FROM books
LEFT JOIN authors
ON books.id_author = authors.id_author

3. Add an XML Output step from the Output category.

4. Fill in the File tab giving the file the name books and leaving the default xml as the
proposed extension.

5. Under the Content tab, type Books in Parent XML element and Book in Row
XML element.

Chapter 4

163

6. Under the Fields tab, press the Get Fields button, in order to retrieve the entire
field's information. Modify the Price field giving it the Format $0.00. The result from
these steps will be a file named books.xml with the book's structure. It must look
like the following:
<Books>
 <Book>
 <title>Carrie</title>
 <price>$41,00</price>
 <genre>Fiction</genre>
 <lastname>King</lastname>
 <firstname>Stephen</firstname>
 </Book>
 <Book>
 <title>Salem›s lot</title>
 …
 </Book>
</Books>

7. Now, you must create the XSL file (booksFormat.xsl), based on the books.xml
structure. Create a new file with your preferred text editor and type the following:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">
 <xsl:output method="xml" indent="yes" encoding="UTF-8"/>
 <xsl:template match="/Books">
 <html>
 <head> <title>Books</title> </head>
 <body>
 <h1>Books</h1>
 <table border="1">
 <!-- grid header -->
 <tr bgcolor="lightblue"><td>Title</td><td>Author</td>
 <td>Price</td><td>Genre</td></tr>
 <xsl:apply-templates select="Book">
 <xsl:sort select="title" />
 </xsl:apply-templates>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="Book">
 <!-- grid value fields -->
 <tr>

Manipulating XML Structures

164

 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="lastname"/>, <xsl:value-of
 select="firstname"/></td>
 <td><xsl:value-of select="price"/></td>
 <td><xsl:value-of select="genre"/></td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

You can save a lot of time by downloading the sample XSL file
from Packt's website!

1. Create a new job and add a Start entry.

2. Add a Transformation entry to execute the preceding transformation. Add an XSL
Transformation job entry from the XML category. Set the Files frame to the following:

3. Run the job. A file named Books.htm will be created, having the following layout:

Chapter 4

165

How it works...
XSL is used to transform and render XML documents. In this recipe, you generated an XML file
with book's information and then used an XSL file to transform that XML file into an HTML page.

Looking at the XSL file, you can see how it transforms the fields from the source into an
HTML code. The file has different sections, which are as follows:

 f One section for the header: a <table> tag with a row containing the field's headers

 f The tag <xsl:apply-templates select="Book"> indicating a loop over the
template Book for each book

 f The template Book, that creates a new row with the field's values

In order to apply the transformation defined in the XSL file effectively, you used the XSL
Transformation job entry. The configuration of the entry is straightforward; you simply
provide names of the XML file, the XSL file, and the resulting file, and you're done.

There's more...
As an option, right after creating the page, you may publish it automatically on the website.
For doing that, simply extend the job with a file transfer entry.

You will find more information about XSL at http://en.wikipedia.org/wiki/XSLT.

You can also follow the following tutorial: http://www.w3schools.com/xsl/.

See also
 f The Putting files on a remote server recipe in Chapter 5, File Management

Reading an RSS Feed
RSS (Really Simple Syndication) feeds allow websites to provide a structured listing of content
that can be parsed out across various tools such as news aggregators, social sites, and so on.
RSS feeds are created using a specialized XML format that makes it easy to parse through.

Getting ready
For this recipe, we will be using an RSS feed from Packt Publication's website which shows the
latest news and releases. The feed is available at https://www.packtpub.com/rss.xml.

Take a moment and look through the feed by opening the link in a browser to get familiar with
the data before going through the recipe. You can also save a copy of the page and view the
XML structure.

Manipulating XML Structures

166

How to do it...
Perform the following steps:

1. Create a new transformation.

2. From the Input section, select an RSS Input step and add it to the canvas.

3. Open the RSS Input step. In the URL List section, add the following URL:
https://www.packtpub.com/rss.xml.

4. Switch to the Fields tab and click on the Get Fields button. This will parse the RSS
feed for all the fields available.

5. Add a Filter Rows step. In the condition, select Title as the field, CONTAINS as the
evaluation, and SQL as the value. This will filter out all records that do not have SQL
in the Title field. Your filter rows condition should look like the following:

6. Now right-click on the Filter rows step and select preview. You should now see only
the entries that contain SQL in their titles.

If no results return back, change the value to something
that matches in the current RSS feed.

How it works...
Since an RSS feed is a standardized XML format, Kettle can parse the dataset and provide all
the fields that are made available within it. As long as the feed is properly formatted, the data
can be fed into Kettle and parsed just like any other data stream. To find out more about RSS,
check out the tutorials that are available via http://www.w3schools.com/rss/.

See also
 f Generating an RSS Feed

Chapter 4

167

Generating an RSS Feed
RSS feeds allow for a quick means of staying current on many different media types (blogs,
news sites, alert notifications, and so on). By utilizing the data integration capabilities of
Kettle, we can create our own customized RSS feeds that can then be consumed by any tool
that can read the specialized RSS feed format, such as Feedly (http://www.feedly.com)
or NewsBlur (http://www.newsblur.com).

Getting ready
You must have a database of books with the structure shown in Appendix A, Data Structures.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Under the Input section, bring over a Table Input step.

3. Open the Table Input step and select the books database connection. For the SQL
statement, add the following:
SELECT
 id_title
, title
, price
, genre
, CONCAT(firstname, ' ', lastname) AS author_name
, b.create_date AS publish_date
FROM books b
JOIN authors a ON b.id_author = a.id_author

4. Click on OK and exit the Table Input step.

5. From the Transformation category, select an Add constants step. Add the following
details to the Fields data grid:

Manipulating XML Structures

168

6. From the Transformation category, select a Calculator step. We need to define a new
field called link_detail, which will add the website field and the title field together
to create a valid link. The field's details will look like the following screenshot:

7. From the Output category, select an RSS Output step. On the Channel tab, fill in
the Channel title field with channel_title, the Channel description field with
channel_description, and the Channel link field with channel_link.

8. On the Item tab, we want to include the book details that match the stream values.
Fill in the fields as in the following screenshot:

9. On the Output File tab, enter ${Internal.Transformation.Filename.
Directory}/book_rss as the value for the Filename field and click on OK.

10. Run the transformation. Open the book_rss.xml file that was created and look over
the RSS feed that was created.

How it works
While RSS feeds are a standardized XML format, it can be more complicated than the typical
data stream output from Kettle. RSS requires some static values for the file to be created
appropriately which we added to the stream via the Add constants step. We also wanted our
links to be uniform, so we created the link stub (called website) in the stream, so that we
could create custom links for each book title.

Each book is added as an individual item to the RSS feed where the book's title, genre,
publish date (which is not the book's publish date, but when the record was created), and the
author are all added as elements. In a typical feed, these details would describe the items in
the list and provide a link to read the rest of the blog post or news item.

Chapter 4

169

There's more...
The RSS Output step also provides a way to generate custom fields in the RSS feed. Open the
RSS Output step and select the Custom Output tab. Here you can add custom tags and their
corresponding fields to each channel and item in the feed.

See also
 f Reading an RSS Feed

5
File Management

In this chapter, we will cover the following topics:

 f Copying or moving one or more files

 f Deleting one or more files

 f Getting files from a remote server

 f Putting files on a remote server

 f Copying or moving a custom list of files

 f Deleting a custom list of files

 f Comparing files and folders

 f Working with ZIP files

 f Encrypting and decrypting files

Introduction
On many occasions, the development of Kettle jobs and transformations involves
manipulation of files, such as reading or writing a file along with other manipulations.
Look at the following sample scenario, where you have to:

 f Get a file with orders from a remote server

 f Validate and load the orders into a database

 f Move the processed file to a designated folder

 f Rename the older version if a file with that name already exists

 f Generate a logfile with details of the errors and put that logfile back on to the server
for further review if the orders in the file are not valid

File Management

172

In this situation, besides reading and writing files, you also have to transfer, rename, and
move them.

Copying, moving, deleting, and transferring files, and listing of files or directories, are tasks not
only needed for these situations, but in everyday life. It's common to have lot of files that need
to be organized in several ways, and for different purposes.

Kettle has a rich set of steps and job entries for doing this. However, you might get lost or
frustrated trying to pick and then configure the option that suits your needs. The recipes in
this chapter should help you with that task.

Copying or moving one or more files
The Copy Files job entry allows you to copy one or more files or folders. Let's see this step in
action. Assume that you have a folder with a set of files, and you want to copy them to three
folders depending on their extensions: you have one folder for text files, another for Excel files,
and the last one for the rest of the files.

Getting ready
You will need a directory named sampleFiles containing a set of files with different
extensions, including .txt and .xls. You will also need three destination directories,
named txtFiles, xlsFiles, and OtherFiles.

How to do it...
Perform the following steps:

1. Create a new job and drop a Start job entry into the canvas.

2. Add a Copy Files job entry. In this entry, you will add the directions for copying the
files into the three available destination folders. Double-click on the entry to open it.

3. In the File/Folder source textbox, type or browse for the sampleFiles folder. In the
File/Folder destination textbox, type or browse for the txtFiles folder. Also, type
.*\.txt in the Wildcard (regExp) textbox. Click on the Add button.

4. In the File/Folder source textbox, type or browse for the sampleFiles folder. In the
File/Folder destination, type or browse for the xlsFiles folder. Also, type .*\.xls
in the Wildcard (regExp) textbox. Click on the Add button.

5. In the File/Folder source textbox, type or browse for the sampleFiles folder. In
the File/Folder destination, type or browse for the OtherFiles folder. Also, type
.+(?<!(txt|xls))$ in the Wildcard (regExp) textbox. Click on the Add button.

Chapter 5

173

Assuming that all folders are inside the directory where you have your job, the Files/Folders
grid will look like the following screenshot:

Kettle uses Java's Regular Expressions (RegExp) syntax wherever it can be used. Also, note
that Internal.Job.Filename.Directory is a predefined Kettle variable whose value is
the full directory where the job is saved.

When you run the job, each file from the sampleFiles folder will be copied into the folder
associated in the settings window, depending on its extension.

How it works...
You use the Copy Files job entry to perform the task of copying files. As you can see in the
recipe, you can execute several copy instructions with a single job entry by entering different
lines in the Files/Folders section from the General tab.

In the sample grid, you have three lines. For each line, the objective is to copy all the files
from the source folder (first column) to the destination folder (second column) that match the
regular expression (third column).

The first and second lines copy the .txt and .xls files by using the regular expressions.*\.
txt and .*\.xls respectively.

The third line copies the rest of the files. The regular expression that matches those files
is a little more complex; the characters ?<! represent a negation over the rest of the
expression, so the expression .+(?<!(txt|xls))$ means all files whose extension is
neither .txt nor .xls.

There's more...
The recipe showed you the basics of copying files with Kettle. The following sections explain
how to add more functionality, for example, validating the existence of files or folders before
copying. You will also see the extra settings available for the Copy Files job entry.

Moving files
You can move the file (instead of copying) by checking the Remove source files checkbox in
the Settings section under the General tab in the Copy Files job entry. If you check it, Kettle
will delete the files after a successful copy. This is analogous to using a Delete file job entry
right after the Copy Files entry.

File Management

174

Detecting the existence of the files before copying them
In the recipe, you simply wanted to organize some files in folders, and you didn't care if the
files existed or not. However, the most common scenario is the one in which it's assumed that
the files to copy or move already exist. You cannot perform that verification with the Copy Files
entry, but there are other means.

Suppose that you want the files to be copied only if there is a mixture of file extensions. If there
are only Excel files, or text files, they will not be copied and the situation will be recorded in a log.

In order to do that, you can create a transformation that succeeds if there is a mixture of files,
or fails if you have only Excel files or only text files.

The transformation should start with a Get File Names step
to get the list of files in the folder, and proceed differently
according to the validations you want to do.

Then, in your job, you call the transformation before copying the files. The copy will be done
only after the success of the transformation, as shown in the following figure:

In the simplest case where you have to copy files specified by their exact name—that is, not
expressed with regular expressions—you can verify their existence simply with a File Exists
(for a single file) or a Checks if files exist (for multiple files) entry.

Creating folders
You can create the destination directory automatically by selecting the Create destination
folder checkbox in the Settings section under the General tab in the Copy Files job entry.
You could also create those directories by using a Create a folder job entry from the File
management category. The difference is that, with the Create a folder entry, you can detect
if the directory already exists; if you didn't expect that situation, you can act accordingly by, for
example, aborting the job.

See also
 f Copying or moving a custom list of files

Chapter 5

175

Deleting one or more files
Kettle provides two job entries for deleting files: Delete file and Delete files. You can find both
in the File management category of entries.

In this recipe, you will see an example of how to delete a file. You will delete a file that includes
the current date as part of its name, for example test_20101020.txt.

Getting ready
You must create a sample file; for example, test_20101020.txt. Make sure to use your
current date instead of 20101020. Use the same format (yyyyMMdd).

How to do it...
Perform the following steps to learn how to delete one or more files:

1. Create a new transformation.

2. Drop a Get System Info step from the Input category into the work area.

3. Double-click on the step and add a field named date. In the Type column, select
system date(fixed).

4. Add a Select values step from the Transform category. Open it, and under the
Meta-data tab, add date as Fieldname, set the type to String, and type or select
yyyyMMdd in the Format column.

5. From the Job category, add a Set Variables step. Double-click on it and fill in the grid,
as shown in the following screenshot:

6. The transformation is ready. Save it. Now, create a new job and drop a Start entry.

7. Add a Transformation job entry and configure it to run the transformation created
previously. In the Transformation Filename: textbox type the complete path to the
transformation file.

8. Add a Delete file entry from the File management category.

9. Double-click on this step. In the File name textbox, type the location of the file to
be deleted and concatenate it with test_ and the today variable, for example,
${Internal.Job.Filename.Directory}\test_${today}.txt.

10. Run the job and the file will be deleted.

File Management

176

How it works...
The Delete file job entry simply deletes a file. In the recipe, you used it to delete a file whose
name was not fixed, but depended on the current date.

The transformation has the purpose of building the last part of the name of the file. It gets
the present date with a Get System Info step, converts the date to a String by using a
Select values step, and sets a variable named today with this information. As the scope,
you specified Valid in the parent job.

In general, if you are unsure of the scope to set, you should
choose Valid in the root job. That is usually the best choice.
A variable with that scope will be valid in the root job and all
sub jobs and transformations.

In this case, Valid in the parent job will suffice because you will use the variable in the job
that calls this transformation.

The main job runs the transformation and then uses the variable ${today} to build the name
of the file to delete. Assuming that your transformation is located in /home/my_work/, when
you execute the job, the text ${Internal.Job.Filename.Directory}\test_${today}.
txt will be replaced by /home/my_work/test_20101020.txt, and the Delete file step will
remove that file if it exists.

There's more...
If you need to delete a set of files instead of just one, you can use the Delete files job entry
from the File Management category. With this entry, you can delete several files or folders,
including subfolders and can also use wildcards for the selection.

If you just want to delete folders instead of files, you can use the Delete folders job entry,
whose configuration is quite straightforward.

Whichever is your use case, deleting one or more files, with or without folders, take a look at
the following subsection. It gives you more tricks to use when deleting files.

Chapter 5

177

Figuring out which files have been deleted
When you delete a single file by using the Delete File job entry, you can easily detect if the file
was deleted or not, and act accordingly. Let's summarize how:

Result of the job Method for detecting the result
File was deleted The Delete File job entry succeeds
File wasn't deleted because of an error The Delete File job entry fails
File wasn't deleted because it didn't exist If you checked Fail if the file doesn't exist:,

the Delete File job entry fails

The problem arises when you try to delete several files with the Delete Files entry. How can
you be sure whether your job is behaving correctly and deleting the expected files? How can
you know the exact names of the files that were deleted?

There is no direct way of determining that, but there are some interesting solutions.

When you run a job that deletes files, the names of the files being deleted are written into the
log. If you are developing the job, just take a look at the Logging tab of the Execution results
pane in Spoon. If you want to have the list of files for further processing, save the log into a
file; then you can open that file and look for the lines containing the text Deleting file. To
be more precise, you will find a bunch of lines with the details, as in the following example:

... - Delete some files - Processing folder [file:///C:/test]

... - Delete some files - Deleting file [file:///C:/test/
test_20101020.txt] ...
... - Delete some files - Deleting file [file:///C:/test/
test_20101021.txt] ...
...
... - Delete some files - Total deleted files = 5

Another way of getting the list of deleted files would be as follows: create a transformation
that lists the existing files with the same directory/file specifications as those in the
Delete Files entry.

You should run the transformation with a Transformation entry just before the Delete Files
entry. If the Delete Files entry succeeds, you know that the deleted files are the ones in the
list you created. This method is easy, but you have to be careful. If more than one process or
person is accessing the folder or files at the same time, there is a risk that the built list and
the real names of the deleted files don't coincide.

See also
 f Deleting a custom list of files

File Management

178

Getting files from a remote server
When you need to copy files from or to remote machines, you can use the standard network
protocol File Transfer Protocol (FTP) built on client-server architecture.

Kettle provides the Get a file with FTP job entry to get files from an FTP server. In the
example, you will connect to a remote directory named remoteDir on an FTP server and
copy some text files from that server to a local folder named destinationDir.

How to do it...
You need access to an FTP server to be able to continue with this recipe.

Perform the following steps:

1. Create a new job and drop a Start entry into the canvas.

2. Add a Get a file with FTP job entry from the File transfer category.

3. Under the General tab, type the server name or its IP address in the FTP server
name / IP address textbox.

4. Type the port number in the Server port textbox. Usually, it is port 21.

5. In the Username and Password textboxes, type the credentials to log in to the
FTP server.

You can verify the connection information by clicking on the
Test connection button.

6. In the Remote directory textbox under the Files tab, you must type the name of the
remote directory on the FTP server from where the source files will be retrieved.

You can check if the folder exists by clicking on the Check
folder button.

7. Type .*\.txt as the Wildcard.

Chapter 5

179

8. In the Target directory textbox inside the Local frame, type the destination directory
on the local machine. Under the Files tab, you have various fields, as shown in the
following screenshot:

9. Run the job. The files with the .txt extension will be copied from remoteDir on the
FTP server to destinationDir on the local machine.

How it works...
The Get a file with FTP job entry performs the copy task, it uses the configuration set under
the General tab to connect to the remote FTP server.

Under the Files tab, you defined the source directory (in the example, the remote folder
remoteDir) and target directory (in the example, the local folder destinationDir).

Try to avoid the use of directories with special characters,
such as spaces. Some FTP servers don't allow these
special characters.

You also provided a regular expression for the files to get. In this case, you typed .*\.txt
which is a regular expression representing all .txt files.

There's more...
The following sections give you some additional information and useful tips to transfer files
from a remote server.

File Management

180

Specifying files to transfer
In the recipe, you copied all files with a given extension; you did it by providing a regular
expression that all those files matched. As another possibility, you may need to transfer
a single file.

Note that even if you have the exact name of the file, you still
have to provide a regular expression.

For example, if the name of the file is my_file.txt you have to type my_file\.txt.

As a last possibility, instead of typing a wildcard, you may provide a Kettle variable name. Using
a variable is particularly useful if you don't know the name of the file beforehand. Suppose that
you have to get a file named daily_update_yyyyMMdd.csv where yyyyMMdd represents
year, month, and day. In that case, you can create a transformation that builds a regular
expression representing that filename (for example, daily_update_20101215\.csv) and
sets a variable with that value. In the job, you should execute that transformation before the
Get a file with FTP job entry.

Your job would look like the one shown in the following screenshot:

Finally, in the Get a file with FTP entry, you should type that variable (for example,
${DAILY_FILENAME}) as the wildcard.

Some considerations about connecting to an FTP server
In order to be able to connect to an FTP server, you must complete the connection settings for
the FTP server under the General tab of the Get a file with FTP job entry. If you are working
with an anonymous FTP server, you can use anonymous as the username and the password
can remain blank. This means that you can access the machine without having to have an
account on that machine.

If you need to provide authentication credentials for access via a proxy, you must also
complete the following textboxes: Proxy host, Proxy port, Proxy username, and
Proxy password.

Chapter 5

181

Access via SFTP
SSH File Transfer Protocol (SFTP) is a network protocol used to secure the file transfer
capability. With Kettle, you can get files from an SFTP server by using the Get a file with SFTP
job entry. To configure this entry, you have to enter the name or IP of the SFTP server in the
SFTP server name / IP textbox. The rest of the configuration of the General and Files tabs is
pretty similar to the Get a file with FTP entry.

More information on SFTP, can be found at http://en.wikipedia.org/wiki/
SSH_file_transfer_protocol.

Access via FTPS
A File Transfer Protocol Secure (FTPS) server extends the standard FTP protocol, adding
cryptographic protocols, such as the Transport Layer Security (TLS) and the Secure Sockets
Layer (SSL). You can use the Get a file with FTPS job entry to get files from an FTPS server. To
configure this entry, you have to enter the name or IP address of the FTPS server in the FTPS
server name / IP address: textbox. The rest of the configuration of the General and Files tabs
is pretty similar to the Get a file with FTP entry.
More information about FTPS can be found at http://en.wikipedia.org/wiki/Ftps.

Getting information about the files being transferred
A drawback when accessing an FTP server is that, from the job, you can only know if the entry
succeeded or failed; you don't have control over how files behave, for example, how many
files were transferred. To overcome this situation, it is recommended that you keep the log
generated by the job, which is the only source of information about what happened. To see the
details, you can simply take a look at the log, or parse it in a subsequent Kettle transformation.

See also
 f Putting files on a remote server

 f Deleting one or more files

Putting files on a remote server
This recipe is similar to the previous one, Getting files from a remote server, but in this case,
you want to copy the text files from a local machine to a remote machine using the FTP
network protocol and the Put a file with FTP job entry.

Getting ready
You need write access to an FTP server.

File Management

182

How to do it...
Perform the following steps:

1. Create a new job. Drop a Start entry into the canvas.

2. Add a Put a file with FTP job entry from the File transfer category.

3. Under the General tab, type the server name (or its IP address) in the FTP server
name / IP address: textbox.

4. Type the port number in the Port textbox. Usually, it is port 21.

5. In the Username: and Password: textboxes, type the credentials to log in to
the FTP server.

You can verify if the connection settings are valid by clicking
on the Test connection button.

6. Type the source folder in the Local directory textbox inside the Source (local) files
frame located under the Files tab. In this example: c:\sourceDir.

7. Type .*\.txt as the Wildcard.

8. In the Remote directory textbox, type the destination directory on the remote
machine, for example, remoteDir.

You can check for the existence of the folder by clicking on
the Test folder button.

9. The Files tab will look like the one shown in the following screenshot:

10. Run the job. The files with a .txt extension will be copied from the sourceDir local
folder to the destinationDir on the FTP Server.

Chapter 5

183

How it works...
The Put a file with FTP job entry uses the configuration set under the General tab to connect
to the remote FTP server. The entry copies the files from the local machine to the remote
server by using the configuration typed under the Files tab. In the recipe, you set the source
directory as c:\sourceDir and the destination directory as remoteDir and as the list of
files to transfer you typed a regular expression representing all .txt files. You could also have
typed a regular expression representing the exact name of the file to transfer, as well as Kettle
variables, both for the files and for the directories.

There's more...
In the recipe, you put some files on an FTP server. Kettle also provides job entries for putting
files on SFTP and FTPS servers. They are the Put a file with SFTP and the Upload files to
FTPS entries respectively. The configuration for these entries is quite similar to the one you
used earlier.

See also
 f Getting files from a remote server

Copying or moving a custom list of files
Sometimes, you don't have the names of files to move or copy beforehand. In these cases, you
can take advantage of the Add filename to result prompt existing in several Kettle steps and
job entries.

Let's see an example. Suppose that you receive Excel files daily, with book orders from
different branches, and you need to process these files creating a new Excel file with all the
incoming orders. Then, finally, you want to move the source files to a destination folder.

Getting ready
In order to do this exercise, you need a directory named booksOrders with several
Excel files. Each file should have two columns: one for the id_title and another for the
Quantity. Also, it is necessary to have a destination folder named processedOrders.

File Management

184

How to do it...
Perform the following steps:

1. Create a new transformation. This transformation will take all Excel files from the
source directory and write them into a single Excel file.

2. Drop an Excel Input step into the canvas.

3. Under the Files tab, fill in the grid in order to read all Excel files in the source
directory. Under File/Directory, type ${Internal.Transformation.Filename.
Directory}\booksOrders and under Wildcard (RegExp), type .*\.xls.

4. Under the Content tab, make sure that the Add filenames to result prompt
is checked.

5. Under the Fields tab, add to the grid a String field named id_title and a
Number field named Quantity.

6. Add an Excel Output step after the Excel Input step.

7. Under the File tab, type the destination Excel file (for example, allBookOrders)
including the path, and leave .xls as the Extension. Also, check the Include date
in filename? prompt. With these settings, your final file will have a name such as
allBookOrders_101011.xls.

Note that yyMMdd is the default format for the appended date.
If you want to append the date with a different format, check
the Specify Date time format option and select or type the
desired format in the Date time format option.

8. Under the same tab, uncheck the Add filename to result prompt.

9. Under the Fields tab, click on the Get Fields button to fill in the grid.

10. Save the transformation.

Now, let's see how to move the source files between the folders.

1. Create a new job and add a Start entry.
2. Add a Transformation entry and configure it to run the transformation

created previously.
3. Add a Copy or Move result filenames entry from the File management category.
4. Open the step. In the Destination folder textbox, browse or type the target directory

(for example, ${Internal.Job.Filename.Directory}\processedOrders).
5. Change the value in the Action field from Copy to Move. Click on OK to close

the step.
6. Run the job. It will execute the transformation and will move the source files from the

booksOrders folder to the processedOrders folder.

Chapter 5

185

How it works...
In the recipe, you used the Kettle result filelist feature to automatically build a list of files
to copy.

In the transformation, you used an Excel input step to read all the files with the .xls
extension from a source directory and an Excel output step to write this information to
a new file.

The important setting here is the Add filename to result prompt in the Excel input step.
When this option is checked (which is the default setting), the names of the files read in
the step are saved to the result filelist, which is no more than a list of files in memory.

Back in the job, the Copy or Move result filenames entry reads the names saved in memory
and moves the files in that list to the destination folder.

Note that in the Excel output step, you unchecked the Add filename to result
prompt. If you had left this prompt checked, the job would have moved the
completeBookOrders_101011.xls file too.

See also
 f The following recipes in Chapter 2, Reading and Writing Files:

 � Reading an Excel file

 � Writing an Excel file with several sheets

Deleting a custom list of files
Consider a scenario where you have to delete some files but you don't have the names of
the files to delete beforehand. If you can specify that list with regular expressions, it wouldn't
be a problem, but sometimes that is not possible. In such cases you should use a helper
transformation that builds the list of files to delete. This recipe shows you how to do that.

For this recipe, assume that you want to delete from a source directory all the temporary files
that meet two conditions: the files have a .tmp extension and a size of 0 bytes.

File Management

186

Getting ready
In order to create and test this recipe, you need a directory with a set of sample files; some
of them should have the .tmp extension and zero size. Some example files are shown in the
following screenshot:

In the preceding screenshot, the files that must be deleted are sample3.tmp, sample5.tmp,
and sample7.tmp because they match the requirements of having .tmp as their file type and
they do not contain anything (being 0 bytes in size).

How to do it...
Perform the following steps:

1. Create the transformation that will build the list of files to delete.

2. Drop a Get File Names step into the canvas.

3. Under the File tab, fill the Selected files: grid. Under File/Directory, type
${Internal.Transformation.Filename.Directory}\sample_directory
and under Wildcard (RegExp), type .*\.tmp.

4. From the Flow category, add a Filter rows step.

5. Use this step to filter the files with a size equal to 0. In order to do that, add the
condition size = 0.

6. After the Filter rows step, add the Select values step. When asked for the kind of
hop to create, select Main output of step. This will cause only those rows that meet
the condition to pass the filter.

Chapter 5

187

7. Use the Select values step to select the field's path and short_filename in
that order.

8. From the Job category of Steps, add a Copy rows to result step.

9. Save the transformation.

10. Create a new job and add a Start entry.

11. Add a Transformation entry and configure it to run the transformation
previously created.

12. Add a Delete files entry from the File management category.

13. Double-click on it and check the Copy previous Results to args? prompt.

14. Save the job and run it. The files with a .tmp extension and a size of 0 bytes will
be deleted.

How it works...
In this recipe, you deleted a list of files by using the Delete files job entry. In the Selected
files: grid of that entry, you have to provide the complete name of the files or the directory to
delete and a regular expression. Instead of typing that information directly, here you built the
rows for the grid in a separate transformation.

The first step used in the transformation is Get File Names. This step allows you to
get information about a file or a set of files or folders. In this example, the step gets the
list of .tmp files from the sample_directory folder.

The following screenshot shows all of the information that you obtain with this step:

File Management

188

You can see these field names by pressing the Space bar while having the focus on the Get
File Names step.

After that step, you used a Filter rows step to keep just the files with a size of 0 bytes.

If you do a preview on this step, you will see a dataset with the list of the desired files, that is,
those that meet the two conditions: having the .tmp extension and a size equal to 0 bytes.

After that, you selected just the fields holding the path and the short_filename and
copied these rows to memory. You did that with the Copy rows to result step.

Now, let's go back to the job. The Copy previous result to args? prompt selected in the Delete
files entry causes the job to read the rows coming from the transformation, and copy them
to the grid. In other words, each row coming out of the transformation (a data pair: path,
short_filename) becomes a row in the Files/Folders: grid.

With that information, the job is finally able to delete the specified files.

See also
 f Deleting one or more files

Comparing files and folders
Kettle allows you to compare files and folders through the following job entries: File Compare
and Compare folder. In this recipe, you will use the first of those entries, which is used
for comparing the content of two files. Assume that periodically you receive a file with new
museums data to incorporate into your database. You will compare the new and the previous
version of the file. If the files are equal, you do nothing, but if they are different, you will read
the new file.

Getting ready
To create and test this recipe, you will need two files: the older version of the museum file
(LastMuseumsFileReceived.xml), and the new file (NewMuseumsFileReceived.xml).

On the book's website, you will find sample files to play with. In particular,
NewMuseumsFileReceived(equal).xml is equal to the LastMuseumsFileReceived.
xml file, and NewMuseumsFileReceived(different).xml, as implied by its name, is
different. With these files, you will be able to test the different situations in the recipe.

Chapter 5

189

How to do it...
Perform the following steps:

1. Create a new job, and drop a Start entry into the work area.

2. Add a File Compare job entry from the File management category. Here you must type
or browse to the two files that must be compared, as shown in the following screenshot:

3. Add a Transformation job entry and a DUMMY job entry, both from the General
category. Create a hop from the File Compare job entry to each of these entries.

4. Right-click on the hop between the File Compare job entry and the Transformation
job entry to show the options, choose the Evaluation item and then select the Follow
when result is false item.

5. Right-click on the hop between the File Compare job entry and the DUMMY job entry,
choose the Evaluation item, and this time select the Follow when result is true item.

6. The job should look like the one shown in the following diagram:

7. Then, create a new transformation in order to read the XML file. Drop a Get data
from XML step from the Input category into the canvas and type the complete path
for the XML file in the File or directory textbox under the File tab. In this case, it
is ${Internal.Transformation.Filename.Directory}\sampleFiles\
NewMuseumsFileReceived.xml. Use /museums/museum in the Loop XPath
textbox under the Content tab and use the Get fields button under the Fields tab to
populate the list of fields automatically.

8. Save the transformation.

File Management

190

9. Configure the Transformation job entry for the main job to run the transformation
you just created.

10. When you run the job, the two files are compared.

11. Assuming that your files are equal, in the Logging window you will see a line similar
to the following:
2010/11/05 10:08:46 - fileCompare - Finished job entry [DUMMY]
(result=[true])

This line means that the flow went toward the DUMMY entry.

12. If your files are different, in the Job metrics window you will see that the fileCompare
entry fails, and under the Logging tab, you will see something similar to the following:
...
... - Read XML file - Loading transformation from XML file
[file:///C:/readXMLFile.ktr]
... - readXMLFile - Dispatching started for transformation
[readXMLFile]
... - readXMLFile - This transformation can be replayed with
replay date: 2010/11/05 10:14:10
... - Read museum data.0 - Finished processing (I=4, O=0, R=0,
W=4, U=0, E=0)
... - fileCompare - Finished job entry [Read XML file]
(result=[true])
...

13. This means that the transformation was executed.

How it works...
The File Compare job entry performs the comparison task. It verifies whether the two files
have the same content. If they are different, the job entry fails. Then, the job proceeds with
the execution of the transformation that reads the new file. However, if the files are the same,
the job entry succeeds and the flows continue to the DUMMY entry.

In other words, the new file is processed if and only if the File Compare fails, that is, if the two
files are different.

There's more...
Besides comparing files with Kettle, you can also compare directories; let's see how it works.

Comparing folders
If you want to compare the content of two folders, you can use the Compare folder job entry
from the File management category.

Chapter 5

191

In this job entry, you must browse to or type the complete paths of the two folders in the
File / Folder name 1 and File / Folder name 2 textboxes respectively and configure the
comparison to be done. You can see the possible settings in the following screenshot:

The Compare option, set to All by default, can be changed to compare just files, just folders,
or just the files indicated by a regular expression. The usual requirement would be to compare
the list of files and then their sizes.

Note that you can even compare the content of the files, but
that will affect performance considerably.

Working with ZIP files
Compressed files are a convenient storage method. If you have many files or your files are very
large, compressing them makes it easier to store them and transfer them through e-mails or
between different media (PC, USB devices, and so on).

For example, consider managing the log information from a web server, which generates a new
text file every day with data about the web traffic (pages, IPs, operations, status codes, and so
on). After several months, you have a lot of files with a substantial amount of information.

Now, suppose that you want to create a local copy of those files. You don't have access to the
server from your computer, so you have to copy the files onto some media and then onto your
computer. As the size of these files can be huge, instead of directly copying the files, you will
compress them first.

Once you have the ZIP file on your computer, you want to unzip it and create one separate
.zip file per month. Assuming that the files are named exYYMMDD.log you will create .zip
files named YYMM.zip. For example, a file named ex101115.log will be zipped along with
all other logs from November 2010 as 1011.zip.

Getting ready
You will need access to a directory containing logfiles.

File Management

192

How to do it...
You will create this recipe in two different steps. In the first step, you will compress the logfiles,
and in the second step, you will uncompress them and organize them in monthly ZIP files.

So, let's compress the weblog files, by carrying out the following steps:

1. Create a new job and drop a Start job entry into the canvas.

2. Add a Zip file job entry from the File management category.

3. Under the General tab, select the source directory by clicking on the Folder... button.
The example points to a web server log directory, such as C:\WINDOWS\system32\
Logfiles\W3SVC1\test_files.

4. Type .+\.log in the Include wildcard (RegExp): textbox in order to read all the files
with the .log extension.

5. In the Zip File name: textbox, type the path and name for the destination ZIP file.
For example, C:\WINDOWS\system32\Logfiles\W3SVC1\test_files\web
logs.zip.

6. You have several additional options for including date and time to the ZIP filename.
You don't need to set those options for this recipe.

7. Under the Advanced tab, choose Delete files in the After Zipping drop-down list.

8. When running this job, a new file named web logs.zip will be created containing
the log information from the web server and the logfiles will be deleted.

Now assuming that you have copied the generated ZIP file to your computer, you want to unzip
the weblogs and generate small ZIP files grouping them by month:

1. Create a new job and drop a Start job entry into the canvas.

2. Add an Unzip file job entry and open it.

3. In the Zip File name textbox, you must browse for the ZIP file you created previously
(web logs.zip).

4. Choose a Target Directory, for example, ${Internal.Job.Filename.
Directory}\logs and check the Create folder checkbox to create that folder, if it
doesn't exist.

5. Type .+\.log in the Include wildcard textbox.

6. In the After extraction drop-down box select Delete files.

7. Under the Advanced tab, set the Success on condition to At least we successfully
unzipped x files, and set the value of Limit files textbox to 1.

8. The next step for the job will be calling a transformation that creates the groups of
logs for the smaller ZIP files. Add a Transformation job entry.

Chapter 5

193

9. Double-click on the new entry. As Transformation filename: type ${Internal.Job.
Filename.Directory}/read_log_list.ktr. Click on the squared icon to the
right of the name of the transformation, and a dialog window will appear asking if you
want to create the transformation. Answer Yes.

10. In the transformation, add the following steps and link them one after the other:

 � Get File Names (Input)

 � Strings cut (Transform)

 � User Defined Java Expression or UDJE for short (Scripting)

 � Select values (Transform)

 � Sort rows (Transform)

 � Copy rows to result (Job)

When asked about the kind of hop to create, always choose the Main output
of step option. The transformation should look like the one shown in the
following screenshot:

11. Double-click on the first step. With this step, you will get the complete list of logfiles.

In order to test this transformation, copy some logfiles to the
logs folder. This way, you will be able to preview each step.

12. Fill the grid by typing ${Internal.Transformation.Filename.Directory}\
logs under File/directory and .+\.log under Wildcard (RegExp). Close the window.

13. Double-click on the Strings cut step. This step will generate a String with the year
and month part of the filenames. Then, fill the following fields:

 � Under In stream field, type short_filename

 � Under Out stream field, type year_month

 � Under Cut from type 2. This will remove the ex from exYYMMDD.log

 � Under Cut to type 6 and close the window. This will remove everything after
the sixth character, which would be DD.log. This leaves us with YYMM.

File Management

194

14. Double-click on the UDJE step. With this step, you will create the fields for the
.zip grid. Add three String fields named wildcard, wildcardexc, and
destination. As Java expression, type ex+year_month+[0-9]\\.log,
and path+\\zip_files\\+year_month+.zip respectively. Don't forget to
set the Value type to String.

15. Double-click on the Select values step. Use it to select the field's path,
wildcard, wildcardexc, and destination. Close the window.

16. Double-click on the Sort rows step. Use it to sort by destination. Check the
Only pass unique rows? (verifies keys only) option. With this, you generate
a single row by month.

17. Save the transformation.

18. Go back to the job, and add a Zip file job entry.

19. Double-click on the entry, check the Get arguments from previous option
and close the window.

20. Save the job, and run it.

21. Browse the log folder. You will see all logfiles that were compressed in the
web logs.zip file along with a subfolder named zip.

22. Browse the ZIP folder. You will see one ZIP file for each month for which you
had logfiles.

How it works...
In this recipe, you saw the functionality of the Zip File and Unzip File job entries.

First, you zipped all logfiles in a folder. You specified the files to zip and the name and location
of the ZIP file to generate. This is quite simple and doesn't require further explanation.

In the second part of the recipe, you performed two different tasks:

The first was to unzip a file. You specified the ZIP file, the regular expression that indicates
which files to extract from the ZIP file, and the destination of the files. This is also a simple
and intuitive operation.

The last part, the most elaborate task of the recipe, was compressing the logfiles grouped by
month. In order to do this, you couldn't fill the grid in the Zip file job entry manually because
you didn't know in advance the names of the logfiles. Therefore, instead of filling the grid you
checked the Get arguments from previous option. The transformation was responsible for
generating the values for the grid in the Zip file entry setting window. The columns generated
by the transformation were as follows:

 f Folder of the files to zip

 f Regular expression for the files to zip

Chapter 5

195

 f Regular expression for the files to exclude (in this case, you set a null value)

 f Destination ZIP filename

These are the four fields that the Zip file entry needs in order to zip the files. For each row
generated in the transformation, a new ZIP file was created based on these values.

There's more...
Look at some notes about zipping and unzipping files:

Avoiding zipping files
If you need to zip some files for attaching to an e-mail, you don't have to use the Zip file entry.
The Mail job entry does the task of zipping for you.

Avoiding unzipping files
In the recipe you unzipped a file because you had to manipulate the files. If, instead of
manipulating the files as you did, you need to read them, you don't have to use the Unzip
file entry. Kettle is capable of reading those files as they are. For a complete reference
on this subject, you can take a look at the following entry in Slawomir Chodnicki's blog at
http://type-exit.org/adventures-with-open-source-bi/2010/11/directly-
accessing-remote-andor-compressed-files-in-kettle/.

See also
 f The Sending e-mails with attached files recipe of Chapter 10, Getting the Most

Out of Kettle

Encrypting and decrypting files
Moving files around sometimes requires sensitive data to be exposed in ways that require
more secure measures to be taken than simply pushing or pulling the data without encrypting
it first. Fortunately, Kettle provides steps that interface with a common security application
(GnuPG) and will encrypt, decrypt, and verify that files are secure.

Gnu Privacy Guard (GnuPG) is an implementation of the OpenPGP standard. Open Pretty
Good Privacy (OpenPGP) is one of the most used encryption systems in technology and is
widely used due to it's ability to digitally sign files to ensure they have not been tampered with.
The use of public and private keys allows for files to be encrypted until the right key can be
used to decrypt the file and make it accessible again.

To learn more about OpenPGP, check out their official site at http://www.openpgp.org.

File Management

196

Getting ready
This recipe requires GnuPG to be installed on the system running Kettle. It can be found over
at the GnuPG website at http://www.gnupg.org.

How to do it...
Perform the following steps:

1. Create a new job.

2. Bring a Start step from the General section over to the canvas.

3. Under the File Encryption section, find the Encrypt files with PGP step and add it to
the canvas.

4. Create a hop from the Start step to the Encrypt files with PGP step.

5. Open the Encrypt files with PGP step. For the GPG location field, enter the path
where GnuPG is installed.

6. For the File/Folder source, enter the location where the files to be encrypted are
located (${Internal.Transformation.Filename.Directory}/test_files).

7. For the File/Folder destination, enter the location where the encrypted files will
be placed (${Internal.Transformation.Filename.Directory}/
encrypted_files).

8. Click on the Add button next to the File/Folder source field for the record to be
added to the Files/Folders data grid.

9. Click on OK and run the job. The encrypted files should now be in the
encrypted_files folder.

A similar setup can be done with the Decrypt files with PGP step:

1. In the same job, add a Decrypt files with PGP step, which can be found in the
File Encryption section.

2. Open the step and, in the GPG location field, enter the path where GnuPG
is installed.

3. For the File/Folder source, we will be using the encrypted file location
(${Internal.Transformation.Filename.Directory}/encrypted_files).

4. For the File/Folder destination, enter the location where the decrypted
files will be stored (${Internal.Transformation.Filename.Directory}/
decrypted_files)

5. Click on the Add button next to the File/Folder source field for the record to
be added to the Files/Folders data grid.

6. Add a hop between the Encrypt files with PGP and Decrypt files with PGP steps.

Chapter 5

197

7. Run the job and view the files in the encrypted and decrypted folders. The encrypted
files are secured and can not be viewed as easily as if no encryption had been added.

How it works...
The Encrypt/Decrypt files with PGP steps utilize a standard application that handles
encryption and digital signing of files. By telling the steps where GnuPG is located, the steps are
able to execute the commands needed to process any files given and secure them as needed.

There's more...
We only used the basic encryption capabilities of these steps. In the Encrypt files with PGP
step, each File/Folder source and destination combination can actually be Encrypted,
Signed, or Encrypted and Signed depending on how secured the files need to be. This can be
switched in the Action column in the Files/Folders data grid as shown:

See also
 f Copying or moving one or more files

6
Looking for Data

In this chapter, we will cover the following topics:

 f Looking for values in a database table

 f Looking for values in a database with complex conditions

 f Looking for values in a database with dynamic queries

 f Looking for values in a variety of sources

 f Looking for values by proximity

 f Looking for values by using a web service

 f Looking for values over intranet or the Internet

 f Validating data at runtime

Introduction
With transformations, you manipulate data in many ways—doing mathematical or logical
operations, applying string functions, grouping by one or more columns, sorting, and much
more. Besides transforming the data you already have, you may need to search and bring
data from other sources. Let us look at the following examples:

 f You have some product codes and you want to look for their descriptions in an
Excel file

 f You have a value and want to get all products whose price is below that value
from a database

 f You have some addresses and want to get the coordinates (latitude and longitude)
for those locations from a web service

Looking for Data

200

Searching for information in databases, text files, web services, and so on, is a very
common task, and Kettle has several steps for doing it. In this chapter, you will learn
about the different options.

Looking for values in a database table
In order to search for data in a database, Kettle offers several ways of accessing the data.
The simplest situation is the one in which you need to get one or more columns from a single
database table. In this recipe, you will learn how to do this by using the Database lookup
step. We will work with the Steel Wheels sample data. If you wish to become more familiar
with the sample dataset or need to learn how to configure database access, refer to Chapter
1, Working with Databases. Suppose that you want to look for products that match a given
search term, and whose prices are below a given value, this recipe shows you how to do this.

Getting ready
In order to follow this recipe, you need the Steel Wheels database.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Bring over a Data Grid step from the Input category. Open the step. Under the Meta
tab, add two string items prod and max_price. Then, complete the Data tab, as
shown in the following screenshot:

3. Add a User Defined Java Expression step.

4. Use that step to add a string named like_statement. In Java expression, type
%+%+prod+%.+%.

5. Add a Database lookup step. You will find it in the Lookup category of steps.

6. Double-click on the step. As Connection, select (or create if it does not exist)
the connection to the sampledata database. As Lookup table type or browse
for PRODUCTS.

Chapter 6

201

7. Fill the upper and lower grid, as shown in the following screenshot:

8. Close the Database lookup configuration window and do a preview on this step. You
will see something like the following screenshot:

How it works...
The Database lookup step allows you to look for values in a database table. To perform that
search, you need to specify at least the following things:

 f The database connection and the database table you want to search

 f The conditions for the search

 f The fields to retrieve from the table

The upper grid is where you specify the conditions. Each row in the grid represents a
comparison between a column in the table, and a field in your stream, by using one of
the provided comparators.

Take a look at the upper grid in the recipe. The conditions you entered were:

BUYPRICE < max_price and PRODUCTNAME LIKE like_statement

Looking for Data

202

If we take, for example, the first row in the dataset, the condition can be restated as:

BUYPRICE < 90 and PRODUCTNAME LIKE %Aston Martin%

That's exactly the search you wanted to perform for that row—look for the records where the
column BUYPRICE was less than 90, and the column PRODUCTNAME contained Aston Martin.

The Database lookup step allow us to retrieve any number of columns based on the search
criteria. Each database column you enter in the lower grid will become a new field in your
dataset. You can rename them (this is particularly useful if you already have a field with the
same name) and supply a default value if no record is found in the search.

In the recipe, you added three fields: PRODUCTNAME, PRODUCTSCALE, and BUYPRICE. By
default, for PRODUCTNAME you typed not available. In the final preview, you can see that
description in the second row. This means that there were no products with Ford Falcon as
part of their description and a price lower than 70.

There's more...
The recipe showed the minimal setting of the Database lookup step. The step has more
options that can be useful, as explained in the following subsections.

Taking some action when the lookup fails
When you perform a search with the Database lookup step, you expect that the search
returns a row. If the data you are looking for doesn't exist in the table, then the lookup fails. If
this happens, the fields you added in the lower grid are added to the dataset anyway, with null
values or with the default values, if you provided them. That is the default behavior. However,
you have two more options if you don't like that, which are as follows:

1. If the data should be present, then the failure of the lookup is considered an error. In
that case, you can handle the error. You can, for example, send the rows that cause
the failure to a different stream , as shown in the following screenshot

Chapter 6

203

Remember that you can capture errors by right-clicking on the
Database lookup step, selecting the Define error handling... option
and configuring the Step error handling settings window properly.
At least, you have to check the Enable the error handling? option
and select the Write to log step as the Target step.

If you do this, the rows for which the lookup fails, go directly to the stream that
captures the error, in this case, the Write to log step.

2. If the rows are useless without the fields that you are looking for, then you can discard
them. You do that by checking the Do not pass the row if the lookup fails option.
This way, only the rows for which the lookup succeeds will pass to the next step.

Taking some action when there are too many results
The Database lookup step is meant to retrieve just one row of the table for each row in your
dataset. If the search finds more than one row, the following two things may happen:

1. If you check the Fail on multiple results? option, the rows for which the lookup
retrieves more than one row will cause the step to fail. In that case, in the Logging
tab window, you will see an error similar to the following:
... - Database lookup (fail on multiple res.).0 – ERROR... Because
of an error, this step can't continue:
... - Database lookup (fail on multiple res.).0 – ERROR... :
Only 1 row was expected as a result of a lookup, and at least 2
were found!

Then you can decide whether you want to leave the transformation or capture
the error.

2. If you don't check the Fail on multiple results? option, the step will return the first
row it encounters. You can decide which one to return by specifying the order. You do
that by typing an order clause in the Order by textbox. In the sampledata database,
there are three products that meet the conditions for the Corvette row. If, for Order
by, you type PRODUCTSCALE DESC, PRODUCTNAME, then you will get 1958 Chevy
Corvette Limited Edition, which is the first product after ordering the three
found products by the specified criterion.

If, instead of taking some of those actions, you realize that you need all the resulting rows, you
should take another approach—replace the Database lookup step with a Database join or a
Dynamic SQL row step. For recipes explaining these steps, see the following See also section.

Looking for Data

204

Looking for non-existent data
If, instead of looking for a row, you want to determine if the row doesn't exist, the procedure
is much the same. You configure the Database lookup step to look for those rows. Then you
capture the error, as depicted in the following screenshot:

In this case, the stream that you use for capturing the error becomes your main stream. The
rows that didn't fail will be discarded, and the rows for which the lookup failed go directly to
the main stream for further treatment.

See also
 f Looking for values in a database with complex conditions

 f Looking for values in a database with dynamic queries

Looking for values in a database with
complex conditions

In the previous recipe, you saw how to search for columns in a database table based on
simple conditions. With Kettle, you can also search by providing complex conditions or
involving more than one table. In this recipe, you will learn how to perform that kind of search
by using the Database join step. To let you compare the different options for searching data
in a database with ease, we will work with the same example that you saw in the preceding
recipe—the Steel Wheels sample data. You want to look for products that match a given
search term and whose prices are below a given value.

Getting ready
In order to follow this recipe, you need the Steel Wheels database. The code to generate
this database is available from several locations, as mentioned in Chapter 1, Working
with Databases.

Chapter 6

205

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Add a Data Grid step that generates a dataset like the one shown in the
following screenshot:

You can type the data into a file and read the file, or
use a Data Grid.

3. Add a Database join step. You will find it in the Lookup category of steps.

4. Double-click on the step. As Connection, select (or create if it doesn't exist) the
connection to the sampledata database.

5. In the SQL frame, type the following statement:
SELECT PRODUCTNAME
 , PRODUCTSCALE
 , BUYPRICE
FROM PRODUCTS
WHERE PRODUCTNAME LIKE concat(‹%›,?,›%›)
AND BUYPRICE < ?

6. Check the Outer join? option.

7. Click on Get Fields to fill the grid with two parameters—prod and max_price.

8. Close the Database join configuration window and do a preview on this step. You will
see something like the following screenshot:

Looking for Data

206

How it works...
The Database join step is a powerful step for looking for data in a database, based on given
conditions. The conditions usually involve comparisons between columns in tables and fields
in your stream; therefore it's called a join.

This is not really a database join. Instead of joining tables in
a database, you are joining the result of a database query
with a Kettle dataset.

The question marks you type in the SQL statement (those in the highlighted lines in the recipe)
represent parameters. The purpose of these parameters is to be replaced with the fields you
provide in the lower grid. For each row in your stream the Database join step replaces the
parameters in the same order as they are in the grid, and executes the SQL statement.

If we take as an example the first row in the dataset, the SQL statement after the replacement
of the parameters would look like the following query:

SELECT PRODUCTNAME
 , PRODUCTSCALE
 , BUYPRICE
FROM PRODUCTS
WHERE PRODUCTNAME LIKE concat('%','Aston Martin','%')
AND BUYPRICE < 90

And that's exactly the search you wanted to do for that row: look for the records where the
column BUYPRICE was less than 90 and the column PRODUCTNAME contained Aston
Martin. As a result of the database join, you can retrieve any number of columns. Each
database column that you type in the SELECT clause will become a new field in your dataset.
In the recipe, those fields were PRODUCTNAME, PRODUCTSCALE, and BUYPRICE. In particular,
if you had typed SELECT *, you would have retrieved all columns in the tables involved in
the statement.

In the recipe, you checked the Outer join? option. The effect of this is as follows: For the
rows where the lookup fails, the new fields are retrieved with null values. That was the case
for the second row. There were no products with Ford Falcon as part of its description
and a price lower than 70. Therefore, that row shows empty values for the PRODUCTNAME,
PRODUCTSCALE, and BUYPRICE fields.

Note that in the recipe, you filled the grid with two fields. That is exactly the same number of
question marks in the statement.

The number of fields in the grid must be exactly the same
as the number of question marks in the query.

Chapter 6

207

Also, note that in the grid the prod field was in the first place and the max_price in the
second place. If you look at the highlighted lines in the recipe, you will see that the statement
expected the parameters in exactly that order.

The replacement of the markers respects the order of
the fields in the grid.

So far, the results are quite similar to those you got with a database lookup. There is a
significant difference, however. For the third row, the Corvette product, you can see two
results. This means that the Database join found two matching rows in the database, and
retrieved them both. This is not possible with a Database lookup step.

There's more...
The Database join step can be a little complicated to use, or to understand, compared to the
Database lookup step. While the Database lookup step has a UI that makes the configuration
of the step easy, in the Database join step, you have to write an SQL statement. That implies
that you need a good knowledge of SQL. However, the Database join step has several
advantages over the Database lookup one:

 f It allows you to look up from a combination of tables.

 f It allows you to retrieve fields from more than one table at a time.

 f It allows you to retrieve aggregate results, fragments of a field (for example, a
substring of a field), or a combination of fields (for example, two strings concatenated).

 f It allows you to retrieve more than one row from the database for each incoming
row in the Kettle dataset. This is by far the most important advantage. By default,
all matching rows are retrieved. If you want to limit the number of rows to retrieve
for each row in your stream, just change the Number of rows to return value.

See also
 f Looking for values in a database table

 f Looking for values in a database with dynamic queries

Looking for values in a database with
dynamic queries

The Database join step that you learned to use in the previous recipe is quite powerful and
has several advantages over the simple Database lookup step. There is a still more powerful
step for searching in a database; The Dynamic SQL row step. This recipe explains to you its
capabilities and shows you how to use it.

Looking for Data

208

In order to let you compare the different options for searching in a database with ease, we will
work with an example similar to that you saw in the previous two recipes—we will work with the
Steel Wheels sample data. You want to look for the following products:

 f Products that contain Aston Martin in their description

 f Products that contain Ford Falcon in their name and with a scale of 1:18

 f Products that contain Corvette in their name and with a scale of 1:24

Getting ready
In order to follow this recipe, you need the Steel Wheels database.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Create a stream that generates a dataset like the one shown in the
following screenshot.

You can type the data into a file and read the file, or use
a Data Grid.

3. At the end of your stream, add a User Defined Java Expression step.

4. Use that step to add a String named statement. As Java expression, type the
following query:
SELECT PRODUCTNAME, PRODUCTSCALE, BUYPRICE FROM PRODUCTS WHERE
PRODUCTNAME LIKE '%"+prod+"%'"+(cond!=null?" AND "+cond:").

5. Do a preview on this step. You will see a new column named statement with a
complete SQL statement, for example:
SELECT PRODUCTNAME, PRODUCTSCALE, BUYPRICE FROM PRODUCTS WHERE
PRODUCTDESCRIPTIONPRODUCTDESCRIPTION LIKE '%Aston Martin%'

6. Add a Dynamic SQL row step. You will find it in the Lookup category of steps.

Chapter 6

209

7. Double-click on the step. As Connection, select (or create if it doesn't exist) the
connection to the sampledata database.

8. As the SQL field name, type or select statement.

9. Check the Outer join? option.

10. In the Template SQL (to retrieve Meta data) frame, type the following query:
SELECT 'NAME', 'SCALE', 1 as BUYPRICE

11. Close the Dynamic SQL row configuration window and do a preview on this step.
You will see something like the following screenshot (note that the statement
field is hidden):

How it works...
The Dynamic SQL row step is a very powerful step for looking for data in a database.

If we take, for example, the first row in the dataset, the SQL statement (the one that you build
with the Java expression) is similar to the following query:

SELECT PRODUCTNAME, PRODUCTSCALE, BUYPRICE FROM PRODUCTS WHERE
PRODUCTDESCRIPTION LIKE '%Aston Martin%'

That's exactly the search you wanted to perform for that row—look for the records where the
column PRODUCTDESCRIPTION contained Aston Martin.

Now look at the following SQL statement for the last row:

SELECT PRODUCTNAME, PRODUCTSCALE, BUYPRICE FROM PRODUCTS WHERE
PRODUCTNAME LIKE '%Corvette%' AND PRODUCTSCALE="1:24"

In this case, you are filtering both by the name and by the scale.

As you see, what you are doing is dynamically creating an SQL statement. Then, in the
Dynamic SQL row configuration window, you just use the SQL field name to indicate which
field contains the SQL statement to execute.

As the output of the Dynamic SQL row step, you can retrieve any number of columns. Each
database column in the SELECT statement will become a new field in your dataset.

Looking for Data

210

In order to tell Kettle the metadata of the new fields being added with this dynamic statement,
you must fill in the Template SQL (to retrieve Meta data) frame. Here, you have to type any
statement that returns the same structure as the new fields. Kettle will take from here both
the names and the types for the new fields.

In the recipe, you typed SELECT 'NAME', 'SCALE', 1 as BUYPRICE. With this statement,
you are telling Kettle that you are adding three fields—two strings named NAME and SCALE
and an integer field named BUYPRICE.

Both the statement and this template are written using MySQL
syntax. It's mandatory that you restate them to match the syntax
of the database engine you are using.

In the recipe, you checked the Outer join? option. The effect of this is the same as in the
Database join step—for the rows where the lookup fails, the new fields are retrieved with null
values. That was the case for the second row. There were no products with Ford Falcon
as part of its name and a scale of 1:18. Therefore, that row shows empty values for the
PRODUCTNAME, PRODUCTSCALE, and BUYPRICE fields. For the third row, the Corvette
product, you can see two results. This means that the Dynamic SQL row step found two
matching rows in the database and retrieved them both. This also resembles the behavior
of the Database join step.

Finally, note that in the recipe, the statement was different for each row. It may happen however,
that your statements do not change a lot. If this is the case, you can reduce the number of
physical database queries by checking the Query only on parameters change option.

There's more...
The Dynamic SQL row step is the most flexible step for looking up data in a database. As
you saw, there are a couple of similarities between this and the Database join step. What
really makes a difference between them is that with the Dynamic SQL row step, any part of
the statement can be built dynamically based on the fields in your stream. For example, the
columns used for comparison in the recipe were the product description in the first row and
the product name in the others. What you did in the recipe is not possible to achieve by using
the Database join, at least in a simple fashion.

Note that you could also have had the statement already built, for example, in a property file or
saved in a column in a database table. In that case, you also could have used the Dynamic SQL
row step to execute the statement and that is definitely impossible to do with any other step.

See also
 f Looking for values in a database

Chapter 6

211

Looking for values in a variety of sources
The first recipes in the chapter showed you how to look for additional information in a
database. There are still many other sources of information. You may need to look in property
files, in Excel files, in text files, and so on. Kettle allows you to look for data coming from all
those sources with the Stream lookup step. In this example, you have information about
books coming from an Excel file, and you need to complete this dataset by looking up the
author's data and genre description, which are in external sources. In this case, the author's
information is inside a text file and the genres are in a fixed predefined list.

Getting ready
For doing this recipe, you will need the following:

 f A CSV file (authors.txt) with the authors' data. The file should have the following
columns: lastname, firstname, nationality, and id_author. The following
are sample lines of this file:
"lastname","firstname","nationality","id_author"
"Larsson","Stieg","Swedish","A00001"
"King","Stephen","American","A00002"
"Hiaasen","Carl ","American","A00003"
"Handler","Chelsea ","American","A00004"
"Ingraham","Laura ","American","A00005"

 f An Excel file with the books' information (books.xls). The sheet should have the
following columns: title, id_author, price, id_title, and id_genre as
shown in the following screenshot:

You can also download sample files from Packt's website.

Looking for Data

212

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop an Microsoft Excel input step and a Text file input step into the canvas.

3. In the Microsoft Excel input step, browse for the books.xls file under the Files tab
and click on the Add button. Populate the grid under the Fields tab by clicking on the
Get fields from header row button.

4. In the Text file input step, browse for the authors.txt file and click on the Add
button. Type , as the Separator under the Content tab and finally, populate the
Fields tab grid by clicking on the Get Fields button.

5. Add a Stream lookup step from the Lookup category.

6. Create a hop from the Microsoft Excel input step to the Stream lookup step and
another from the Text file input, also to the Stream lookup step.

7. Double-click on the Stream lookup step and in the Lookup step listbox select the
name of the Text file input step previously created.

8. Complete the grids with the following information:

To save time, you can click on the Get Fields button to
automatically load the fields in the upper grid, and the
Get lookup fields button to populate the lower grid.

9. Previewing this step, you can verify that the dataset includes, for each book, the
information for its author. Now, let's add the genre description.

Chapter 6

213

10. Drop a Data Grid step from the Input category. Under its Meta tab, add two
String items id_genre and genre. Then, complete the Data tab as shown in
the following screenshot:

11. Add a new Stream lookup step and create a hop from the Data grid step toward
this new step.

12. Also, create a hop between both Stream Lookup steps. The transformation should
look like the one shown in the following screenshot:

13. Double-click on the last Stream lookup step. In the Lookup step listbox, type or
select the name of the Data grid step created earlier.

14. In the upper grid, add a row typing id_genre under the Field column and id under
LookupField.

15. In the lower grid, add a genre Field, of String Type. Add Unknown as the
Default value.

Looking for Data

214

16. Doing a preview of this step, you will obtain a dataset of the books, their authors, and
also the description of their genres. An example is shown in the following screenshot:

How it works...
The Stream Lookup step is the step that you should use to look for additional information in
other sources. In this recipe, the main data comes from an Excel file with book titles and also,
the identification for their authors and genres. You used two Stream Lookup steps to look up
for each title, the author's information, and the genre description respectively.

In the first Stream Lookup step, the purpose is to look for the author's data; in this step,
you configure the Lookup step listbox pointing to the Text file input step, which is where the
author's data is coming from.

In the upper grid named The key(s) to lookup the values(s), you have to specify the fields
used to join both data sources. In this case, those fields are id_author and id.

The second grid titled Specify the fields to retrieve is to declare the fields to add to the main
dataset. You have typed the fields—firstname, lastname, and nationality. The last
Stream Lookup step was created in order to retrieve the genre description that matches the
genre identification in the main dataset. Here the key values are the fields id_genre and id
and the only data to retrieve is the field genre. Here you entered Unknown as the Default
value. This means that if the Stream Lookup step doesn't find a matching genre for a row, the
genre description will be set to Unknown.

There's more...
The following sections provide you with some alternatives to the use of the Stream
Lookup step.

Chapter 6

215

Looking for alternatives when the Stream Lookup step doesn't
meet your needs
The Stream Lookup step compares the fields with an equal operator. There are a couple of
situations where this may not be what you need.

If you are not sure about the similarity of the values between the fields that you are
comparing, a comparison by equal may fail. In that case, you could use the Fuzzy match step,
which allows you to search for similar values. For instance, if you are comparing a dataset
of first names, Bob would match to Bob. Sometimes data entry errors can occur, and you
may have to compare Bob to Lob or any other misspelling. Fuzzy match would provide the
probability that Lob really should have been Bob. This could become problematic if there was
also a Rob in the dataset; but Fuzzy match provides a way to at least call out potential issues.

If you need to compare using other operators, for example, <=, then you should also look for
an alternative step. One possible approach would be to use the Join Rows (artesian product)
to retrieve all the data, and filter the rows from that step with a Filter rows or a Java Filter
step afterwards.

Keep in mind that Join Rows (cartesian product) might
increase the number of records you are processing, slowing
down your process significantly. Cartesian products provide all
the pairings of the two datasets, For example, if we were joining
a dataset with ten records and another dataset with thirty
records, we would end up with 300 records.

Another option would be to transfer the source data to a
database table and then lookup in the database. This approach
takes a little more effort, but it has its advantages. You have
more flexible ways for looking up data in a database compared
with looking up in a stream. Besides, for big datasets, you can
also gain performance as explained in the next subsection.

Speeding up your transformation
For big datasets, looking up in plain files with a Stream Lookup step can start becoming
cumbersome to work with. As a workaround to speed things up, you should consider moving
the data to a database table before looking up in it. The main advantages of this approach is
that you can cache and index data, which makes the lookup task faster.

What if your project doesn't involve database tasks? For these temporary lookup tables,
you may want to use an in-memory database such as HSQLDB or H2. In-memory databases
provide all the benefits of traditional databases for situations where the data does not have
to be constantly persisted.

Looking for Data

216

For a practical example of this, take a look at the blog post by Slawomir Chodnicki at
http://type-exit.org/adventures-with-open-source-bi/2011/01/using-an-
on-demand-in-memory-sql-database-in-pdi/.

Using the Value Mapper step for looking up from a short list
of values
The second Stream Lookup step in the recipe only returns a simple description and has a
short list of possible values. In these cases, you can replace this step with a Value Mapper
from the Transform category.

You should complete the step, as shown in the following screenshot:

In the Source value column, you define the possible values for the id_genre field,
and in the Target value column, you define their descriptions. Also, in the Default upon
non-matching textbox, you can enter a default value to be returned for the rows with
invalid genre identification.

See also
 f Looking for values by proximity

 f The recipe Generating all possible pairs formed from two datasets in Chapter 7,
Understanding and Optimizing Data Flows

Chapter 6

217

Looking for values by proximity
This chapter is about looking for values in different sources based on given conditions. Those
conditions are a comparison between fields in your stream and fields in the source that you
are looking into. As you know, or could see in the rest of the recipes, you usually compare by
equality and sometimes you do it by using different operators such as LIKE, NOT EQUAL,
<, and so on. What if you need to look for a value that is more or less equal to a field in your
stream? None of the options you saw in the other recipes will give you the solution to this
problem. In these situations, you need to perform a fuzzy search, that is, a search that looks
for similar values. Kettle allows you to perform such a search by providing you the Fuzzy
match step. In this recipe, you will learn how to use this step.

Suppose that you receive an external text file with book orders and you need to find the prices
for these books. The problem is that you don't have the identification for that book, you only
have the title, and you are not sure if the spelling is correct.

Getting ready
You must have a books database with the structure shown in the Appendix A, Data Structures.

The recipe uses a file named booksOrder.txt with the following book titles, which
deliberately includes some typos:

Carry
Slem's Lot
TheShining
The Ded sone
Pet Cemetary
The Tomyknockers
Bag of Bones
Star Island
Harry Potter

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Text file input step into the work area, in order to retrieve the book order.

3. In the File or directory textbox under the File tab, browse to the booksOrder.txt
file and then click on the Add button.

Looking for Data

218

4. Under the Content tab, uncheck the Header checkbox.

5. Under the Fields tab, add a new String field named TitleApprox.

6. Drop another step in order to read the books database. Use a Table input step and
type the following SQL statement:
SELECT title
 , price
FROM Books

7. Add a Fuzzy match step from the Lookup category. Add a hop from the Table input
step toward this step. Add another hop from the Text file input step created before,
also toward the Fuzzy match step.

8. Double-click on the Fuzzy match step. Under the General tab, go to the Lookup
stream (source) frame and as Lookup step, select the Table input step created
before. In the Lookup field, select title.

9. In the Main stream field, select the TitleApprox field.

10. Now, you must select the fuzzy match algorithm to be used. In this case, you will use
Levenshtein. Select it from the Algorithm drop-down list. Set the minimal value to 0
and the Maximal value to 3. Also, uncheck the Case sensitive checkbox.

11. Select the Fields tab and type match in Match field and measure_value
in Value field.

12. Under the same tab, add the price field to the grid.

13. After this, the transformation should look like the one shown in the
following screenshot:

Chapter 6

219

14. If you select the Fuzzy match step and preview the transformation, the result will look
like the following screenshot:

How it works...
The Fuzzy match step is used to look in another stream for values that are similar to the value
of a field in your stream. For each row in your dataset, a comparison is made between the
main stream field (TitleApprox in this case) and each lookup field in the secondary stream
(title). In other words, for each book in the list, a comparison is made between the provided
title and the real titles coming from the database.

The comparison consists of applying a given fuzzy match algorithm. A fuzzy match algorithm
compares two strings and calculates a similarity index. The row with the lowest index is
returned, as long as it is between the Minimum value and the Maximum value.

In this recipe, we used the Levenshtein match algorithm that calculates a metric distance.
The similarity index for this algorithm represents the number of edits needed to transform
one field into the other. These edits can be character insertion, deletion, or substitution
of a single character.

As minimum and maximum values, you specified 0 (meaning that the exact title was found)
and 3 (meaning that you will accept as valid a title with a maximum of three edits). For
example, when you preview the result of this step, you can see a title named The Ded sone
which matches the real title The Dead Zone with a distance of 2. For the Star Island title
the distance is 0 because the spelling was correct and a book with exactly the same title was
found. Finally, for the Harry Potter row, there are no matching rows because you need too
many editions to transform the provided title into one of the Harry Potter titles in the database.

Looking for Data

220

There's more...
The Fuzzy match step allows you to choose among several matching algorithms, which are
classified in the following two groups:

 f Algorithms based on a metric distance: The comparison is based on how the
compared terms are spelled

 f Phonetic algorithms: The comparison is based on how the compared terms sound,
as read in English

The following is a brief comparative table for the implemented algorithms:

Algorithm Classification Explanation Example
Levenshtein Metric

distance
The distance is calculated as
the minimum edit distance
that transforms one string
into the other. These edits
can be character insertion or
deletion, or substitution of a
single character.

The transformation of
"pciking" into "picking"
requires two changes (the c
and i need to be replaced),
which would be a distance
of 2.

Damerau-
Levenshtein

Metric
distance

Similar to Levenshtein,
but adds the transposition
operation.

The transformation of
"pciking" into "picking"
requires one change (the i
and c are transposed), which
would be a distance of 1.

Needleman-
Wunsch

Metric
distance

A variant of the Levenshtein
algorithm. It adds a gap cost,
which is a penalty for the
insertions and deletions.

The transformation of
"pciking" into "picking" still
requires two changes (the c
and i need to be replaced),
but a distance of 1 is
returned due to the gap cost.

Jaro Metric
distance

Based on typical spelling
deviations. The index goes
from 0 to 1, with 0 as no
similarity, and 1 as the
identical value.

The transformation of
"pciking" into "picking"
requires one change (the i
and c are transposed). Since
this is a common spelling
issue, the return value is 1
(they are identical).

Jaro-Winkler Metric
distance

A variant of the Jaro
algorithm, appropriate for
short strings such as names.

The transformation of
"pciking" into "picking"
requires one change (the i
and c are transposed). Since
this is a common spelling
issue, the return value is 1
(they are identical).

Chapter 6

221

Algorithm Classification Explanation Example
Pair letters
Similarity

Metric
distance

The strings are divided into
pairs, and then the algorithm
calculates an index based on
the comparison of the lists of
pairs of both strings.

The pairing of 'pciking' to
'picking' provides 3 common
pairs (ki, in, ng) of a total 6
pairs. The returned value is
0.5.

SoundEx Phonetic It consists of indexing terms
by sound. It only encodes
consonants. Each term is
given a soundex code. Each
soundex code consists of a
letter and three numbers.
Similar sounding consonants
share the same digit (for
example, b, f, p, v are equal
to 1).

Refined
SoundEx

Phonetic A variant of the SoundEx
algorithm optimized for spell
checking.

Metaphone Phonetic The algorithm is similar to
the SoundEx algorithm, but
produces variable length keys.
Similar sounding words share
the same keys.

Double
Metaphone

Phonetic An extension of the
Metaphone algorithm where a
primary and a secondary code
are returned for a string.

The decision of which algorithm to choose depends on your problem and the kind of data you
have or you expect to receive. You can even combine a fuzzy search with a regular search.
For example, in the recipe, you didn't find a match for the Harry Potter row. Note that
increasing the maximum value wouldn't have found the proper title. Try raising the maximum
value to 10, and you will see that the algorithm brings Carrie as the result, which clearly has
nothing to do with the wizard. However, if you look for this value with a Database join step by
comparing with the LIKE operator, you could retrieve not just one, but all the Harry Potter titles.

Further details on the individual similarity metrics can be found at http://en.wikipedia.
org/wiki/String_metrics.

Wikipedia also has articles for the algorithms that go into more detail on how they work.

Looking for Data

222

Looking for values by using a web service
Web services are interfaces that are accessed through HTTP and executed on a remote hosting
system. They use XML messages that follow the Simple Object Access Protocol (SOAP)
standard. Some examples of web services that use SOAP are Salesforce, Amazon Web Services,
and eBay. With Kettle, you can look for values in available web services by using the Web
service lookup step. In this recipe, you will see an example that shows the use of this step.

Suppose that you have a dataset of museums and you want to know about their opening
and closing hours. That information is available as an external web service. The web service
has a web method named GetMuseumHour that receives the id_museum as a parameter,
and returns the museum schedule as a String. The request and response elements for the
GetMuseumHour web method used in this recipe look like the following:

 f Request:
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetMuseumHour xmlns="http://tempuri.org/">
 <idMuseum>int</idMuseum>
 </GetMuseumHour>
 </soap:Body>
</soap:Envelope>

 f Response:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetMuseumHourResponse xmlns="http://tempuri.org/">
 <GetMuseumHourResult>string</GetMuseumHourResult>
 </GetMuseumHourResponse>
 </soap:Body>
</soap:Envelope>

As with any XML, the structure of both the request and response are important. The request
is asking for the hours of the provided museum. The response will return the hours in the
GetMuseumHourResponse as a string.

Chapter 6

223

Getting ready
You must have a database with the museum structure shown in Appendix A, Data Structures
and access to a web service similar to the one detailed earlier. On Packt's website, there is
sample code for those services. The services run with a server that supports ASP.NET, such
as Microsoft's Internet Information Services (IIS) or using Apache's web server with mono,
a cross platform, open source .NET development framework.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Table input step into the work area in order to obtain the data with the list of
museums. Type the following SQL statement:
SELECT id_museum
 , name
 , city
 , country
FROM museums
JOIN cities
ON museums.id_city=cities.id_city

3. Add a Web service lookup step from the Lookup category.

4. Double-click on the step. In the Web Services tab, type the URL address for the web
service. It is important to point to the Web Service Definition Language (WSDL)
declaration path, for example, http://localhost/museumHours/Service.
asmx?wsdl.

5. Click on the Load button in order to refresh the web methods for the
Operation prompt.

6. In the Operation listbox, select the web method named GetMuseumHour. This
generates the necessary inputs and outputs tabs; you can also generate them by
clicking on the Add Input and Add Output buttons.

Additionally, you can also include authentication credentials
for the web service and proxy information, if needed.

7. Select the In tab. Click on the Get Fields button and you will obtain the parameter
name and type for the web service. Type id_museum in the Name column.

8. Under the output tab named GetMuseumHourResult, you must set the field where
the result will be written. Clicking on the Get Fields button will obtain the return value
name. Change the Name column to Hours.

Looking for Data

224

9. You could execute the transformation now and examine the results. A better approach
would be to check the availability of the web service before execution. So, create a
new job and add a Start entry.

10. Add a Check webservice availability job entry from the Conditions category.

11. Double-click on the step. Set the URL textbox to the WSDL address, in this case
http://localhost/museumsHours/Service.asmx?wsdl.

12. After that entry, add a Transformation entry to run the transformation created earlier.
Make sure that the transformation runs only if the previous entry succeeds. That is,
right-click on the hop and check the Follow when result is true evaluation option.

13. Running the job will return the list of museums, their geographic location, and their
hours of operation.

How it works...
The objective in the example is to look for a value that is hosted on a web server. You do it by
consuming a web service.

Note that the URL of the web service in the Web service lookup step points to a WSDL
address. WSDL is an XML-based language used to describe web services.

When you click on the Load button in the Web service lookup step, the information retrieved
from the WSDL contract is interpreted and used to fill the Operation combo with the web
methods found in the web service. When you choose a method, it automatically sets the
necessary values for the input and the output. You only need to write the local values that will
be passed as parameters (In tab), and the value for the result (GetMuseumHourResult tab).

If the tabs for the input and output are not created automatically, you can write the
specifications manually, by clicking on the Add Input and Add Output buttons. For each
museum row, there will be a request to the web service passing the id_museum parameter
declared in the In tab. The result containing the museum opening hours will be saved in the
Hours field declared under the GetMuseumHourResult tab.

There's more...
There is also a step named Check if webservice is available from the Lookup category. You
can use it to verify that the web service is available just before consuming it. In this step, you
must have the URL address as a field in each row.

In some cases, the web server could be flooded due to the multiple simultaneous requests,
and it could return an error similar to Too many users are connected.

In these cases, you can check the configuration of the web server. Alternatively, you can rerun
the transformation consuming the web service by groups of rows, forcing a delay to avoid the
web server saturation.

Chapter 6

225

For more information about web services, you can visit http://en.wikipedia.org/
wiki/Web_service.

More information about WSDL can be obtained from http://www.w3.org/TR/wsdl.

See also
 f Looking for values over intranet or the Internet

Looking for values over intranet or
the Internet

This example is similar to the previous one, with the difference being that you have to lookup
the museum opening hours on a website instead of a web server. In this case, you will use the
HTTP Client step. This step is useful to retrieve information from websites that do not normally
provide data through web services, like in the previous recipe. This method is also known as
web scraping.

Getting ready
You must have a database with the museum structure shown in Appendix A, Data Structures,
and a web page that provides the museum opening hours. The recipe uses an ASP page
named hours.asp, but you can use the language of your preference. This recipe will require
a server that supports ASP (or the language of your preference), such as Microsoft's IIS,
or using Apache's web server with mono, a cross platform, open source .NET development
framework. The page receives the museum's identification and returns a string with the
schedule. You can download a sample web page from Packt's website.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop a Table input step into the canvas, in order to obtain the museum's information.
Use the following SQL statement:
SELECT id_museum
 , name
 , city
 , country
FROM museums
JOIN cities
ON museums.id_city=cities.id_city

Looking for Data

226

3. Add an HTTP Client step from the Lookup category.

4. Double-click on the step. In the URL field under the General tab, type the HTTP
web address of the webpage that provides the opening hours. For example:
http://localhost/museum/hours.asp.

5. Set the Result fieldname textbox to Hours.

6. In the HTTP status code fieldname, type status.

Under the General tab, you can include authentication
credentials for the web service and proxy information, if
it is needed.

7. Under the Fields tab, set the parameter that will be sent to the page as a GET
parameter. Type id_museum in both, the Name and Parameter columns.

8. The result for the transformation will be the same as the one obtained in the
previous recipe.

9. Take a look at that recipe for a preview of the final results.

How it works...
The HTTP Client step looks for the museums' opening hours over the intranet—the step does a
request to the web page for each museum in the dataset. One example of this request passing
the parameter would be http://localhost/museum/hours.asp?id_museum=25.

Then, the response of the page containing the museum opening hours will set the Hours field.

The status field will hold the status code of the operation. For example, a status code equal
to 200 means a successful request, whereas a status code 400 is a bad request. You can
check the different status codes at http://en.wikipedia.org/wiki/List_of_HTTP_
status_codes.

There's more...
Suppose that each museum has a different website (and a different URL address) with a web
page that provides its opening hours. In this case, you can store this specific URL as a new
field in the museum dataset. Then in the HTTP Client step check the Accept URL from field?
checkbox and select that field from the URL field name drop-down list.

Chapter 6

227

One alternative to this step is the HTTP Post Lookup step. Using
this step, you connect to the website and pass the parameters
through a POST method instead of a GET method.

See also
 f The Introduction section of Chapter 9, Integrating Kettle and the Pentaho Suite

Validating data at runtime
While processing data there will eventually come a time where it is critical to validate the data
while in stream, to ensure it is of enough high quality to continue executing the process. Kettle
comes with several built-in steps that provide validation capabilities, including a generic Data
Validator step which allows for data to be processed with a custom set of rules. For this recipe,
we will be building some custom rules to validate author data from the books' database.

Getting ready
You must have a database that matches the books' data structures, as listed in Appendix A,
Data Structures. The code to build this database is available from Packt's website.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Add a Table input step from the Input category.

3. Open the step and configure it to connect to the books' database. For the query, click
on Get SQL select statement... and select the authors' table.

4. Add all the columns from the authors' table.

5. Click on OK and exit the step.

6. Under the Validation category, select the Data Validator step. Add a hop between the
Table input step and the Data Validator step.

7. Open the Data Validator step. Click on New validation.

8. Call the new rule birthyear_check and click on OK.

Looking for Data

228

9. Click on the birthyear_check rule. Notice that the right-hand side of the Data Validator
window is now filled with many different types of checks. Fill the form out, as shown in
the following screenshot:

10. Click on New Validation again. This time, call the new rule lastname_check.

11. Fill out the details like before, with the data type being String. In the Regular
expression not allowed to match field, enter \d+. In the Name of field to validate
textbox, enter the last_name field.

12. Check the option Report all errors, not only the first. Click on OK to exit the step.

13. Preview the Data Validator step, and the author data should process without issue.

Now, let's introduce an error that would cause the Data Validator rules to trigger
a failure.

Chapter 6

229

14. From the Transform category, select a Replace in string step and bring it onto the
canvas between the Table Input and Data Validator steps. Open the step and enter
the details, as shown in the following screenshot:

15. From the Flow category, select a Dummy step and make it the error handling step
of the Data Validator step by creating a hop to it and right-clicking on the Data
Validator step and selecting Define error handling....

16. Preview the Dummy step. Every author record with a lastname field value of King
will now error out and appear in the error handling step.

How it works...
The Data Validator step takes very basic, to moderately advanced logic to apply to data in
stream, and validate if the data at least conforms to those rules. If the data is not clean, it may
be possible to apply more transformation logic to clean the data up, otherwise a process can
continue to run with the validated data and not fail due to dirty records.

There's more...
There are a few other specialized validation steps that are customized for particular use cases.
The following table lists these specialized steps, and when it is appropriate to use them:

Step Name When to use
Credit card validator Validating credit card numbers to ensure they are at least

formatted appropriately
Mail validator Validates e-mail addresses, in that they are properly formatted.

Can also be verified as a live e-mail address.
XSD Validator Validates XML based on a schema file.

Looking for Data

230

See also
 f Looking for values in a database table

 f The recipe Validating an XML file against DTD definitions in Chapter 4, Manipulating
XML Structures

 f The recipe Validating an XML file against an XSD schema in Chapter 4, Manipulating
XML Structures

7
Understanding and

Optimizing Data Flows

In this chapter, we will cover the following topics:

 f Splitting a stream into two or more streams based on a condition

 f Merging rows of two streams with the same or different structure

 f Adding checksums to verify datasets

 f Comparing two streams and generating differences

 f Generating all possible pairs formed from two datasets

 f Joining two or more streams based on given conditions

 f Interspersing new rows between existent rows

 f Executing steps even when your stream is empty

 f Processing rows differently based on the row number

 f Processing data into shared transformations via filter criteria and subtransformations

 f Altering a data stream with Select values

 f Processing multiple jobs or transformations in parallel

Understanding and Optimizing Data Flows

232

Introduction
The main purpose of Kettle transformations is to manipulate data in the form of a dataset—a
task done by the steps of the transformation. When a transformation is launched, all its
steps are started. During the execution, the steps work simultaneously reading rows from the
incoming hops, processing them, and delivering them to the outgoing hops. When there are
no more rows left, the execution of the transformation ends.

The dataset that flows from step to step is effectively a set of rows with the same metadata.
This means that all rows have the same number of columns, and the columns in all rows have
the same type and name.

Suppose that you have a single stream of data and that you apply the same transformations to
all rows, that is, you have all steps connected in a row one after the other. In other words, you
have the simplest of the transformations from the point of view of its structure. In this case, you
don't have to worry much about the structure of your data stream, nor the origin or destination
of the rows. The interesting part comes when you face other situations, for example:

 f You want a step to start processing rows only after another given step has
processed all rows.

 f You have more than one stream and you have to combine them into a single
stream. For instance, loading data from multiple sources that will be entered
into a single target.

 f You have to inject rows in the middle of your stream and those rows don't have
the same structure as the rows in your dataset. For instance, you have data that
is already formatted, but a new set of data (with a different structure) needs to be
formatted before both sets are entered into a target.

With Kettle, you can actually do this, but you have to be careful because it's easy to end up
doing wrong things and getting unexpected results or even worse; undesirable errors.

With regard to the first example, it doesn't represent a default behavior due to the parallel
nature of the transformations as explained earlier. There are two steps however, that might
help, which are as follows:

 f Blocking step: This step blocks processing until all incoming rows have
been processed

 f Block this step until steps finish: This step blocks processing until the selected
steps finish

Both these steps are in the Flow category.

Chapter 7

233

You will find examples of the use of the last of these steps in the following recipes:

 f The Writing an Excel file with several sheets recipe in Chapter 2, Reading and
Writing Files

 f The Generating a custom logfile recipe in Chapter 10, Getting the Most Out of Kettle

This chapter focuses on the other two examples and some similar use cases by explaining the
different ways for combining, splitting, or manipulating streams of data.

Splitting a stream into two or more streams
based on a condition

In this recipe, you will learn to use the Filter rows step in order to split a single stream into
different smaller streams. In the There's more... section, you will also see alternative and
more efficient ways for doing the same thing in different scenarios.

Let's assume that you have a set of outdoor products in a text file, and you want to
differentiate tents from other kinds of products, and also create a subclassification
of the tents depending on their prices.

Let's see a sample of this data:

id_product,desc_product,price,category
1,"Swedish Firesteel - Army Model",19,"kitchen"
2,"Mountain House #10 Can Freeze-Dried Food",53,"kitchen"
3,"Lodge Logic L9OG3 Pre-Seasoned 10-1/2-Inch Round
Griddle",14,"kitchen"
...

Getting ready
To run this recipe, you will need a text file named outdoorProducts.txt with information
about outdoor products. The file contains information about the category and price of
each product.

How to do it...
Perform the following steps:

1. Create a transformation.

2. Drag a Text file input step into the canvas and fill in the File tab to read the file
named outdoorProducts.txt. If you are using the sample text file, type, as
the Separator.

Understanding and Optimizing Data Flows

234

3. Under the Fields tab, use the Get Fields button to populate the grid. Adjust the
entries so that the grid looks like the one shown in the following screenshot:

4. Now, let's add the steps to manage the flow of the rows. To do this, drag two Filter
rows steps from the Flow category. Also, drag three Dummy steps that will represent
the three resulting streams.

Dummy steps are used so that we can preview the filtered data.
Normally, we would continue working with the data until it was
ready to go into an output step.

5. Create the hops, as shown in the following screenshot. When you create the hops,
make sure that you choose the options according to the image: Result is TRUE for
creating a hop with a green icon, and Result is FALSE for creating a hop with a red
icon in it.

6. Double-click on the first Filter rows step and complete the condition, as shown in the
following screenshot:

Chapter 7

235

7. Double-click on the second Filter rows step and complete the condition with
price < 100.

8. You have just split the original dataset into three groups. You can verify it by
previewing each Dummy step. The first one has products whose category is not tents;
the second one, the tents under 100 US$; and the last group, the expensive tents,
those whose price is over 100 US$.

9. The preview of the last Dummy step is shown in the following screenshot:

How it works...
The main objective in the recipe is to split a dataset with products depending on their category
and price. To do this, you used the Filter rows step.

In the Filter rows setting window, you tell Kettle where the data flows to, depending on the
result of evaluating a condition for each row. In order to do that, you have two list boxes: Send
'true' data to step and Send 'false' data to step. The destination steps can be set by using
the hop properties, as you did in the recipe. Alternatively, you can set them in the Filter rows
setting dialog by selecting the name of the destination steps from the available drop-down lists.

You also have to enter the condition. When entering conditions, you will see a condition form
similar to the one shown in the following screenshot:

The condition has the following different parts:

 f The textbox on the top-left corner is meant to negate the condition.

 f The textbox on the left-hand side is meant to select the field that will be used
for comparison.

Understanding and Optimizing Data Flows

236

 f Then you have a list of possible comparators to choose from.

 f On the right-hand side you have two textboxes: the upper textbox for comparing
against a field and the bottom textbox for comparing against a constant value.

Also, you can include more conditions by clicking on the Add Condition button on the
right-hand side. If you right-click on a condition, a contextual menu appears to let you delete,
edit, or move it. In the first Filter rows step of the recipe, you typed a simple condition: you
compared a field (category) with a fixed value (tents) by using an equals to (=) operator.
You did this to separate the tent products from the others. The second filter had the purpose
of differentiating the expensive and the cheap tents.

There's more...
You will find more filter features in the following subsections:

Avoiding the use of Dummy steps
In the recipe, we assumed that you wanted all three groups of products for further processing.
Now, suppose that you only want the cheapest tents and you don't care about the rest. You
could use just one Filter rows step with the condition category = tents AND price <
100, and send the "false" data to a Dummy step, as shown in the following screenshot:

The rows that don't meet the condition will end at the Dummy step. Although this is a very
commonly used solution for keeping just the rows that meet the conditions, there is a simpler
way to implement it. When you create the hop from the Filter rows step toward the next step,
you are asked for the kind of hop that you plan to use. If you choose Main output of step, the
two options Send 'true' data to step and Send 'false' data to step will remain empty. This will
cause two things:

 f Only the rows that meet the condition will pass

 f The rest will be discarded

Chapter 7

237

Comparing against the value of a Kettle variable
This recipe shows you how to configure the condition in the Filter rows step to compare a field
against another field or a constant value; but what if you want to compare against the value of
a Kettle variable?

Let's assume, for example, you have a named parameter called categ with kitchen as
Default Value. As you might know, named parameters are a particular kind of Kettle variable.

You create the named parameters under the Parameter tab
from the Settings option of the Edit menu.

To use this variable in a condition, you must add it to your dataset in advance. You do this
as follows:

1. Add a Get Variables step from the Job category. Put it in the stream after the Text file
input step and before the Filter Rows step; use it to create a new field named categ
of String type with the value ${categ} in the Variable column.

2. Now, the transformation looks like the one shown in the following screenshot:

3. After this, you can set the condition of the first Filter rows step to category =
categ, selecting categ from the listbox of fields to the right. This way, you will be
filtering the kitchen products.

4. If you run the transformation and set the parameter to tents, you will obtain similar
results to those that were obtained in the main recipe.

Avoiding the use of nested Filter rows steps
Suppose that you want to compare a single field against a discrete and short list of possible
values and do different things for each value in that list. In this case, you can use the Switch
/ Case step instead of nested Filter rows steps. In this recipe, we were filtering on both
categories and pricing information. We could easily replace the Filter rows steps with a
Switch / Case step.

Let us assume that you have to send the rows to different steps depending on the category.
The best way to do this is with the Switch / Case step. This way you avoid adding one Filter
rows step for each category.

Understanding and Optimizing Data Flows

238

In this step, you have to select the field to be used for comparing. You do it in the Field name
to switch listbox. In the Case values grid, you set the Value-Target step pairs. The following
screenshot shows how to fill in the grid for our particular problem:

The following are some considerations about this step:

 f You can have multiple values directed to the same target step.

 f You can leave the value column blank to specify a target step for empty values.

 f You have a listbox named Default target step to specify the target step for rows that
do not match any of the case values.

 f You can only compare with an equal operator.

 f If you want to compare against a substring of the field, you could enable the Use
string contains option and as Case Value, type the substring you are interested in.
For example, if for Case Value, you type tent_, all categories containing tent_ such
as tent_large, tent_small, or tent_medium will be redirected to the same
target step.

Overcoming the difficulties of complex conditions
There will be situations where the condition is too complex to be expressed in a single Filter
rows step. You can nest them and create temporary fields in order to solve the problem, but it
would be more efficient if you used the Java Filter or User Defined Java Expression step, as
explained next.

You can find the Java Filter step in the Flow category. The difference compared to the Filter
rows step is that in this step, you write the condition using a Java expression.

Chapter 7

239

The names of the listboxes—Destination step for matching rows (optional) and Destination
step for non-matching rows (optional)—differ from the names in the Filter rows step, but
their purpose is the same.

As an example, the following are the conditions you used in the recipe rewritten as Java
expressions: category.equals("tents") and price < 100. These are extremely
simple, but you can write any Java expression as long as it evaluates to a Boolean result.

If you can't guarantee that the category will not be null, it is
recommended that you invert the first expression and put
"tents".equals(category) instead. By doing this,
whenever you have to check if a field is equal to a constant,
you avoid an unexpected Java error.

Finally, suppose that you have to split the streams simply to set some fields and then join the
streams again. For example, assume that you want to change the category as follows:

Condition New category
Category equal to tents and price below 100 cheap_tents

Category equal to tents and price above or
equal to 100

expensive_tents

Category different from tents Keep the old category

Doing this with nested Filter rows steps leads to a transformation, such as the following:

Understanding and Optimizing Data Flows

240

You can do the same thing in a simpler way:

Replace all the steps, but fill the Text file input with a User Defined Java Expression step
located in the Scripting category.

1. In the setting window of this step, add a row in order to replace the value of the
category field: as New field and Replace value type category. As Value type select
String. As Java expression, type the following:
(category.equals("tents"))?(price<100?"cheap_tents":"expensive_
tents"):category

The preceding expression uses the Java ternary operator ?:.
If you're not familiar with the syntax, think of it as shorthand
for the if-then-else statement. For example, the inner
expression price<100?"cheap_tents":"expensive_
tents" means if (price<100) then return
"cheap_tents" else return "expensive_tents".

2. Do a preview on this step. You will see something similar to the following:

Merging rows of two streams with the
same or different structures

It's a common requirement to combine two or more streams into a single stream that includes
the union of all rows. In these cases, the streams come from different sources and don't
always have the same structure. Consequently, combining the streams is not as easy as just
putting in a step that freely joins the streams. Issues can quickly arise if row formats and
column orders are mixed between streams. This recipe gives you the tips to make it easier.

Chapter 7

241

Suppose that you received data about roller coasters from two different sources. The data in
one of those sources looks like the following:

roller_coaster|speed|park|location|country|Year
Top Thrill Dragster|120 mph|Cedar Point|Sandusky, Ohio||2003
Dodonpa|106.8 mph|Fuji-Q Highland|FujiYoshida-shi|Japan|2001
Steel Dragon 2000|95 mph|Nagashima Spa Land|Mie|Japan|2000
Millennium Force|93 mph|Cedar Point|Sandusky, Ohio||2000
Intimidator 305|90 mph|Kings Dominion|Doswell, Virginia||2010
Titan|85 mph|Six Flags Over Texas|Arlington, Texas||2001
Furious Baco|84 mph|PortAventura|Spain||2007
...

The other source data looks like the following:

attraction|park_name|top_speed|trains_qt|ride_time
Expedition Everest|Disney's Animal Kingdom|50 mph|6 - 34 passenger|

Goofy'S Barnstormer|Disney's Magic Kingdom|25 mph|2 - 16 passenger|

Gwazi|Busch Gardens Tampa|50 mph|4 - 24 passenger|2 minutes, 30
seconds

Journey To Atlantis|SeaWorld Orlando||8 passenger boats|
Kraken|SeaWorld Orlando|65 mph|3 - 32 passenger|2 minutes, 2 seconds

...

You want to merge those rows into a single dataset with the following columns:

 f attraction

 f park_name

 f speed

 f trains_qt

 f ride_time

Getting ready
Download the files roller_coasters_I.txt and roller_coasters_II.txt from the
book's site. These files represent the two sources mentioned in the introduction.

How to do it...
Perform the following steps:

1. Create a transformation and drag two Text file input steps into the canvas.

Understanding and Optimizing Data Flows

242

2. Use one of the steps to read the file roller_coasters_I.txt. Set the data types
as follows: the speed as Number with Format #0.### mph, and the rest of the fields
as String. Do a preview to make sure that you are reading the file properly.

3. Drag the cursor over the step and press the Space bar to see the output fields:

4. Use the other step to read the file roller_coasters_II.txt. Set the data type of
top_speed to Integer and the rest of the fields to String. Do a preview to make sure
that you are reading the file properly.

5. Drag the cursor over the step and press the Space bar to see the output fields:

6. As you can see, the outputs of the streams are different. You have to insert the
necessary steps to make them alike. That's the purpose of the next steps.

7. After the first Text file input step add an Add constants step. Use it to add two
fields of type String. Name the fields trains_qt and ride_time and as Value
type Not available.

8. After it, add a Select values step. Fill in the Select & Alter tab, as shown in the
following screenshot:

Chapter 7

243

9. After the second Text file input step, add another Select values step. Select the
Meta-data tab and fill it in, as shown in the following screenshot:

10. Repeat the procedure to see the output fields of the streams: drag the cursor over
the last step of each stream and press the Space bar. Now, both streams should have
the same layout.

You can keep both windows open at the same time: the one
showing the output fields of the upper stream, and the one
showing the output fields of the lower one. If you put one next
to the other, you can immediately see if they are equal or not.

11. Finally, join the streams with a Dummy step, as depicted in the following diagram:

12. Do a preview on the Dummy step. You will see something similar to the result shown
in the following screenshot:

Understanding and Optimizing Data Flows

244

How it works...
When you need to merge the rows of two streams into a single stream, you have to do all you
can to make the metadata of the streams alike. That's what you did in this recipe. In the first
stream, you added the fields you needed that were absent. You also selected and reordered
the desired fields to resemble the second stream. After that, you changed the metadata of
the top_speed field in the second stream. You converted the field from Integer to Number,
which was the type of the analogous field in the first stream.

When you did the preview, you could see the rows from both incoming steps.

There's more...
In the recipe, you merged two streams with data coming from different sources. However,
that is not the only situation in which you may need to merge streams. It is common to split
a stream into two or more streams to perform some particular manipulations and then merge
them back together, as depicted in the following diagram:

Whichever the case, when you have to merge two or more streams, there are the following two
things that you should remember:

 f Make sure that the metadata of all streams is exactly the same

 f Decide and tell Kettle how you want to merge the streams

The following subsections explain these things in detail.

Chapter 7

245

Making sure that the metadata of the streams is the same
In order to merge two or more streams, their metadata has to coincide. This basically means
that all streams have to have the same layout: same number of columns, same names, same
types, and the columns must be in the same order.

If you try to merge streams that don't meet that requirement, you will receive a warning.
A window will show up with the title This hop causes the target step to receive rows with
mixed layout! and a text explaining the differences found. That means that you have to find
the way to fix that situation. The following is a quick list that will help you make the metadata
of several streams alike:

 f Identify the fields that you want in the final dataset that are not present in all
streams. In the streams that don't have those fields, add them. You can get the value
from any source (a text file, the command line, and so on), or simply think of a default
value and add the field with an Add constant step from the Transformation category.
This is what you did with the fields trains_qt and ride_time.

 f Identify the fields that you want to keep that are present in all streams, but with a
different structure. Change the metadata of those fields in the streams where the
metadata is not as desired. You can do this with a Select values step by using the
Metadata tab. This is what you did for the field top_speed.

 f Verify the layouts of the streams. If they still differ, for each stream that does not have
the proper layout, add a Select values step at the end. With this step, select the fields
you want to keep (implicitly deleting the others), rename and reorder them in order to
match the desired layout. This was what you did with the first Select values step.

Now, you are free to merge the streams, as explained in the next subsection.

If you have to merge streams in a subtransformation,
it's advisable to read the tip under the Moving part of a
transformation to a subtransformation recipe in Chapter 8,
Executing and Re-using Jobs and Transformations.

Telling Kettle how to merge the rows of your streams
Once your streams are ready to be merged, you can then proceed in the following ways:

 f Suppose that you want to put all the rows of one of the streams below all the rows of
the other. If you don't care about the order of the streams, you can use any step to
merge them. This was what you did in the recipe with the Dummy step.

 f If you care about the order of the streams, you should use the Append Streams step
from the Flow category in order to merge the streams. By selecting a Head hop and
a Tail hop, you can tell Kettle which stream goes first.

Understanding and Optimizing Data Flows

246

This only works for just two streams. If you need to merge several
streams, you need to add nested Append Streams steps.

 f Suppose that you really want to merge the rows of the streams and leave them
ordered by certain fields. You do it with a Sorted Merge step from the Join category.
The step assumes that each stream in turn is sorted by the same fields. Note that
Kettle warns you, but it doesn't prevent you from mixing row layouts when you merge
streams. If you see a warning of this kind, refer to the tips in the previous subsection.

If you want Kettle to prevent you from running a transformation
with mixed layout, check the option Enable safe mode located
in the windows that shows up when you run the transformation.
Note that the use of the Enable safe mode option will cause
a drop in performance and should only be used when you are
debugging a transformation.

See also
 f Comparing two streams and generating differences

Adding checksums to verify datasets
While there are many ways to verify that your datasets are valid, a common practice is to
create a checksum based on the data to determine if it is different from a reference data set.
Checksums are a hash of the data provided to the algorithm generating it, making each one
nearly unique to the data that built it.

Kettle provides a way to add a checksum to each record in your dataset through the Add a
Checksum step.

For this recipe, we will be comparing data between the roller coaster database and a flat file
that may have new roller coasters listed in it.

Getting ready
For this recipe, you will need the the files associated with this recipe, which can be
downloaded from the book's site. More details about the files can be found in the recipe
Comparing two streams and generating differences. There is a SQL file that will create the
parks' database and a flat file we will be comparing the data to.

Chapter 7

247

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drag a Table input step onto the canvas. This step will be used to execute the
following SQL statement:
SELECT roller_coaster
 , speed
 , park
 , location
 , country
 , year
FROM rollercoasters
ORDER BY roller_coaster
 , park

3. Drag a Text file input onto the canvas and use it to read the top_roller_
coasters_updates.txt file. As a separator, type |.

4. On the Fields tab, be sure to select Get Fields to pull the file's metadata into the step.

5. Click on OK and close the step.

6. Drag two Add a Checksum steps to the canvas. Create a hop between the Table
input and one of the Add a Checksum steps. Repeat the process between the Text
file input step and the other Add a Checksum step. Your transformation should look
like the following:

Understanding and Optimizing Data Flows

248

7. Open the Add a Checksum step for the Table Input step. Fill in the step as follows:

8. Repeat the process for the other Add a Checksum step.

9. Add a Sort rows step to both streams, sorting on the checksum fields.

10. Merge the two streams using a Merge Join (diff) step, comparing on the
db_checksum and the file_checksum fields.

11. Add a Filter rows step. For the filtering criteria, make sure that the flag field value
is equal to new.

12. Previewing the Filter Rows step shows the records that have been changed since the
data was loaded into the database. You should see data similar to the following:

How it works...
Checksums are essentially hashes of the dataset. It provides a very fast and efficient way to
compare datasets, albeit with a couple caveats:

 f Checksums ignore null values, so it may not produce a true hash of a record

 f No matter what algorithm is chosen, there is always a chance of two different records
having the same hash

There is a great article on hash collision probabilities found on the preshing on programming
blog: http://preshing.com/20110504/hash-collision-probabilities.

Chapter 7

249

Comparing two streams and generating
differences

Suppose that you have two streams with the same structure and want to find out the
differences in the data. Kettle has a step meant specifically for that purpose: the Merge
Rows (diff) step. In this recipe, you will see how it works.

Suppose that you have a file with information about the fastest roller coasters around the
world. Now, you get an updated file and want to find out the differences between the files:
there can be new roller coasters in the list; maybe some roller coasters are no longer among
the fastest. Besides, you were told that in the old file, there were some errors about the
location, country, and year information, so you are also interested in knowing if some of these
have changed.

Getting ready
For this recipe, you will need two files with information about roller coasters. You can
download them from the book's site.

Both files have the same structure and look like the following:

Roller_Coaster|Speed|park|location|country|Year
Kingda Ka|128 mph|Six Flags Great Adventure|Jackson, New Jersey||2005
Top Thrill Dragster|120 mph|Cedar Point|Sandusky, Ohio||2003
Dodonpa|106.8 mph|Fuji-Q Highland|FujiYoshida-shi|Japan|2001
Steel Dragon 2000|95 mph|Nagashima Spa Land|Mie|Japan|2000
Millennium Force|93 mph|Cedar Point|Sandusky, Ohio||2000
...

For the There's more... section, you will also need a database with the first file already loaded
in a table. You will find a script for creating and loading it also available for downloading.

How to do it...
Perform the following steps:

1. Create a transformation.

2. Drag a Text file input step into the canvas and use it to read the file
top_roller_coasters.txt. As a separator, type |.

3. Do a preview to make sure that you are reading the file as expected.

4. Add a Sort rows step to sort the rows by roller_coaster and park.

5. Repeat steps 2 to 4 to read the file named top_roller_coasters_updates.txt
and sort the rows also by roller_coaster and park.

Understanding and Optimizing Data Flows

250

6. From the Join category, add a Merge Rows (diff) step, and use it to join both streams,
as depicted in the following diagram:

7. Double-click on the step you just added. In the Reference rows origin: select the name
of the step coming from the stream that reads the top_roller_coasters.txt file.

8. In the Compare rows origin: select the name of the step coming from the stream that
reads the top_roller_coasters_updates.txt file.

9. As Flag fieldname, type flag.

10. Fill the Keys to match: and Values to compare: grids, as shown in the
following screenshot:

Now that the step has been filled in, we can compare the
streams and get the difference between them.

You can save time by clicking on the Get key fields and Get
value fields buttons to fill each grid respectively. Then, just
delete the fields that you don't need.

Chapter 7

251

Close the window and do a preview; you should see the following:

How it works...
The Merge Rows (diff) step is used for comparing two streams and finding out the differences
between them. The output of the step is a single stream. The output stream contains a new
field that acts as a flag indicating the kind of difference found as explained next.

When you use the Merge Rows (diff) step, the two streams you
are merging must have the same metadata, that is, the name,
order, and type of the fields must be the same.

Let's call the streams being merged reference stream and compare stream. The first holds
the old data while the second holds the new data. In the recipe, the old data is the data
coming from the top_roller_coasters.txt file and the new data is the data coming from
the top_roller_coasters_update.txt file.

Both streams must be sorted on the specified keys.

In order to perform the comparison, you have to tell Kettle how to detect that a row is the
same in both streams, that is, you have to specify the key fields. You do it by entering them
in the first grid. In the recipe, the key was made up by the roller coaster name and the park
name (roller_coaster and park fields).

If your data comes from a database instead of using a Sort
rows step for sorting the rows, you can sort them in the
Table input step. That will give you better performance.

Understanding and Optimizing Data Flows

252

Given the two streams, Kettle tries to match rows of both streams based on the key fields
provided. Depending on the result, it sets a different value for the flag, as explained in the
following table:

Result of the comparison Flag Example
The key was only found in the
reference stream

new Formula Rossa roller coaster.

The key was only found in the
compared stream

deleted Colossos roller coaster.

The key was found in both streams
and the fields typed in the Value to
compare grid are equal

identical Millennium Force roller coaster.
The location (Sandusky, Ohio),
country (empty), and year (2000)
were the same in both streams.

The key was found in both streams
but at least one of the fields typed in
the Value to compare grid is different

changed Furious Baco roller coaster.
The location changed from Spain to
Salou and the Country changed from
empty to Spain.

Note that if a row is found in both streams with identical key fields and compare fields, it is
marked as identical, even if there are differences in other fields. For example, the Dodonpa
roller coaster has a speed of 106.8 mph in the reference stream, but a speed of 106 mph in
the compare stream. As you didn't put the speed in the values to compare list, the rows are
marked as identical.

As a final remark, note that for the rows marked as new or changed, and the values that pass
to the output stream are those coming from the compare stream.

For the rows marked as identical or deleted, the values that are passed are those
coming from the reference stream.

There's more...
The Merge Rows (diff) step is commonly used together with the Synchronize after merge step
to keep a database table updated. The following section shows an example of how to do this.

Using the differences to keep a table up-to-date
Suppose that you have a table in a database with information about roller coasters, and that
you have already inserted the data in the top_roller_coasters.txt file in that table.

Chapter 7

253

As new roller coasters are built and old roller coasters are moved or retired, the table will
need to be updated. Using the top_roller_coasters_updates.txt file, we can use
the updated data and update the table based on the differences.

The table is totally de-normalized on purpose to keep the
exercise simple.

Try the following:

1. After running the script mentioned in the introduction, modify the transformation in
the recipe by replacing the first stream with a Table Input step, in order to read the
table rollercoasters. Use the following statement:
SELECT roller_coaster
 , speed
 , park
 , location
 , country
 , year
FROM rollercoasters
ORDER BY roller_coaster
 , park

2. You will have something like the following:

3. Do a preview on the last step, that is the Merge Rows (diff) step. The output should
be exactly the same as the output in the recipe.

Understanding and Optimizing Data Flows

254

4. Now, add a Synchronize after merge step. Select the connection to the database or
create it if it doesn't exist and as Target table, type rollercoasters. Fill the grids,
as shown in the following screenshot:

5. Select the Advanced tab and fill in the Operation frame, as shown in the
following screenshot:

6. Close the window, save the transformation, and run it.

7. Execute a SELECT statement to see the data in the rollercoaster table. The roller
coasters with the flag deleted should have been deleted from the table. The rows
with the flag new should have been inserted in the table, and the rows with the flag
changed should have been updated.

See also
 f The Inserting, deleting, or updating a table depending on a field recipe in Chapter 1,

Working with Databases

Chapter 7

255

Generating all possible pairs formed from
two datasets

This is a quick recipe that teaches you how to do a Cartesian product between datasets.
A Cartesian product is created by taking all rows from one dataset, all rows from another
dataset, and generating a new dataset with all the possible combinations of rows.

This particular recipe is, in fact, the implementation of the Community Acronym Generator
(CAG) as proposed by Nicholas Goodman (@nagoodman) on Twitter:

@webdetails @pmalves @josvandongen How about CAG? Community Acronym
Generator? A project to generate new acronyms for community projects?!

There are already several community projects around Pentaho such as CDF (Community
Dashboard Framework), CDE (Community Dashboard Editor), or CDA (Community Data
Access). Why don't we follow Nicholas's suggestion and develop the CAG as follows?:

Given two lists of words, the Kettle transformation will generate all combinations of words that
lead to potential community projects.

How to do it...
Perform the following steps:

1. Create a new transformation and add two Data Grid steps from the Input category.

2. Use one of the Data Grid steps to create a dataset with a single String field named
middle_word. Under the Data tab, enter a set of names for the middle word of the
acronym. Here, you have a sample list: Dashboard, Data, Chart, Acronym, Cube,
and Report.

3. Use the other Data Grid step to create a dataset with a single String field named
last_word. Under the Data tab, enter a set of names for the last word of the
acronym. Here, you have a sample list: Framework, Editor, Translator, Access,
Generator, Integrator, Component.

4. From the Join category, add a Join Rows (Cartesian product) step.

5. Create hops from the Data Grid steps toward this step. You will have something like
the following:

Understanding and Optimizing Data Flows

256

6. From the Scripting category, add a User Defined Java Expression step
(UDJE for short).

7. Use the UDJE to add two String fields. Name the first new_component and as Java
Expression type "CommunityCommunity "+middle_word+" "+last_word.
Name the second field acronym and as Java Expression type "C"+middle_word.
substring(0,1)+last_word.substring(0,1). Do a preview on this
last step. You will see a list of candidate community projects, as shown in the
following screenshot:

How it works...
The Join Rows (Cartesian product) step has the task of performing the Cartesian product of
all streams coming to it. In this case, you had two streams but you could have had more. The
step received those two streams and created all combinations of rows. Then, with the UDJE,
you simply build the strings with the name of the candidate community projects and their
acronyms, as for example, Community Chart Framework (CCF). While we had a bit of fun
generating different names for community projects, it is up to you to adopt a generated name
and build the project behind it!

There's more...
In the recipe, you used the Join Rows (Cartesian product) step for joining two datasets.
You could join more datasets if you want to; however that is not a common requirement.

There are a couple of settings in the step that you didn't use in the recipe. They are explained
in the following subsections.

Chapter 7

257

Getting variables in the middle of the stream
This section describes one of the most common situations in which you may see the Join
Rows (Cartesian product) step in action. Back to the recipe. Suppose that you have a named
parameter named VERSION, which can be CE (representing Community Edition) or EE
(representing Enterprise Edition). After generating the names of the candidate projects and
their acronyms, you want to add the version. You can add the version to your stream by using
a Get Variable step from the Job category. However, instead of getting the variable for each
row, it's recommended to get it outside the main stream and then join both streams, as shown
in the following screenshot:

As the stream coming out of the Get Variable step has a single row, the Cartesian product
will have all the possible combinations of N rows of the main stream with a single row, that is,
N rows. In this case, it is important that in the Main step to read from option, you select the
main stream, the stream coming from the UDJE. Doing so, you tell Kettle that most of the data
will come from this step and Kettle will cache or spool to disk the data coming from the Get
Variable step.

Limiting the number of output rows
With a Join Rows (Cartesian product) step, you can limit the number of output rows by
entering a simple or complex condition in its setting window. The rows that don't meet the
condition are discarded.

Back to the recipe. As you might have noticed, it is possible for the transformation to generate
acronyms that already exist, for example, CDF. In the previous subsection, you added a second
Join Rows (Cartesian product) step. In this step, you could add a condition to discard the rows
with acronyms that already exist, except when the product is Enterprise Edition. The condition
area in the setting window of the step would look like the one shown in the following screenshot
(except for the exact list of acronyms, which might have changed by the time you're reading this):

Understanding and Optimizing Data Flows

258

If you do a preview on this step, you will see something like the following:

If you take a look at the Step Metrics tab of the Execution Results window, you will notice
that the number of written rows is less than the Cartesian product of incoming rows. Note that
the GUI for entering the condition is the same as the one in the Filter rows step.

As you may pick fields from more than one stream in the
condition of the Join Rows (Cartesian product) step, it is
therefore required that the picked fields have unique names
in the streams.

See also
 f Joining two or more streams based on given conditions

 f Splitting a stream into two or more streams based on a condition

Joining two or more streams based on
given conditions

There are occasions where you will need to join two datasets. If you are working with
databases, you could use SQL statements to perform this task, but for other kinds of
input (XML, text, Excel), you will need another solution.

Chapter 7

259

Kettle provides the Merge Join step to join data coming from any kind of source. Let's assume
that you are building a house and want to track and manage the costs of building it. Before
starting, you prepared an Excel file with the estimated costs for the different parts of your
house. Now, you are given a weekly file with the progress and the real costs. So, you want
to compare both to see the progress.

Getting ready
To run this recipe, you will need two Excel files, one for the budget and another with the real
costs. The budget.xls has the estimated starting date, estimated end date, and the cost
for the planned tasks. The costs.xls has the real starting date, end date, and the cost for
tasks that have already started.

You can download the sample files from the book's site.

How to do it...
Perform the following steps:

1. Create a new transformation.

2. Drop two Excel input steps into the canvas.

3. Use one step for reading the budget information (budget.xls file) and the other for
reading the costs information (costs.xls file).

4. Under the Fields tab of these steps, click on the Get fields from header row… button
in order to populate the grid automatically. Apply the format dd/MM/yyyy to the
fields of type Date and $0.00 to the fields with costs.

5. Add a Merge Join step from the Join category and create a hop from each Excel
input step toward this step. The following diagram depicts what you have so far:

Understanding and Optimizing Data Flows

260

6. Configure the Merge Join step, as shown in the following screenshot:

7. If you do a preview on this step, you will obtain the result of the two Excel files
merged. In order to have the columns more organized, add a Select values step
from the Transform category. In this new step, select the fields in the following order:
task, starting date (est.), starting date, end date (est.), end
date, cost (est.), and cost.

8. Doing a preview on the last step, you will obtain the merged data with the columns of
both Excel files interspersed, as shown in the following screenshot:

How it works...
In the example, you saw how to use the Merge Join step to join data coming from two Excel
files. You can use this step to join any other kind of input.

In the Merge Join step, you set the name of the incoming steps and the fields to use as the
keys for joining them. In the recipe, you joined the streams by just a single field: the task field.

The rows are expected to be sorted in an ascending manner
on the specified key fields.

Chapter 7

261

There's more...
In the example, you set the Join Type to LEFT OUTER JOIN. Let's see explanations of the
possible join options:

Join Description In the example
INNER The result contains only the rows

with the same key in both sources
You will obtain only the tasks that
have estimated and real information.

LEFT OUTER The result contains all the rows
from the first source, and the
correspondent values for the
second source (or empty values
for non-matching keys)

You will obtain all the tasks from the
budget, and the real costs related
to these tasks (with empty values
for the tasks that still haven't any
associated costs).

RIGHT OUTER The result contains all the rows
from the second source, and the
corresponding values for the first
source (or empty values for non-
matching keys)

You will obtain all the real tasks'
costs and their related information
from the budget. If there is a cost for
a task that hadn't been estimated,
the estimated cost will be empty.

FULL OUTER The result contains all the rows
from both sources (with empty
values for non-matching keys)

You will obtain all the tasks from the
budget and the real costs. This was
the case in the recipe.

See also
 f The Reading an Excel file recipe in Chapter 2, Reading and Writing Files

Interspersing new rows between
existent rows

In most Kettle datasets, all rows share a common meaning; they represent the same kind of
entity, for example:

 f In a dataset with sold items, each row has data about one item.

 f In a dataset with the mean temperature for a range of days in five different regions,
each row has the mean temperature for a different day in one of those regions.

 f In a dataset with a list of people ordered by age range (0-10, 11-20, 20-40, and so
on), each row has data about one person.

Understanding and Optimizing Data Flows

262

Sometimes, there is a need for interspersing new rows between your current rows. Taking the
previous examples, imagine the following situations:

 f In the sold items dataset, every 10 items, you have to insert a row with the running
quantity of items and running sold price from the first line until that line.

 f In the temperature's dataset, you have to order the data by region and the last row for
each region has to have the average temperature for that region.

 f In the people's dataset, for each age range, you have to insert a header row just
before the rows of people in that range.

In general, the rows you need to intersperse can have fixed data, subtotals of the numbers in
previous rows, header to the rows coming next, and so on. What they have in common is that
they have a different structure or meaning, compared to the rows in your dataset.

Interspersing these rows is not a complicated task, but is a tricky one. In this recipe, you will
learn how to do it.

Suppose that you have to create a list of products by category. For each category, you
have to insert a header row with the category description and the number of products
inside that category.

The final result should be as follows:

Getting ready
This recipe uses an outdoor database with the structure shown in Appendix A, Data
Structures. As the source, you can use a database like this or any other source, for example,
a text file with the same structure.

Chapter 7

263

How to do it...
Perform the following steps:

1. Create a transformation, drag into the canvas a Table Input step, select the
connection to the outdoor database, or create it if it doesn't exist. Then enter
the following statement:
SELECT category
 , desc_product
FROM products p
 ,categories c
WHERE p.id_category = c.id_category
ORDER by category

2. Do a preview of this step. You already have the product list!

3. Now, you have to create and intersperse the header rows. In order to create the
headers, do the following: from the Statistics category, add a Group by step and
fill in the grids, as shown in the following screenshot:

4. From the Scripting category, add a User Defined Java Expression step, and use
it to add two fields: the first will be a String named desc_product, with value
("Category: " + category).toUpperCase(). The second will be an Integer
field named order with value 1.

5. Use a Select values step to reorder the fields as category, desc_product, qty_
product, and order. Do a preview on this step; you should see the following result:

Understanding and Optimizing Data Flows

264

6. Those are the headers. The next step is mixing all the rows in the proper order. Drag
an Add constants step and a Sort rows step into the canvas. Link them to the other
steps as shown:

7. Use the Add constants to add two Integer fields: qty_prod and order. As Value,
leave the first field empty, and type 2 for the second field.

8. Use the Sort rows step for sorting by category, order, and desc_product.

9. Select the last step and do a preview. You should see the rows exactly as shown in
the introduction.

How it works...
When you have to intersperse rows between existing rows, there are just four main tasks to
do, as follows:

1. Create a secondary stream that will be used for creating new rows. In this case, the
rows with the headers of the categories.

2. In each stream, add a field that will help you intersperse rows in the proper order.
In this case, the key field was named order.

3. Before joining the two streams, add, remove, and reorder the fields in each stream to
make sure that the output fields in each stream have the same metadata.

4. Join the streams and sort by the fields that you consider appropriate, including the
field created earlier. In this case, you sorted by category, inside each category by
the field named order and finally by the products description.

Note that in this case, you created a single secondary stream. You could create more if
needed, for example, if you need a header and footer for each category.

See also
 f Merging the rows of two streams with the same or different structures

Chapter 7

265

Executing steps even when your stream
is empty

As you must know, a Kettle transformation is a group of linked steps through which data flows.
Each step is meant to receive rows of data, process the data somehow, and deliver those rows
to the next step or steps. If there are no rows coming to the step, the step will not be executed.

This seems reasonable, but on occasions, it can be a problem. To get an idea of that kind of
situation, look at the following scenarios:

 f You have a very simple transformation that reads a file, does some calculations, and
finally updates a table with the system date and the number of processed rows. If
the file doesn't exist or if it is empty, then no rows will go out from the file input step.
Consequently and contrary to what you need to do, the step that updates the table
will never be executed.

 f You have a file that has the values of some variables that are needed for a process.
As long as the file exists and has the correct variables in it, the process will execute.
If the process needs to run even without the file, it is recommended that the variables
have default values set in the process.

 f You have a database with products and want to generate a list of products whose
descriptions match a given text. For example, if the text is lamp, your file will have all
products that contain lamp in their descriptions. If there are no lamps, you want to
generate a file with a single row recording the situation. The problem is that if there
are no lamps, no row will come out of the input step. Consequently, the output step,
as in the first example, will never be executed.

For situations like these, there is a way to overcome the problem: the use of the Detect empty
stream step. This recipe shows you how to use it. It implements the last of the examples: the
generation of the file with a list of products.

Getting ready
For this recipe, you will need a database with outdoor products with the structure defined in
Appendix A, Data Structures.

How to do it...
Perform the following steps:

1. Create a transformation and drag a Table Input step.

Understanding and Optimizing Data Flows

266

2. Double-click on the step and select the connection to the outdoors database or
create it if it doesn't exist. Then enter the following statement:
SELECT
 category
 , id_product
 , desc_product
 , price
FROM products p
 ,categories c
WHERE p.id_category = c.id_category
AND desc_product like '%${PROD_FILTER}%'
ORDER by category, desc_product

3. Check the Replace variables in script? option.

4. Add an Excel output step. Configure the step to generate a file with all fields coming
from the Table Input step. From the Flow category, add a Detect empty stream step.
Also, add a User Defined Java Expression or UDJE step, and link all steps as follows:

5. Use the UDJE step and fill it in, as shown in the following screenshot:

That's all! Let's test the transformation:

1. Press the F9 key to run it; give the PROD_FILTER variable the value lamp (or any
value that you know is part of the description of some of your products). You do this
by typing the value into the grid named Variables. Click on Launch.

Chapter 7

267

2. Open the generated file. It should look like the one shown in the following screenshot:

3. Run the transformation again, but this time, type a value that you know isn't part of
the descriptions of your products, for example motorcycle.

4. Open the file. This time it should have the content as shown in the following screenshot:

How it works...
When a step doesn't return data, the flow ends. None of the steps that follow that step are
executed because they don't receive data for processing. The Detect empty stream step, as
the name suggests, detects that situation. As a consequence, it generates a stream with the
same metadata as the expected stream, and a single row with null values. This way, you avoid
the stream from dying.

In order to understand what the step does in a better way, try the following:

1. In the transformation that you just created, select the Detect empty stream step.

2. Press the F9 key to do a preview, give to the variable PROD_FILTER the value lamp,
and click on Launch.

3. You will see a message informing you that there are no rows to preview. That's
because the main stream had rows and they went toward the Excel step.

4. Try the same procedure again, but this time, enter an invalid value, for example,
motorcycle. You will see a single row with the columns category, id_product,
desc_product, and price, all with null values.

In the recipe, in the step that follows the Detect empty stream step, you replaced the null
value in the category column with the message you wanted to write in the file, and sent the
data toward the Excel file. The Excel output step doesn't care if the data came from the main
stream or the alternative one that you created for the empty stream. It simply sends the
columns to the Excel file.

Understanding and Optimizing Data Flows

268

Finally, it's worth mentioning why we used the UDJE step. The selection of this step is smart
because it replaces the value of the category field. Most steps add new fields, but are not
able to manipulate existing ones.

There's more...
You can use the Detect empty stream step in the same way you would implement
error handling. The difference is that here there are no errors; you simply have an
exceptional situation.

As you would do when handling errors, you can fix or manipulate the stream and send it back
to the main stream, as you did in the recipe, or you could completely ignore the metadata
generated by the Detect empty stream step and simply use that step as the beginning of a new
independent stream. For example, instead of generating the Excel file when there are no rows,
you could write a message to the log, such as criteria doesn't match any product.

Processing rows differently based on the
row number

There will be some situations where you will need to process the data differently depending
on the position or number of each row.

Let's assume that you have a bookstore and want to know the top five bestsellers books, the
following 10 bestsellers, and the rest of the books for different purposes (for example, to do a
differentiated marketing promotion for each group). To do this, you will divide the list of books
into different groups depending on their sales.

Getting ready
You need an Excel spreadsheet file containing a list of books with the following columns:

 f title

 f id_author

 f price

 f id_title

 f genre

 f sales

This last column represents the quantity of books sold in the last period. You can download a
sample file from the book's website.

Chapter 7

269

How to do it...
Perform the following steps:

1. Create a new transformation and drag an Excel Input step from the Input category.

2. Under the Files tab, browse to and select the sales_books.xls file.

3. Complete the Fields tab with the following values:

4. Add a Sort rows step from the Transform category. Complete the step grid with the
sales Fieldname. Type N in the Ascending column.

5. Add an Add sequence step from the Transform category. Type rank in the
Name of value textbox.

6. By previewing this step, you will obtain a list of books ranked by their sales. Add two
Filter rows steps and three Dummy steps (all from the Flow category) and create the
hops, as depicted in the following diagram:

Understanding and Optimizing Data Flows

270

7. In the first Filter rows, set the following condition rank <= 5.

8. In the last Filter rows step add the condition rank <= 15.

9. The Dummy 1 step represents the five best-selling books. For example:

10. The Dummy 2 step represents the next 10 best-selling books.

11. The rest of the books can be seen in the Dummy 3 step.

12. You can do a preview of each of these Dummy steps and verify the results.

How it works...
This recipe reads the sales_books.xls file to create a dataset of the book titles along with
their sales information. The Sort rows step is necessary to order the books by sales starting
with the best seller.

Then, you dropped an Add sequence step to enumerate the rows. In this case, the field you
added represents the ranking value. The best selling book will have the number one.

At this moment, you have the list of books ranked by their sales. Now, you only have to filter
the books based on their ranks. You do it by using the Filter rows step. The first Filter rows
step uses the condition rank <= 5 to get the top five best-selling books. The rest of the
books will be filtered again, now with the condition rank <= 15; this will bring the rows
ranked from 6 to 15. The remaining books, those with a rank greater than 15, will go to the
last Dummy step.

There's more...
In the recipe, you enumerated the rows and then you did different things based on
the row number. There are also some specific use cases, which are explained in the
following subsections.

Chapter 7

271

Identifying specific rows
Suppose that you only want to keep the books with rank 15 to 20 and discard the rest. In this
case, you don't have to add the Add sequence step and the Filter rows step afterward. There
is a simpler way of doing that. There is also a step named Sample rows in the Statistics
category that allows picking specific rows from a dataset. For example, filling the Lines range
textbox with 1..5,9,15..20, you will get:

 f The rows 1 to 5

 f The row 9

 f The rows 15 to 20

The rest of the lines will be discarded. For the preceding example, you should just type 15..20.

Identifying the last row in the stream
Suppose that you want to know which book sold the least. In this case, you cannot filter
by row number because you don't know how many books there are. In this case, instead
of enumerating the rows, you can use the Identify last row in a stream step from the
Flow category.

In this step, you only have to type a value for the Result fieldname textbox. When you execute
the transformation, this new field will return Y for the last row and N otherwise. In the example,
you can know which the least sold book was by filtering the row where the field is equal to Y.

Avoiding using an Add sequence step to enumerate the rows
If you need to enumerate the rows just after reading the data, you don't need to add an Add
sequence step. In several of the input steps, such as Text file input or Get data from XML,
you have a checkbox named Rownum in output? under the Content tab. This allows you to
create a new field with a sequence for the rows. The name of this new field must be typed in
the Rownum fieldname textbox.

This also applies when you need to rank the rows as in the recipe, and your input data is
already ordered.

See also
 f Splitting a stream into two or more streams based on a condition

Understanding and Optimizing Data Flows

272

Processing data into shared transformations
via filter criteria and subtransformations

Processing data is one of the key capabilities of any Extract, Transform, and Load (ETL) tool
and Kettle is no different. Sometimes though, data must be processed differently (usually due to
data quality issues or business rules). If this logic is needed in multiple places, it makes sense to
break that code out into its own transformation using a Mapping (sub-transformation).

This recipe will be creating a simple usage of the Mapping (sub-transformation) step.

Getting ready
For this recipe, we will be building off of the Splitting a stream in two or more streams based
on a condition recipe, presented earlier in this chapter. It is recommended to follow this recipe
and understand how the Switch/Case step works before continuing. Alternatively, the code
for this recipe is available on the book's website.

How to do it...
Perform the following steps:

1. Open the transformation created from the Splitting a stream in two or more streams
based on a condition recipe (or from the book's site).

2. Create two new transformations. One will be used to process the kitchen products
data stream and the other will be used to process the tents' data stream.

3. From the pallet, bring over two Mapping (sub-transformation) steps to put between
the kitchen product and tent Dummy steps. Your transformation should now look
similar to the following:

Chapter 7

273

4. Switch to the kitchen products subtransformation. Drag a Mapping input
specification and a Mapping output specification step onto the canvas.

5. Add a String operations step and connect it between the input and output
specification steps.

6. Open the Mapping input specification step. Add desc_product as a string to the
fields data grid. Be sure to check the Include unspecified fields, ordered by name
box and click on OK.

7. Open the String operations step. Change the desc_product field to upper and
click on OK.

8. Repeat steps 4 through 6 on the tents' subtransformation. Instead of upper case,
switch the desc_product field to lower case.

9. Go back to the parent transformation and open the Mapping (sub-transformation)
step for the kitchen products. Point the step to the kitchen processing
subtransformation. Click on OK to exit the step.

10. Repeat step 9 for the tents' Mapping (sub-transformation).

11. Preview the kitchen product output Dummy step and you should get output similar
to the following:

Understanding and Optimizing Data Flows

274

How it works...
Subtransformations provide the power of transformations, but the flexibility to share
transformation logic across many different transformations and jobs. The Mapping
(sub-transformation) step allows for the data stream of a given transformation to be
mapped to the subtransformation flow and be returned back for further processing,
if desired.

In this recipe's transformation, we combined the subtransformation feature with the
Switch/Case step to perform a simple transformation based on the logic in the switch.
Normally, we would put such simple steps as a String operation inside the actual
transformation that was using it. Subtransformations really come in handy when a
complex piece of logic is required in many different places and it would be difficult to
maintain the code if it were stored as such.

See also
 f The Moving part of a transformation into a subtransformation recipe in Chapter 8,

Executing and Re-using Jobs and Transformations

Altering a data stream with Select values
While processing data there will come a need to alter field names, their data types or formats,
and even removing fields altogether. The Select values step allows for all three functions and
this recipe will show how to use it. The code for this recipe is available from the book's website.

How to do it...
1. Create a new transformation. Add a Generate Rows step and a Generate random

value step to the canvas.

2. Create a hop between the two steps.

3. Open the Generate Rows step. Create a field named row_test of type String and
with a default value of test. Click on OK to close the step.

4. Open the Generate random value step. Create two fields, one a random string
(named random_num) and the other a random string (named random_string).
Click on OK to close the step.

5. Bring over three Select values steps onto the canvas. Create hops from the Generate
random value step to each of the Select values steps. When prompted to specify
how to handle the stream of data, select Copy.

6. Open one of the Select values steps and rename it to Alter. On the Select & Alter
tab, click on Get fields to select to bring the fields from the stream into the step.

Chapter 7

275

7. For the row with the field random_num, change the name to random_number by
filling in the Rename to column. Click on OK to close the step.

8. Open another of the Select values steps and rename it to Remove. Switch to the
Remove tab and select the field row_test. Click on OK to close the step.

9. Open the final Select values step and rename it Metadata. Switch to the Meta-data
tab and change the random_num field to type Integer. Click on OK to close the step.

10. Now, preview each of the three Select values steps to see how each function alters
the stream.

How it works...
The Select values step is designed with three types of functions: Select & Alter, Remove, and
Meta-data. All three deal with making significant changes to the data stream while processing
data. The Select & Alter tab provides basic renaming and length/precision altering. The
Remove tab clears those fields from the data stream. Finally, the Meta-data tab also allows
for renaming and length/precision altering but will also change field types and formatting.

Even though the Select values step has three tabs, each one
is independent of the others. If you want to use more than
one of the functions, you have to add additional Select values
steps to your streams.

This step is especially handy if the data types of source fields do not match the target fields,
which will cause type mismatch errors otherwise. If you are using this step to remove fields,
please note that it is a resource-intensive process. Sometimes it is better to just leave the
fields in place for performance rather than cleaning up. It is typical to remove fields from a
stream if they will no longer be needed and the dataset is large enough that memory may
be an issue.

Processing multiple jobs or transformations
in parallel

Running jobs or transformations serially is fine initially, but as more processes come online,
the need for executing more in less time becomes very evident. Kettle has the ability to run
multiple jobs and transformations at the same time, and in this recipe, we will be going over
how to utilize this functionality for both jobs and transformations. The code for this recipe is
available on the book's website.

Understanding and Optimizing Data Flows

276

How to do it...
Perform the following steps to learn how to execute job steps in parallel.

1. Open Spoon and create a new job.

2. Add a Start step to the canvas. Also, add three Transformation steps.

3. Create a hop between the Start step and one of the Transformation steps. Repeat
the process between the Transformation step and the other two Transformation
steps. Your job should now look similar to the following:

4. Right-click on the first Transformation step and select the Launch next entries in
parallel option. Two parallel lines should now appear over the hops between the first
Transformation step and the other two.

5. Change the hop between the Transformation and Transformation 3 steps to be for a
success (green with a check) instead of a failure. This can be done by either clicking
on the hop or right clicking the hop and changing the Evaluation condition. The
transformation should now look like the following:

Chapter 7

277

A warning message popped up while enabling the parallel processing of the other
Transformation steps. As long as the two transformations do not have a dependency on each
other (that is working on the same tables or files, one needing to be finished before the other,
and so on) the process will execute without a problem. Now, let's look at how parallelization is
handled within transformations.

1. Open a new transformation and bring over a Generate Rows step, as well as an
Add sequence step.

2. Create a hop between the Generate Rows step and the Add sequence step.

3. Add two Dummy (do nothing) steps to the canvas. Create a hop from the Add
sequence step to one of the Dummy (do nothing) steps. Repeat the process for
the other Dummy (do nothing) step. A window pops up asking how the data stream
should be handled. Select Copy.

4. Run the transformation. Notice that the two Dummy (do nothing) steps are receiving
the same number of records.

5. Right-click on the Add sequence step and select Data Movement | Distribute data
to next steps.

6. Run the transformation. Notice that the two Dummy (do nothing) steps now only
receive half the number of records that they originally were receiving.

How it works...
Running processes in parallel allows for more efficient usage of computing resources and
time. Kettle's built-in functionality allows for jobs and transformations to take advantage of
executing multiple processes simultaneously. There are a few caveats to address if trying to
tune your processes to run in parallel:

 f Streams running in parallel cannot modify the same objects (that is, database tables)
without running into potential deadlocks.

 f Processes tuned for higher memory, CPUs, and so on, will perform slower than if
running them separately. Be sure to tune the processes for the new parallel execution.

 f Transformations running multiple parallel streams that are joining back together
require the same layout. Fields that are out of order or removed will cause issues
when merging the streams back together.

 f For transformations, streams that are distributed rather than copied will be randomly
split, with no guarantee which records end up in a given stream.

It is also important to note that running processes in parallel will generally utilize more
memory and CPU. Also, processes can only be tuned up to the maximum amount allowed
by the hardware it is being run on. If you are using a 4 core processor and trying to run 50
processes in parallel, the processes will likely crash!

Understanding and Optimizing Data Flows

278

See also
 f Merging rows of two streams with the same or different structures

 f Splitting a stream into two or more streams based on a condition

8
Executing and

Re-using Jobs and
Transformations

In this chapter, we will cover the following topics:

 f Launching jobs or transformations

 f Executing a job or a transformation by setting static arguments and parameters

 f Executing a job or a transformation from a job by setting arguments and
parameters dynamically

 f Executing a job or a transformation whose name is determined at runtime

 f Executing part of a job once for every row in the dataset

 f Executing part of a job several times until a condition is true

 f Creating a process flow

 f Moving part of a transformation to a subtransformation

 f Using Metadata Injection to re-use transformations

Executing and Re-using Jobs and Transformations

280

Introduction
A transformation by itself rarely meets all the requirements of a real-world problem.
It's common to face some of the following situations:

 f You need to execute the same transformation over and over again
 f You need to execute a transformation more than once, but with different

parameters each time
 f You need to decide at runtime which job to run from a group of jobs
 f You have to re-use part of a transformation in a different scenario

Kettle is versatile enough to meet those situations. However, it is easy to get confused trying
to do some of them without guidance.

This chapter contains quick recipes just meant to teach you the basics. The transformations
and jobs used are simple enough to serve as templates for you to modify for your own needs.

Before starting on the recipes, let's take a look at the following subsections:

 f Sample transformations: As the name suggests, this section explains the sample
transformations that will be used throughout the chapter.

 f Launching jobs and transformations: This section quickly introduces Kitchen and
Pan, the tools for launching jobs and transformations from the command line.

Sample transformations
The recipes in this chapter show you different ways of running Kettle transformations and
jobs. In order to focus on the specific purposes of the recipes rather than on developing
transformations, we've created some sample transformations that will be used throughout
the chapter.

These transformations generate files in a directory pointed to
by a variable named ${OUTPUT_FOLDER. In order to run the
transformations, this variable must be predefined.

The transformations are described in the following subsections. You can download them from
the book's website.

Remember that you have several ways of defining variables: as a
named parameter in the Kettle properties file, in a previous job, or a
transformation (if this transformation is going to be called from a job), or
in the Variables section of the Execute a transformation window (the
window that shows up when you run the transformation from Spoon).

Chapter 8

281

Sample transformation – hello
This transformation receives the name of a person as the first command-line argument and
generates a file saying hello to that person.

The transformation looks like the one shown in the following screenshot:

A sample output file is as follows:

Hello, Eva! It's January 09, 09:37.

Sample transformation – random list
This transformation generates a file with a list of random integers. The quantity generated
is defined as a named parameter called QUANTITY, with a default value of 10. The
QUANTITY named parameter will produce 10 random integers if no other value for it is
passed to the transformation at runtime. The transformation looks like the one depicted
in the following screenshot:

A sample output file is as follows:

-982437245
1169516784
318652071
-576481306
1815968887

Executing and Re-using Jobs and Transformations

282

Sample transformation – sequence
This transformation generates a file with a sequence of numbers. The transformation
receives two command-line arguments representing FROM and TO values. It also has a named
parameter called INCREMENT with a default value of 1. The transformation generates a list of
numbers between FROM and TO, with increments of INCREMENT.

The transformation looks like the one shown in the following screenshot:

A sample output file using from=0, to=6, and increment=2 is as follows:

0
2
4
6

Sample transformation – file list
This transformation generates a file containing the names of the files in the current directory,
with the current directory being where the transformation is located.

The transformation looks like the one depicted in the following screenshot:

A sample output file is as follows:

gen_random.ktr
gen_sequence.ktr
get_file_names.ktr
hello.ktr

Chapter 8

283

Launching jobs and transformations
As was mentioned in the Introduction section, the recipes in this chapter are focused on
different ways of running Kettle transformations and jobs. Ultimately, you will end up with a
main job. In order to test your job with different inputs or parameters, you can use Spoon as
usual, but it might be useful or even simpler to use Kitchen—a command-line program meant
to launch Kettle jobs. If you're not familiar with Kitchen, this recipe gives you a quick overview.

How to do it...
In order to run a job with Kitchen, perform the following steps:

1. Open a terminal window by navigating to Start | All Programs | Accessories |
Command Prompt (Windows) or by going to the desktop Application menu and
typing Terminal (Gnome environment for Linux).

2. Go to the Kettle installation directory.

3. Run kitchen.bat /file:<kjb file name> (Windows system) or kitchen.sh /
file:<kjb file name> (Unix-based system), where <kjb file name> is the name
of your job, including the complete path. If the name contains spaces, you must
surround it with double quotes.

If you want to provide command-line parameters, just type them in order as part of the
command. If you want to provide a named parameter, use the following syntax:

/param:<parameter name>=<parameter value>

For example, /param:INCREMENT=5.

Additionally, you can specify the logging level by adding the following option:

/level:<logging level>

The logging level can be one of the following: Error, Nothing, Minimal, Basic (this is the
default level), Detailed, Debug, or Rowlevel.

If you intend to run a transformation instead of a job, use Pan. Just replace kitchen.bat/
kitchen.sh with pan.bat/pan.sh, and provide the name of the proper .ktr file.

While you use Spoon for developing, debugging, and testing transformations and jobs,
Kitchen and Pan are most commonly used for running jobs and transformations in production
environments. For a complete list of available options and more information on these
commands, visit the Pan documentation at http://wiki.pentaho.com/display/EAI/
Pan+User+Documentation.
For documentation on Kitchen, visit http://wiki.pentaho.com/display/EAI/
Kitchen+User+Documentation.

Executing and Re-using Jobs and Transformations

284

How it works...
Kettle has several tools built in to run jobs and transformations in a server environment.
Servers do not typically have graphical user interfaces and are connected through tunneling
from other computers. Kitchen and Pan are built to run from the command line for that very
reason. There are other tools that are part of the Kettle suite. Carte is a lightweight server
that connects to a master Kettle server to build dynamic server clusters that can handle
distributing jobs and transformations. To learn more about Carte, check out the Pentaho
community wiki at http://wiki.pentaho.com/display/EAI/Carte+User+Documentation.

Another useful tool is Encr, which encrypts database and Carte passwords. Its use is
described in the Carte user documentation.

Both Carte (carte.bat/carte.sh) and Encr (encr.bat/encr.sh) can be found in the Kettle
installation directory.

Executing a job or a transformation by
setting static arguments and parameters

When you develop a transformation that reads command-line arguments or defines named
parameters, you usually intend to call it more than once with different values for those
parameters or arguments. If you know the values beforehand, there is an easy way to call the
transformation, as you will see in this recipe. Suppose that you want to create the following
three files:

 f First file: Numbers from 1 to 10, incrementing by 1, as in 0, 1,..., 10

 f Second file: Numbers from 0 to 100, incrementing by 20, as in 0, 20, 40,..., 100

 f Third file: Numbers from 100 to 500, incrementing by 100, as in 100, 200,.., 500

You have a transformation that generates sequences like these. You just have to call it three
times with the proper arguments and parameters.

Getting ready
You need the sample transformation that generates a file with a sequence described in
the introduction.

Make sure you have defined the variable ${OUTPUT_FOLDER} with the name of the
destination folder. Also, make sure that the folder exists.

Chapter 8

285

How to do it...
Perform the following steps:

1. Create a job.

2. Drag a Start job entry and three Transformation job entries into the canvas. Link all
the entries one after the other.

3. Double-click on the first Transformation entry.

4. As Transformation filename, browse to and select the sample transformation
gen_sequence.ktr.

5. Select the Argument tab and fill the grid with a value of 1 in the first row and 10 in
the second row.

6. Double-click on the second Transformation entry.

7. For the Transformation filename, select the sample transformation
gen_sequence.ktr.

8. Select the Argument tab and fill the grid with 0 in the first row and 100 in
the second.

9. Select the Parameters tab. In the first row of the grid, type INCREMENT under
Parameter and 20 under Value.

10. Double-click on the last Transformation entry.

11. For Transformation filename, select the sample transformation
gen_sequence.ktr.

12. Select the Argument tab and fill the grid with 100 in the first row and 500
in the second.

13. Select the Parameters tab. In the first row of the grid, type INCREMENT under
Parameter and 100 under Value.

14. Save and run the job.

15. Check the output folder. You will find the following three files:

 � sequence_1_10_1.txt

 � sequence_0_100_20.txt

 � sequence_50_500_50.txt

16. Edit the files. You will see that they contain the sequences of numbers 0, 1,..., 10
in the first file, 0, 20, 40,..., 100 in the second, and 100, 200,.., 500 in the third, just
as expected.

Executing and Re-using Jobs and Transformations

286

How it works...
When you run a transformation from a job, you have to specify at least the name and location
of the transformation. There are however, a couple of extra settings that may be useful. In this
recipe, you saw the use of the Argument and the Parameters tabs. The Argument tab is used
for sending command-line arguments to the transformation. The grid in the Argument tab is
equivalent to the Arguments grid you see when you run a transformation from Spoon. Each
row belongs to a different command-line argument.

In this case, your transformation expected two command-line arguments: the limits from and
to of the sequence. In the recipe, you set values for those arguments in the Argument tab of
each Transformation entry setting window.

The Parameters tab is used for setting values for the named parameters defined in the
transformation. The grid under the Parameters tab is equivalent to the Parameters grid
you see when you run a transformation from Spoon. Each row belongs to a different named
parameter. You only have to provide values if they are different to the default values.

In this case, your transformation defined one named parameter INCREMENT with a default
value of 1. Therefore, you skipped the setting of this parameter in the first Transformation
entry, but set values in the others.

Note that if you set arguments or parameters in the
Transformation entry setting window, the corresponding
argument or parameters sent from the command line will
be ignored if you run the job with Kitchen.

There's more...
All that was said for the Transformation job entry is also valid for Job entries. That is, you can
use the Argument and Parameters tabs in a Job entry to send fixed values of command-line
arguments or named parameters to the job.

See also
 f Executing a job or a transformation from a job by setting arguments and

parameters dynamically

Chapter 8

287

Executing a job or a transformation
from a job by setting arguments and
parameters dynamically

Suppose that you developed a transformation which reads command-line arguments or
defines named parameters. Now you want to call that transformation from a job, but you
don't know the values for the arguments or the parameters; you have to take them from some
media, for example, a file or a table in a database. This recipe shows you how to get those
values and pass them to the transformation at runtime.

For this recipe, suppose that you want to create a file with a sequence of numbers. You have a
transformation that does it. The problem is that the limits FROM and TO and the INCREMENT
value are stored in a properties file. This presents an obstacle to calling the transformation
directly, but can be done with Kettle in a very simple way.

Getting ready
You need a sample transformation that generates a file with a sequence as described in the
introduction. Make sure you have defined the variable ${OUTPUT_FOLDER} with the name of
the destination folder. Also, make sure that the folder exists.

You also need a file named sequence.properties with the following content:

from=0
to=90
increment=30

With these values your transformation should generate the values 0, 30, 60, 90.

How to do it...
Perform the following steps:

1. Create a transformation.

2. From the Input category, drag a Property Input step into the canvas, and use it to
read the properties file. Under the File tab, enter the name and location of the file.
Under the Fields tab, click on Get Fields to fill the grid with the fields Key and Value.

3. From the Transform category, add a Row denormalizer step and create a hop from
the input step toward this one.

Executing and Re-using Jobs and Transformations

288

4. Double-click on the step. For Key field, select Key. Fill the Target fields: grid, as
shown in the following screenshot:

5. After that step, add a Copy rows to result step. You will find it under the Job category.

6. Do a preview on the last step. You should see the following screen:

7. Save the transformation and create a job.

8. Drag a Start job entry and two Transformation job entries into the canvas. Link the
entries, one after the other.

9. Double-click on the first Transformation entry, and for Transformation filename,
select the transformation you just created.

10. Close the window and double-click on the second Transformation entry.

11. For Transformation filename, select the sample transformation
gen_sequence.ktr.

12. Select the Advanced tab and check the first three options: Copy previous results to
args?, Copy previous results to parameters?, and Execute for every input row?.

13. Select the Parameters tab. For the first row in the grid, type INCREMENT under
Parameter and increment_value under Stream column name.

14. Close the window.

15. Save and run the job.

16. As a result, you will have a new file named sequence_0_90_30.txt. The file will
contain the sequence of numbers 0, 30, 60, 90, just as expected.

Chapter 8

289

How it works...
The transformation you ran in the recipe expects two arguments: FROM and TO. It also has
a named parameter called INCREMENT. There are a couple of ways to pass those values to
the transformation:

 f Typing them on the command line when running the transformation with Pan or
Kitchen (if the transformation is called by a job)

 f Typing them in the transformation or job setting window when running it with Spoon
 f In a static way by providing fixed values in the Transformation entry setting window,

as in the previous recipe
 f Dynamically, by taking the values from another source as you did in this recipe

If the values for the arguments or parameters are stored in other media, for example, a table,
an Excel sheet, or a properties file, you can easily read them and pass the values to the
transformation. First, you call a transformation that creates a dataset with a single row with all
required values. Then you pass the values to the transformation by configuring the Advanced
tab properly. Let's see an example.

In the recipe, you created a transformation that generates a single row with the three required
values: from_value, to_value, and increment_value. By adding a Copy rows to result
step, that row became available for later use.

In the main job, you did the trick: by checking the Copy previous results to args? and Execute
for every input row? options, you take that row and pass it to the transformation as if the fields
were command-line arguments. That is, the values of the fields from_value, to_value, and
increment_value—namely 0, 90, and 30—are seen by the transformation as if they were the
command-line arguments 1, 2, and 3 respectively. Note that in this case the transformation
only read two of those arguments, the third one was ignored.

With regard to the named parameter, INCREMENT, you passed it to the transformation
by checking the Copy previous results to parameters? option and adding a row in the
Parameters tab grid. Here you entered the map between the named parameter INCREMENT
and the incoming stream field increment_value.

There's more...
All that was said for the Transformation job entry is also valid for Job entries. That is, you
can set the Advanced tab in a Job entry to copy the previous results as arguments or as
parameters to the job that is going to be executed.

See also
 f Executing a job or a transformation by setting static arguments and parameters
 f Executing part of a job once for every row in a dataset

Executing and Re-using Jobs and Transformations

290

Executing a job or a transformation whose
name is determined at runtime

Suppose that you have a couple of transformations, but you do not want to run all of them.
The transformation to be executed will depend on conditions only known at runtime. If you
have just two transformations, you could explicitly call one or the other in a simple fashion. On
the other hand, if you have several transformations or if you do not even know the names of
the available transformations, you must take another approach. This recipe shows you how.

Suppose that you want to run one of the three sample transformations described in the
introduction. The transformation to run will be different depending on the time of day:

 f Before 8:00 A.M. in the morning, you will call the Hello transformation

 f Between 8:00 A.M. and 20:00 P.M., you will call the transformation that generates
random numbers

 f From 20:00 P.M. to midnight, you will call the transformation that lists files

Here's how to do it.

Getting ready
You will need the transformations described in the introduction. Make sure you have defined
the variable ${OUTPUT_FOLDER with the name of the destination folder. Also, make sure that
the folder exists.

Also, define a variable named ${COMMON_DIR} with the path to the folder where you have the
sample transformations, for example, c:/my_kettle_work/common.

How to do it...
Perform the following steps:

1. Create a transformation that will pick the transformation to run.

2. Drag-and-drop a Get System Info step and use it to create a field named now with
the system date.

3. Drag-and-drop a Select Values step and use it to get the current hour. Select the
Meta tab; add the field named now, for Type select String, and for Format, type HH.
Rename the field as hour.

4. Drag another Select Values step and use it to change the value of field hour
to Integer.

5. After the last step, add a Number range step. You will find it in the
Transformation category.

Chapter 8

291

6. Double-click on the step. As Input field: select the field hour and as Output field:
type ktr_name. Fill in the grid, as shown in the following screenshot:

7. From the Job category, add a Set Variables step and use it to create a variable
named KTR_NAME with the value of the field ktr_name. For Variable scope type,
leave the default Valid in the root job.

8. Save the transformation and do a preview on the last step. Assuming that it is 3:00
P.M., you should see something like the following:

9. Save the transformation and create a job.

10. Drag a Start job entry and two Transformation job entries into the canvas. Link the
entries one after the other.

11. Configure the first Transformation entry to run the transformation just created.

12. Double-click on the second Transformation entry. For Transformation filename:
type ${COMMON_DIR}/${KTR_NAME}.ktr and close the window.

13. Run the job.

14. Supposing that it is 3:00 P.M., the log should look like the following:
2010/12/04 15:00:01 - Spoon - Starting job...
...
... - Set Variable ${KTR_NAME}.0 - Set variable KTR_NAME to value
[gen_random]
...
... - run the transformation - Loading transformation from XML
file [C:/my_kettle_work/common/gen_random.ktr]
...
2010/12/04 15:00:02 - Spoon - Job has ended.

15. Browse the output folder (the folder defined in the variable ${OUTPUT_FOLDER}).
You should see a new file named random.txt with 10 random numbers in it.

Executing and Re-using Jobs and Transformations

292

Note that this file is generated whenever you run the
transformation between 12:00 P.M. and 20:00 P.M. At a
different time of the day, you will see a different output.

How it works...
When you execute a transformation from a job, you can either type the exact name of the
transformation, or use a combination of text and variables instead.

In this recipe, you implemented the second option. As you did not know which of the three
transformations you had to run, you created a transformation that set a variable with the
proper name. Then, in the job, instead of typing the name of the transformation, you used that
variable in combination with a variable representing the path to the .ktr file. When you ran
the job, the first transformation set the name of the transformation to run depending on the
current time. Finally, that transformation was executed.

There's more...
In the recipe, you were sure that no matter what the value of the variable ${KTR_NAME} was,
the transformation would exist. If you are not sure, it is recommended that you insert a File
exist entry before the second Transformation entry. This step verifies that a given file exists,
which is a great way to ensure that a file is in place before running a process that relies on it.
This way, you avoid your job crashing.

If, instead of files you are working with a repository, you can also verify the existence of
the transformation. Instead of verifying the existence of a file, you have to run a SELECT
statement on the repository database to see if the transformation exists or not. If your
transformation is in the root directory of the repository, this is quite simple, but it can become
a little more complicated if your transformation is deep in the transformations directory tree.

Finally, all said so far about transformations is valid for jobs as well. In order to run a job, you
can either type its exact name or use a combination of text and variables, just as you did in
the recipe for running a transformation.

See also
 f The Getting information about transformations and jobs (repository-based) recipe in

Chapter 10, Getting the Most Out of Kettle

Chapter 8

293

Executing part of a job once for every row
in a dataset

Assume that you have a list of things or entities such as students, files, dates, products, and
so on. Now, suppose that you want to execute a group of job entries once for every entity in
that list.

Suppose that you have a file with a list of names, for example:

name
Paul
Santiago
Lourdes
Anna

For each person, you want to do the following:

 f Generate a file saying hello to that person

 f Wait for 2 seconds

 f Write a message to the log

For a single person, these tasks can be done with a couple of entries. If you have a small
known list of entities (persons in this example), you could copy and paste that group of
entries, once for each. On the other hand, if the list is long, or you do not know the values
in advance, there is another way to achieve this. This recipe shows you how.

Getting ready
For this recipe, we will use the Hello transformation described in the introduction.

The destination folder for the file that is generated is in a variable named ${OUTPUT_FOLDER}
that has to be predefined. Make sure that the folder exists.

You will also need a sample file such as the one described. Both the sample file and the
transformation are available for download.

How to do it...
This recipe is split into three parts. The first part is the development of a transformation that
generates the list of people. To build the first component, perform the following steps:

1. Create a transformation. This transformation will read the list of people and send the
rows outside the transformation for further processing.

2. Read the sample file with a Text file input step.

Executing and Re-using Jobs and Transformations

294

3. After reading the file, add a Copy rows to result step. You will find it under the
Job category.

4. Do a preview on this step. You should see the following screen:

5. Save the transformation.

Now, you will create a job that will generate a file for every person in the list; then deliberately
wait for 2 seconds and write a message to the log.

1. Create a job. Add to the job a START, a Transformation, a Wait for (from the
Conditions category), and a Write To Log (from the Utility category) entry. Link them
one after the other in the same order.

2. Double-click on the Transformation entry and configure it to run the Hello
transformation explained earlier.

3. Double-click on the Wait for entry and set the Maximum timeout to 2 seconds.

4. Double-click on the Write To Log entry. For Log subject, type Information and for
Log message, type A new file has been generated.

5. The final job should look similar to the following screenshot:

6. Save the job.

Finally, you will create the main job by carrying out the following steps:

1. Create another job. Add to the job a START, a Transformation, and a Job entry.
Create a hop from the START to the Transformation entry, and another hop from this
entry toward the Job entry.

2. Use the first entry to run the transformation that reads the file and copies the rows
to result.

3. Double-click on the second entry. As Job filename, select the job that generates a file
for a single person, that is, the job created previously.

Chapter 8

295

4. Select the Advanced tab and check the Execute for every input row? and Copy
previous results to args? options.

5. Close the setting window and save the job.

6. Run the job. Under the Job metrics tab in the Execution results window, you will
notice that the saying_hello_to_a_single_person transformation is firing
off for each name.

7. If you explore the output directory, you will find one file for every person in the list.
The dates of the files will differ by 2 seconds one from another.

How it works...
You need to execute a couple of entries for every person in the list. The first thing you did
was to create a job (let's call it the sub job from now on), encapsulating the functionality you
wanted for each person; generate the file, wait for 2 seconds, and write a message to the log.

In order to iterate the execution of the sub job over the list of people, you did the following:

 f You created a transformation that built the list of people and copied the rows
to result.

 f You created a main job that called that transformation and then executed the sub
job once for every person in the list. You did this by clicking on the Execute for every
input row? option in the Job entry. In the Job Metrics tab in the Execution results
pane, you can see it; the execution of the transformation in the first place, followed
by four executions of the sub job. Four is the number of people in our example list.

Finally, the Copy previous results to args? option that you checked in the Job entry caused
the copied rows to become available (one at a time) to the sub job and, in particular, to the
Hello transformation inside the sub job in the form of command-line arguments.

There's more...
When you have a set of entries that you want to execute once for every element in a list, you
can do it with the following three steps:

1. Create a transformation that builds the list you need. The stream should end with
a Copy rows to result step.

2. Create a job with the set of entries that you need to execute for every element in
the list.

3. Create a job that first calls the transformation and then calls the job created above.
In the Job entry settings window, check the Execute for every input row? option.

Executing and Re-using Jobs and Transformations

296

The Copy rows to result step causes the rows in the transformation to be copied to
the outside.

The Execute for every input row? option causes the sub job to be executed as many times
as the number of copied rows, unless an error occurs.

If an error occurs while executing the sub job, the iteration is aborted and the main job fails.

If you want the iteration to continue even if the sub job fails for
a single row, modify the sub job by handling the errors properly
in order to avoid it failing.

With regard to the copied rows, they will be available one at a time to the sub job. The first
execution of the sub job will see the first copied row; the second execution will see the second
row, and so on. In the recipe, you accessed the copied rows by checking the Copy previous
results to args? option, which made the rows available as command-line arguments to the
sub job. There are other available options for accessing the copied rows in subsequent job
entries, as you will see in the following subsection.

After that, you will see particular use cases for executing entries for every element in a list.

Accessing the copied rows from jobs, transformations, and
other entries
When you copy rows by using the Copy rows to result step, the copied rows become available
to be used by the entries that are executed afterward.

There are four methods for accessing the fields of the copied row in subsequent entries:

Method How to do it Entries that support this
procedure

Copying them to the
arguments of an entry

Checking the Copy previous
results to args? option

Transformation, Job, Copy
Files, Move Files, Delete
files, Delete folders, Zip file,
Unzip file, Truncate tables,
and Add filenames to result.

Copying them as
parameters

Checking the Copy previous
results to parameters? option

Transformation, Job

Getting the rows from
result

Using a Get rows from result
step at the beginning of a
transformation

Transformation

Chapter 8

297

Method How to do it Entries that support this
procedure

With JavaScript Accessing the variable row. For
example, the following expression
gets the value of the field name of
the first row:

rows[0].
getString("name", "")

JavaScript

In the recipe, you used the first of these options: you checked the Copy previous results to
args? option and that caused the rows to become available as the command-line arguments
to the Hello transformation.

In this particular example, you could also have used the last method. In the Hello
transformation, instead of reading the name as the command-line parameter 1, you could have
used a Get rows from result step obtaining the same results. As implied from the preceding
table, you don't have to check the Copy previous results to args? option in this case.

Executing a transformation once for every row in a dataset
If, instead of a set of entries you just want to execute a single transformation once for every
row in a dataset, you don't have to move it to a sub job. Just leave the Transformation entry in
the main job. Double-click on the entry, select the Advanced tab, and check the Execute for
every input row? option. This will cause the transformation to be executed once for every row
coming from a previous result.

Executing a transformation or part of a job once for every file in
a list of files
If you want to execute part of a job (as a sub job) or a transformation once for every file in a
list of files, the procedure is much the same. In the transformation that builds the list, use a
Get File Names step from the Input category in order to create the list of files. After modifying
the dataset with the list of files as needed, add a Copy rows to result step just as you did in
the recipe. The list of files will be sent outside for further processing.

Some novice users are tempted to use the Set files in result step instead.

Do not use the Set files in result step for copying to result a row
with a list of files. The Set files in result step has a completely
different purpose compared to the Copy rows to result step—it
adds files to a result filelist. Check the following See also section
for further information about this.

Executing and Re-using Jobs and Transformations

298

See also
 f Executing a job or a transformation from a job by setting arguments and

parameters dynamically

 f Executing part of a job several times until a condition is true

 f The Working with ZIP files recipe in Chapter 5, File Management

 f The Copying or moving a custom list of files recipe in Chapter 5, File Management

 f The Sending e-mails with attached files recipe in Chapter 10, Getting the Most Out
of Kettle

Executing part of a job several times until
a condition is true

Suppose that you have a list of tasks that have to be repeated while or until a condition is true
(or false). If you know about programming languages, think of this as an analogy of a while
or repeat until loop. Kettle allows you to implement these kinds of iterations and this
recipe explains how to do it.

For the recipe, you will use one of the transformations described in the introduction of this
chapter—the transformation that generates random numbers and writes them to a file. You
will execute the transformation repeatedly and keep track of the number of lines written to
those files. You will continue executing the transformation as long as the total number of
written lines is less than 25.

Getting ready
You will need the transformation that generates random numbers described in the
introduction. If, instead of downloading the transformation you created it yourself, you will
have to do a quick fix in order to make Kettle save the number of written lines to the log (this
has already been done in the transformation available on the book's site):

1. Edit the transformation.

2. Press Ctrl + T to bring up the transformation's setting window.

3. Select the Logging tab and click on the Transformation heading.

Chapter 8

299

4. In the Fields to log: grid, search for the entry named LINES_OUTPUT. Under Step
name, select the name of the step that generates the file of random numbers. The
result is shown in the following screenshot:

5. Save the transformation.

How to do it...
Perform the following steps:

1. Create a job.

2. From the General category, drag the START, Set variables, and Transformation
entries. Create a hop from the START entry toward the Set variables entry, and
another from this entry toward the Transformation entry.

3. Double-click on the Set variables entry. Add a row in order to define the variable
that will keep track of the number of lines written. Under Variable name, type
total_lines, for Value type 0, and for Variable scope type select Valid in the
current job.

4. Configure the Transformation entry to run the transformation that generates the
random numbers.

5. From the Scripting category, add a JavaScript entry.

6. From the Utility category, drag two Write To Log entries.

Executing and Re-using Jobs and Transformations

300

7. Link the entries as shown in the following screenshot:

8. Double-click on the JavaScript entry. In the JavaScript: area, type the following code:
var total_lines = parseInt(parent_job.getVariable("total_lines"));
var new_total_lines = total_lines + previous_result.
getNrLinesOutput();
parent_job.setVariable("total_lines", new_total_lines);
new_total_lines < 25;

9. Double-click on the Write To Log entry that is executed after the success of the
JavaScript entry (the entry at the end of the green hop). For Log level, select
Minimal logging. For Log subject, type lines written=${total_lines}.
For Log message type Ready to run again.

10. Double-click on the other Write To Log entry, the one that is executed after the failure
of the JavaScript entry (the entry at the end of the red hop). For Log level, select
Minimal logging. For Log subject type ${total_lines} lines have been
written. For Log message, type The generation of random numbers
has succeeded.

11. Save the job.

12. Press F9 to run the job. For Log level, select Minimal logging and click on Launch.

13. In the Logging tab of the Execution results pane, you will see the following:
2011/01/11 22:43:50 - Spoon - Starting job...
2011/01/11 22:43:50 - main - Start of job execution
2011/01/11 22:43:50 - lines written=10 - Ready to run again ...
2011/01/11 22:43:50 - lines written=20 - Ready to run again ...
2011/01/11 22:43:51 - 30 lines have been written. - The generation
of random numbers has been successful.
2011/01/11 22:43:51 - main - Job execution finished
2011/01/11 22:43:51 - Spoon - Job has ended.

14. In order to confirm that 30 lines have actually been written, open the generated files.

Chapter 8

301

How it works...
In order to run the transformation that generates a file with random numbers until the number
of written lines is greater than 25, you implemented a loop. The following flowchart shows you
the logic of this process:

Execute the
random

transformation

total_lines = 0

total_lines = total_lines +
number_of_written_lines

Write final message
to log

Write status
message to

log

YES

NO

total_lines < 25

To control the execution of the transformation, you created a variable named total_lines and
initialized this variable with the value 0. After executing the transformation, you incremented the
value of the variable using JavaScript code. If the value was less than 25, you wrote a message
to the log and reran the transformation. If not, you wrote a final message to the log.

The JavaScript code deserves a separate explanation:

previous_result.getNrLinesOutput() is the function that returns the number of
lines that were written by the previous job entry. That is the value that you have to add to the
total_lines variable in order to keep the variable updated.

The functions parent_job.getVariable()and parent_job.setVariable are meant
to get and set the value of the Kettle variable named total_lines. By default, the type
of the Kettle variables is String. Therefore, in order to do the math, you had to use the
parseInt() JavaScript function.

Executing and Re-using Jobs and Transformations

302

The fourth line in the JavaScript code evaluates to True or False. If it evaluates to True, the
JavaScript entry follows the success path (identified with a green arrow in the transformation).
If it evaluates to False, the JavaScript entry follows the failure path (identified with a red
arrow in the transformation).

There's more...
In this recipe, you built a loop and controlled the execution with the help of a JavaScript entry.
The following subsections give you more information about these topics.

Implementing loops in a job
Suppose that you need to build a job in which one or more entries have to be executed
repeatedly until a condition is met. People refer to these repetitive tasks as a loop. The first
thing you have to have in mind is a clear understanding of the logic of this loop, that is, the
condition that will cause the exit from the loop. You may want to exit the loop when:

 f There are no more files for processing

 f The number of errors exceeds a predefined threshold

 f The job is taking more time than expected—maybe due to an unavailable service

 f The number of records inserted into a table exceeded the expected value and so on

Once you understand this, you have to implement the logic. In the recipe, you implemented
the logic with a JavaScript job entry. There are other entries that you can use for deciding
whether to exit a loop or not. You will find useful entries for this purpose in the Conditions
category: Simple evaluation, Evaluate file metrics, Check webservice availability, and so
on. You can even implement the logic with an extra transformation that will succeed or fail
according to your rules.

Make sure that the number of iterations is small. If you build an
endless loop or a loop with many iterations, you risk running out
of heap space.

If your loop is causing you problems—for instance, you run out of memory—try to rethink the
solution. The following are some alternatives you can think of:

 f Solve the same problem by creating a list of elements and iterating over that list

 f Consider limiting the number of iterations to a maximum value n

 f In the logic that determines whether to exit the loop or not, add a condition for
ensuring that the number of iterations remains below n

Chapter 8

303

Using the JavaScript step to control the execution of the entries
in your job
The JavaScript entry is a useful step for controlling whether a job entry or a group of job
entries should be executed or not. In particular, you used it in the recipe for deciding if the
loop should end or not.

This entry works as follows: in its setting window, you should type JavaScript code that
ends with an expression that evaluates to a Boolean. As with any job entry, the JavaScript
entry either succeeds or fails. Success or failure is decided by the result of evaluating that
expression. Then, based on that value, Kettle knows which entry to execute next.

Within the code, you are free to use the previous_result element. The previous_
result element is the representation of the result object—an object that contains the result
of the execution of the previous job entry. In the recipe, you used the previous_result
element to ask for the number of written lines, but you can ask for the number of read lines,
the number of errors, the number of executed job entries, and so on. You can find a complete
description of the available previous_result options at http://wiki.pentaho.com/
display/EAI/Evaluating+conditions+in+The+JavaScript+job+entry.

See also
 f Executing part of a job once for every row in a dataset

Creating a process flow
Suppose that you have a dataset with a list of entities such as people, addresses, products,
or names of files, just to give some examples. You need to take that data and perform some
further processing such as cleaning the data, discarding the useless rows, or calculating
some extra fields. Finally, you have to insert the data into a database and build an Excel sheet
containing statistics about the just processed information. All of this can be seen as a simple
task flow or a process flow. With Kettle, you can easily implement a process flow like this.

Suppose that you have a file with a list of names and dates of birth, for example:

name,birthdate
Paul,31/12/1969
Santiago,15/02/2004
Santiago,15/02/2004
Lourdes,05/08/1994
Isabella
Anna,08/10/1978
Zoe, 15/01/1975

Executing and Re-using Jobs and Transformations

304

The file may have some duplicates (identical consecutive rows) and some birth dates may be
absent. You want to keep only the unique rows and discard the entries of people whose date
of birth is missing. Finally, you want to generate a file with the list of people you kept, along
with their age sorted by date of birth.

Getting ready
You will need a sample file such as the one shown earlier in this recipe.

How to do it...
You will implement the task flow with two transformations. The first will read the data and
clean it according to the earlier requirements and the second will calculate the age and
generate the file. So perform the following steps:

1. Create a transformation.

2. With a Text file input, read the sample file. Do a preview to make sure you are
reading it properly.

3. After that step, add a Filter rows step (Flow category) and enter the condition
birthdate IS NOT NULL.

4. Add Unique rows (Transform category).

5. Finally, add a Copy rows to result step. You will find it in the Job category. Your final
transformation should look like the one in the following screenshot:

6. Do a preview on the last step; you should see the following result:

Chapter 8

305

7. Now create the second transformation.

8. From the Job category, add a Get rows from result step.

Open the Get rows from result step and add two fields: a field named name (String) and
a field named birthdate (Date). The following steps are meant to calculate the age of a
person at the present day, given the date of birth:

1. From the Transform category, add a Calculator step. Open the Calculator step and
fill in the settings window as shown in the following screenshot:

2. From the Scripting category, add a User Defined Java Expression step (UDJE for
short). Double-click on it and fill in the grid as shown in the following screenshot:

3. Add a fourth field named calculated_age. For Value type, select Integer. For Java
expression type the following:
((b_month > t_month) ||
(b_month == t_month && b_day > t_day))?
(t_year – b_year - 1):(t_year - b_year)

4. This expression is written over three lines for clarity. You should type the whole
expression on a single line. From the Transform category, add a Sort rows step.
Use it to sort the rows by birthdate.

Executing and Re-using Jobs and Transformations

306

5. Finally, add a Text file output step and use it to generate the desired file. Provide a
name for the file. For Separator, leave the default (;). Fill in the Fields grid as shown
in the following screenshot:

6. Save the transformation.

Now you will create a job that will execute the transformations in order:

1. Create a job and add a START and two Transformation entries and link them one
after the other.

2. Configure the entries to run the transformations you just created in the same order.
First the transformation that gets the list of people and cleans the data, then the
transformation that calculates the age and generates the file.

3. Save the job and run it.

4. Look at the output file. Assuming that today is January 18, 2011, the file
should look like the following:

name;birthdate;age
Santiago;15/02/2004;6
Lourdes;05/08/1994;16
Anna;08/10/1978;32
Zoe;15/01/1975;36
Paul;31/12/1969;41

How it works...
You needed to perform a task defined by the following two subtasks:

1. Read and clean some data about people

2. Calculate their age and generate a sorted file

You implemented the task as a mini process flow made up of two transformations, one for
each subtask, and then you embedded the transformations into a job that executed them
one after the other. The flow of data between the first and the second transformation was
determined by using the copy/get rows mechanism. With a Copy rows to result step, you
sent the flow of data outside the first transformation, and with a Get rows from result step in
the second transformation, you picked up that data to continue the process flow.

Chapter 8

307

In the recipe, you did a preview on the Copy rows to result step and you were able to see the
final data that would be sent outside the transformation. Normally you cannot preview the
second transformation as is. The Get rows from result step is just a definition of the data that
will be provided; it has no data for previewing.

While you are designing a transformation starting with a Get
rows from result step, you can provisionally replace that step
with a step that provides some fictional data, for example,
a Text file input, a Generate rows, a Get System Info, or a
Data Grid step.

This fictional data has to have the same metadata as defined in the Get rows from result
step. This will allow you to preview and test your transformation before using it as part of your
process flow.

Note that the tasks performed in this recipe could easily
be done in a single transformation. We split it into two for
demonstration purposes only.

The next section explains in detail when and why you should consider splitting a process into
several transformations.

There's more...
There is no limit to the number of transformations that can be chained using this mechanism.
You may have a transformation that copies the rows, followed by another that gets the rows
and copies again, followed by a third transformation that gets the rows, and so on.

In most cases, it is possible to put them all into a single transformation. Despite this,
there are still some reasons for splitting the tasks up and creating a process flow. Look
at some examples:

 f The transformation is so big that it's worthwhile splitting it into smaller
transformations for simplicity.

 f You want to separate different parts of the transformation for re-use. In the example,
you might want to use the cleaned list of people for a purpose beyond that of
generating a file with their ages. You can re-use the first transformation on another
process without modifying it.

 f You want to separate different parts of the transformation for maintainability. In the
example, if you know new rules for cleansing the data (suppose that now you have to
remove special characters such as quotes or brackets from the name field), you just
have to modify the first transformation leaving the second untouched.

Executing and Re-using Jobs and Transformations

308

The copy of the rows is made in memory. While this is useful when you have small datasets,
for larger ones you should choose one of the following alternatives:

Serializing/De-serializing data
For transferring a dataset between transformations, there is an alternative approach—the
serialize/de-serialize mechanism. There are two main differences between this and the
copy/get rows mechanism, which are as follows:

 f With the serialize/de-serialize mechanism, the copy of the rows is made in files
(where performance is based on hard disk speeds) rather than in memory

 f The serialize/de-serialize mechanism copies not only the data but the metadata
as well

Let's see it applied to our recipe.

To change the method from copy/rows to serialize/de-serialize, perform the following steps:

1. In the first transformation, replace the Copy rows to result step with a Serialize to
file step from the Output category.

2. Double-click on the step and provide a name for the file in the Filename text box.

3. In the second transformation, replace the Get rows from result step with a
De-serialize from file step, found in the Output category.

4. Double-click on the step and in the Filename textbox and type the same
filename you typed in the Serialize to file step.

5. Execute the first transformation; a file with the given name should have
been generated.

6. Do a preview in the De-serialize from file step; you will see the data copied
from the first transformation.

If you run the job, you should obtain the same results as you obtained using the main recipe.
For large datasets this method is recommended over the previous one. This method is also
practical for datasets that have many columns or where the number or order of columns
changes over time. As the metadata is saved in the file along with the data, you are not
required to specify the details in the second transformation.

Note that the file generated with a Serialize to file step has a
binary format and cannot be read with a text editor.

Chapter 8

309

Other means for transferring or sharing data between
transformations
As mentioned earlier, a simple way for transferring or sharing data between transformations
is by the use of the copy/get rows mechanism. A step further is the use of the serialize/
de-serialize method. Now, suppose that you need the data for some extra purpose besides
transferring it between these two transformations. For example, suppose that you need to
send it to someone by e-mail. Neither of those methods will work in this case. As said, the first
copies the data via memory and the second saves the data to an unreadable file. In this
case, you have other alternatives, such as saving the data in a text file or to a database
table in the first transformation, and then creating the dataset from the file or table in the
second transformation.

The database method is also the preferred method in the
case where you are dealing with large datasets. Staging large
quantities of data on disk should be avoided if possible.

Moving part of a transformation to a
subtransformation

Suppose that you have a part of a transformation that you would like to use in another
transformation. A quick way to do that would be to copy the set of steps and paste them into
the other transformation, and then perform some modifications, for example, changing the
names of the fields accordingly. Now you realize that you need it in a third place. You do that
again: copy, paste, and modify.

What if you notice that there was a bug in that part of the transformation? Or maybe you'd
like to optimize something there? You would need to do that in three different places! This
inconvenience is one of the reasons why you might like to move those steps to a common
place—a subtransformation.

In this recipe, you will develop a subtransformation that receives the following two dates:

 f A date of birth

 f A reference date

The subtransformation will calculate how old a person was (or will be) at the reference date if
the date of birth provided was theirs.

For example, if the date of birth is December 30, 1979 and the reference date is December
19, 2010, the age would be calculated as 30 years.

Then, you will call that subtransformation from a main transformation.

Executing and Re-using Jobs and Transformations

310

Getting ready
You will need a file containing a list of names and dates of birth, for example:

name,birthdate
Paul,31/12/1969
Santiago,15/02/2004
Lourdes,05/08/1994
Anna,08/10/1978

How to do it...
This recipe is split into two parts. First, you will create the subtransformation by carrying out
the following steps:

1. Create a transformation.

2. From the Mapping category, add two Mapping input specification steps and one
Mapping output specification step. Rename this step output.

3. Also, add a Join Rows (Cartesian product) (Join category), a Calculator (Transform
category), and a User Defined Java Expression or UDJE for short (Scripting category)
step. Link the steps as shown in the following screenshot:

4. Double-click on one of the Mapping input specification steps. Add a field named
birth_field. For Type, select Date. Name the step birthdates.

5. Double-click on the other Mapping input specification step. Add a field
named reference_field. For Type, select Date. Name the step reference date.

6. Double-click the Join step. For Main step to read from, select birthdates.

Chapter 8

311

The following two steps perform the main task—the calculation of the age:

Note that these steps are a slightly modified version of the
steps you used for calculating the age in the previous recipe.

1. Double-click on the Calculator step and fill in the settings window, as shown in the
following screenshot:

2. Double-click on the UDJE step. Add a field named calculated_age. As Value type,
select Integer. For Java expression type:
((b_month > t_month) ||
(b_month - t_month ==0 && b_day > t_day))?
(t_year – b_year - 1):(t_year - b_year)

The expression is written over three lines for clarity. You
should type the whole expression on a single line.

3. Save the transformation.

Now you will create the main transformation. It will read the sample file and calculate the age
of the people in the file as at the present day.

1. Create another transformation.

2. Use a Text file input step to read the sample file. Name the step people.

3. Use a Get System Info step to get the present day and add a field named today.
For Type, select Today 00:00:00. Name the step today.

Executing and Re-using Jobs and Transformations

312

4. From the Mapping category, add a Mapping (sub-transformation) step. Link the
steps as shown in the following screenshot:

5. Double-click on the Mapping step. The following are the most important steps
in this recipe!

6. In the first textbox, under the text Use a file for the mapping transformation,
select the transformation created earlier.

7. Click on the Add Input button. A new Input tab will be added to the window. Under
this tab, you will define a correspondence between the incoming step people and
the subtransformation step birthdates.

8. In the Input source step name, type people, the name of the step that reads
the file.

9. Alternatively, you can select it by clicking on the Choose... button. In the Mapping
target step name, type birthdates—the name of the subtransformation step that
expects the dates of birth.

10. Click on Ask these values to be renamed back on output?.

11. Under the same tab, fill in the grid as follows: under Fieldname from source step
type birthdate, the name of the field coming out of the people step containing
the date of birth. Under Fieldname to mapping input step, type birth_field—the
name of the field in the subtransformation step birthdates that will contain the date
of birth needed for calculating the age.

Alternatively, you can add the whole line by clicking on Mapping...
and selecting the matching fields in the window that is displayed.

12. Add another Input tab. Under this tab, you will define a correspondence between the
incoming step today and the subtransformation step reference date. Fill in the
tab as follows:

Chapter 8

313

13. Finally, click on Add Output to add an Output tab. Under this tab, click on Is this the
main data path?

14. Under the same tab, fill in the grid as follows: under Fieldname from mapping
step, type calculated_age. Under Fieldname to target step, type age. Close
the mapping settings window and save the transformation.

15. Do a preview on the last step; you should see the following screen:

How it works...
The subtransformation (the first transformation you created) has the purpose of calculating
the age of a person at a given reference date. In order to do that, it defines two entry points
through the use of the Mapping input specification steps. These steps are meant to specify
the fields needed by the subtransformation. In this case, you defined the date of birth in one
entry point and the reference date in the other. Then it calculates the age in the same way
you would do with any regular transformation. Finally, it defines an output point through the
Mapping output specification step.

Note that we developed the subtransformation blindly, without testing or previewing. This was
because you cannot preview a subtransformation. The Mapping input specification steps are
just a definition of the data that will be provided; they have no data to preview.

While you are designing a subtransformation, you can provisionally
substitute each Mapping input specification step with a step
that provides some fictional data, for example, a Text file input, a
Generate rows, a Get System Info, or a Data Grid step.

Executing and Re-using Jobs and Transformations

314

This fictional data for each of these steps has to have the same metadata as the
corresponding Mapping input specification step. This will allow you to preview and test your
subtransformation before calling it from another transformation.

Now, let's explain the main transformation, the one that calls the subtransformation. You
added as many input tabs as entry points to the subtransformation. The input tabs are meant
to map the steps and fields in your transformation to the corresponding steps and fields in the
subtransformation. For example, the field that you called today in your main transformation
became reference_field in the subtransformation.

On the other side, in the subtransformation, you defined just one output point. Therefore,
under the Output tab, you clicked on Is this the main data path?. Selecting it means that you
don't need to specify the correspondence between steps. What you did under this tab was fill
in the grid to ask the field calculated_age be renamed to age.

In the final preview, you can see all the fields you had before the subtransformation, plus the
fields added by it. Among these fields, there is the age field which was the main field you
expected to be added.

As you can see in the final dataset, the field birthdates kept its name, while the field
today was renamed to reference_field. The field birthdates kept its name because
you checked the Ask these values to be renamed back on output? option under the people
input tab. On the other hand, the field today was renamed because you didn't check that
option under the today input tab.

There's more...
Kettle sub-transformations are a practical way to centralize some functionality so that it may
be used in more than one place. Another use of sub-transformations is to isolate a part of
a transformation that meets some specific purpose as a whole, in order to keep the main
transformation simple, no matter whether you will re-use that part or not.

Let's look at some examples of what you might like to implement via a subtransformation:

 f Take some free text representing an address, parse it, and return the street name,
street number, city, zip code, and state.

 f Take some text, validate it according to a set of rules, clean it, for example by
removing some unwanted characters and return the validated clean text along
with a flag indicating whether the original text was valid or not.

 f Take an error code and write a customized line to the Kettle log.

 f Take the date of birth of a person and a reference date and calculate how old that
person was at the reference date.

Chapter 8

315

If you then wish to implement any of the following enhancements, you will need to do it in
one place:

 f Enhance the process for parsing the parts of an address

 f Change the rules for validating the text

 f Internationalize the text you write to the Kettle log

 f Change the method or algorithm for calculating the age

From the development point of view, a subtransformation is just a regular transformation with
some input and output steps connecting it to the transformations that use it.

Back in Chapter 7, Understanding and Optimizing Data Flows, it was explained that when a
transformation is launched, each step starts a new thread, that is, all steps work simultaneously.
The fact that we are using a subtransformation does not change that. When you run a
transformation that calls a subtransformation, both the steps in the transformation and those
in the subtransformation start at the same time, and run in parallel. The subtransformation
is not an isolated process; the data in the main transformation just flows through the
subtransformation. Imagine this flow as if the steps in the subtransformation were part
of the main transformation. In this sense, it is worth noting that a common cause of error
in the development of subtransformations is the wrong use of the Select values step. For
instance, selecting some values with a Select values step by using the Select & Alter tab in a
subtransformation will implicitly remove not only the rest of the fields in the subtransformation,
but also all of the fields in the transformation that calls it.

If you need to rename or reorder some fields in a
subtransformation, make sure you check the Include unspecified
fields and the ordered by name option in order to keep not only
the rest of the fields in the subtransformation but also the fields
coming from the calling transformation.

If what you need is to remove some fields, do not use the Select & Alter tab; use the
Remove tab instead. If needed, use another Select values step to reorder or rename
the fields afterward.

Executing and Re-using Jobs and Transformations

316

Using Metadata Injection to re-use
transformations

Earlier in this chapter, we covered how to re-use transformations and jobs that utilize the
same data structures and allowed for smaller portions of transformations to be broken out
and used by several different transformations. Another common pattern is repeating a given
process, but having a very different dataset flow. For instance, suppose we wanted to pull data
from multiple tables and perform the same kind of logic on the data stream without having to
write the transformation over for the different data stream. While some of that functionality
could be done with Mappings and parameterization of jobs or transformations, Metadata
Injection will allow for a transformation to be reused against different data streams based on
the metadata of the stream.

Getting ready
For this recipe, we will be reusing the book_news dataset used in earlier chapters. You can
find the files used to create this dataset on the book's website.

How to do it...
This recipe will be utilizing two transformations. One will provide the metadata details of a
data stream while the other will take the metadata and inject it into a process to output the
data from the book's database into a flat file.

The first file we will create is the transformation that will have metadata injected into it
to function.

1. Create a new transformation.

2. Bring over a CSV File Input step from the pallet. Do not fill in any of the details of
the step other than changing the delimiter to |. The other details will be passed in
through the Metadata Injection step of the other transformation.

3. Add a Select Values step from the pallet and add a hop from the CSV File
Input step to the Select Values step. As with the CSV File Input step, do not fill in any
of the details of the step.

4. Finally, add a Table Output step from the pallet. Add a hop from the Select
Values step to the Table Output step. Select the following for the options of the
Table Output step:

 � Connection: books

 � Target table: book_stats

Chapter 8

317

5. We need to make sure that the book_stats table exists. Run the following script to
do so:
delimiter $$

CREATE TABLE `book_stats` (
 `book_stats_id` int(11) NOT NULL AUTO_INCREMENT,
 `title` varchar(400) DEFAULT NULL,
 `price` decimal(10,0) DEFAULT NULL,
 PRIMARY KEY (`book_stats_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1$$

Now that we're ready to process data, let's go ahead and build the transformation that will
inject metadata into the transformation we just created.

1. Create a new transformation.

2. Add a Data Grid step from the pallet onto the canvas.

3. Fill in the Meta tab as follows:

4. On the Data tab, add the ${Internal.Transformation.Filename.
Directory}/book_news.txt filename to the grid.

5. Click on OK to close the step.

6. Add a second Data Grid step from the pallet onto the canvas. This data grid
will handle the field names and data types of the data in our book_news.txt file.

7. Fill in the Meta tab as follows:

Executing and Re-using Jobs and Transformations

318

8. Fill in the Data tab as follows:

9. Add a third Data Grid step. This will list the fields we wish to remove from the stream.

10. Fill in the Meta tab with a single field named field_name.

11. Fill in the Data tab as follows:

12. Now, add an ETL Metadata Injection step from the pallet. Add hops from the three
data grid steps to the ETL Metadata Injection step.

13. Open the ETL Metadata Injection step. Select the first transformation we created for
the recipe as the input for the Use a file for the transformation template field. Click
on OK to close the step.

14. Open the ETL Metadata Injection step again. The fields that can interface with the
ETL Metadata Injection step are now filled in and we can fill in the details from our
Data Grid steps.

Chapter 8

319

15. For the CSV file input step, fill in the following details:

16. For the Select Values step, fill in the following details:

17. Click on OK to exit the ETL Metadata Injection step. Save and run the
transformation. Reading the data in the book_stats table, we see that
the empty transformation successfully loaded the book data:

Executing and Re-using Jobs and Transformations

320

How it works...
The Data Grid steps provided a static place to store the metadata about both the file that we
wanted to load as well as list the functionality that we wanted to perform on the data in the
file. By listing what we wanted to do with the data, we were able to apply the various streams
to different parts of a generic transformation, building a custom version of the transformation
on the fly.

There's more...
While we used Data Grid steps to load stream metadata into the ETL Metadata Injection
step, we could also have utilized another step from the Utility section of the pallet called the
Metadata structure of stream, which will read the live data stream and return the metadata for
it. Metadata can essentially come from any source. As long as it is fed into the ETL Metadata
Injection step, transformation logic that has dynamic requirements but similar functionality can
re-use the same transformation and load the proper metadata into the steps that support it.

Metadata Injection is able to interact with a growing number of steps. The best place
to view what steps can be interacted with (as well as the version of Kettle they were
enabled) is on the Pentaho wiki page at http://wiki.pentaho.com/display/EAI/
ETL+Metadata+Injection.

9
Integrating Kettle and

the Pentaho Suite

In this chapter, we will cover:

 f Creating a Pentaho report with data coming from PDI

 f Creating a Pentaho report directly from PDI

 f Configuring the Pentaho BI Server for running PDI jobs and transformations

 f Executing a PDI transformation as part of a Pentaho process

 f Executing a PDI job from the Pentaho User Console

 f Populating a CDF dashboard with data coming from a PDI transformation

Introduction
Kettle, also known as PDI, is mostly used as a standalone application. However, it is not
an isolated tool, but part of the Pentaho Business Intelligence Suite. As such, it can also
interact with other components of the suite, For example, having Kettle act as the data source
for a report or a dashboard, or even interfacing with the Pentaho User Console, so that users
can run Kettle jobs that clean up their data as needed. This chapter shows you how to run
Kettle jobs and transformations in that context.

This chapter assumes a basic knowledge of the Pentaho Business Intelligence platform
and the tools that make up the Pentaho Suite. If you are not familiar with these tools, it is
recommended that you visit the wiki page (wiki.pentaho.com) or the Pentaho BI Suite
Community Edition (CE) site: http://community.pentaho.com/.

Integrating Kettle and the Pentaho Suite

322

As another option, there is a general reference to the suite called Pentaho Solutions (Wiley) by
Roland Bouman and Jos van Dongen that provides a good introduction to the whole suite as
well as to data warehousing and business intelligence principles.

A sample transformation
The different recipes in this chapter show you how to run Kettle transformations and
jobs, integrated with several components of the Pentaho BI suite. In order to focus on
the integration itself, rather than on Kettle development, we have created a sample
transformation file named weather.ktr that will be used through the different recipes.

The transformation receives the name of a city as the first parameter from the command line,
for example Madrid and Spain. Then, it consumes a web service to get the current weather
conditions and the forecast for the next five days for that city. The transformation has a couple
of named parameters:

Name Purpose Default
TEMP Scale for the temperature to be

returned; it can be C (Celsius)
or F (Farenheit)

The following diagram shows what the transformation looks like:

It receives the command-line argument and the named parameters, consumes the service,
and retrieves the information in the desired scales for temperature and wind speed.

Chapter 9

323

You can download the transformation from Packt's site and test it. Do a preview on the
next_days, current_conditions, and current_conditions_normalized steps to see what
the results look like. The following is a sample preview of the next_days step:

Finally, the following screenshot shows you a sample preview of the
current_conditions_normalized step:

For details about the web service and understanding the results,
you can take a look at the Specifying fields by using Path
notation recipe in Chapter 4, Manipulating XML Structures.

There is also another transformation file named weather_np.ktr. This transformation
does exactly the same, but it reads the city as a named parameter instead of reading it from
the command line. The Getting ready sections of each recipe will tell you which of these
transformations will be used.

Integrating Kettle and the Pentaho Suite

324

If you are unable to consume the weather web service, it may happen
that you do not want to consume the web service (for example, for
delay reasons), or you cannot do it (for example, if you do not have
Internet access). Besides, if you call a free web service like this too
often, then your IP might be banned from the service. Don't worry.
Along with the sample transformations on Packt's site, you will find
another version of the transformations that, instead of using the web
service, reads sample fictional data from a file containing the forecast
for over 250 cities. The transformations are weather (file
version).ktr and weather_np (file version).ktr. Feel
free to use these transformations instead. You should not have any
trouble as the parameters and the metadata of the data retrieved are
exactly the same as in the transformations explained earlier.

If you use transformations that do not call the web service, remember
that they rely on the file with the fictional data (weatheroffline.
txt). Wherever you copy the transformations from, do not forget to
copy that file as well.

Creating a Pentaho report with data coming
from PDI

The Pentaho Reporting Engine allows designing, creating, and distributing reports in various
popular formats (HTML, PDF, and so on) from different kinds of sources (JDBC, OLAP (On-line
Analytical Processing databases), XML, and so on).

There are occasions where you need other kinds of sources such as text files or Excel files, or
situations where you must process the information before using it in a report. In those cases,
you can use the output of a Kettle transformation as the source of your report. This recipe
shows you this capability of the Pentaho Reporting Engine.

For this recipe, you will develop a very simple report. The report will ask for a city and a
temperature scale and will report the current conditions in that city. The temperature will be
expressed in the selected scale.

Getting ready
A basic understanding of the Pentaho Report Designer tool is required in order to follow this
recipe. You should be able to create a report, add parameters, build a simple report, and
preview the final result.

Regarding the software, you will need the Pentaho Report Designer. You can download the
latest version from the following URL: http://sourceforge.net/projects/pentaho/
files/Report%20Designer/.

Chapter 9

325

You will also need the sample transformation file, weather.ktr.

The sample transformation has a couple of UDJE steps. These steps rely on the Janino library.
In order to be able to run the transformation from Report Designer, you will have to copy the
janino.jar file from the Kettle libext directory into the Report Designer lib directory. If
Pentaho Report Designer was open when installing the Janino library, it will need to be closed
and reopened.

How to do it...
In the first part of the recipe, you will create the report and define the parameters for the
report: the city and the temperature scale.

1. Launch Pentaho Report Designer and create a new blank report.

2. Add two mandatory parameters. A parameter named city_param, with Orlando,
FL as Default Value and a parameter named scale_param which accepts two
possible values: C meaning Celsius or F meaning Fahrenheit.

3. Now, you will define the data source for the report:

4. In the Data menu, select Add Data Source and then Pentaho Data Integration.

5. Click on the Add a new query button. A new query named Query 1 will be added.
Give the query a proper name, for example, forecast.

6. Click on the Browse button. Browse to the sample transformation and select it. The
Steps listbox will be populated with the names of the steps in the transformation.

7. Select the step current_conditions. So far, you have the following:

Integrating Kettle and the Pentaho Suite

326

The specification of the transformation filename with the
complete path will work only inside Report Designer. Before
publishing the report, you should edit the filename (<book
code location>\weather.ktr in the preceding example)
and leave just a path relative to the directory where the report
is to be published (for example, reports\weather.ktr).

8. Click on Preview; you will see an empty result set. The important thing here is that
the headers should be the same as the output fields of the current_conditions step:
city, observation_time, weatherDesc, and so on.

9. Now, close that window and click on Edit Parameters.

10. You will see two grids: Transformation Parameter and Transformation Arguments.
Fill in the grids as shown in the following screenshot. You can type the values or
select them from the available dropdown lists:

11. Close the Pentaho Data Integration Data Source window. You should have the
following screenshot:

Chapter 9

327

The data coming from Kettle is ready to be used in your report.

12. Build the report layout. Drag-and-drop some fields into the canvas and arrange them
as you please. Provide a title as well. The following screenshot is a sample report you
can design:

13. Now, you select Print Preview. The sample report above will look like the one shown
in the following screenshot:

Integrating Kettle and the Pentaho Suite

328

The output of the current_condition step has just
one row.

If, for data source, you choose the next_days or the
current_condition_normalized step instead, then the
result will have several rows. In that case, you could
design a report by columns: one column for each field.

How it works...
Using the output of a Kettle transformation as the data source of a report is useful because
you can take advantage of all the functionality of the PDI tool. For instance, in this case, you
built a report based on the result of consuming a web service. You could not have done this
with Pentaho Report Designer alone.

In order to use the output of your Kettle transformation, you just added a Pentaho Data
Integration data source. You selected the transformation to run and the step that would
deliver your data.

In order to be executed, your transformation needs a command-line parameter: the name of
the city. The transformation also defines two named parameters: the temperature scale and
the wind scale. From the Pentaho Report Designer you provided both—a value for the city and
a value for the temperature scale. You did it by filling in the Edit Parameter settings window
inside the Pentaho Data Integration Data Source window.

You did not supply a value for the SPEED parameter, but that
is not necessary because Kettle uses the default value.

As you can see in the recipe, the data source created by the report engine has the same
structure as the data coming from the selected step: the same fields with the same names,
same data types, and in the same order.

Once you configured this data source, you were able to design your report as you would have
done with any other kind of data source.

Finally, when you are done and want to publish your report on the server, do not forget to fix
the path as explained in the recipe—the File menu should be specified with a path relative to
the solution folder. For example, suppose that your report will be published in my_solution/
reports, and you put the transformation file in my_solution/reports/resources. In
that case, for File, you should type resources/ plus the name of the transformation.

Chapter 9

329

There's more...
Pentaho Reporting is a suite of Java projects built for report generation.
The suite is made up of the Pentaho Reporting Engine and a set of tools such as the Report
Designer (the tool used in this recipe), Report Design Wizard, and Pentaho's web-based ad
hoc Reporting user interface.

In order to be able to run transformations, the Pentaho Reporting software includes the
Kettle libraries. To avoid any inconvenience, be sure that the versions of the libraries included
are the same or newer than the version of Kettle you are using. For instance, Pentaho
Reporting 3.8 includes Kettle 4.1.2 libraries. If you are using a different version of Pentaho
Reporting, then you can verify the Kettle version by looking in the lib folder inside the
reporting installation folder. You should look for files named kettle-core-<version>.
jar, kettle-db-<version>.jar, and kettle-engine-<version>.jar. Besides, if the
transformations you want to use as data sources rely on external libraries, you have to copy
the proper jar files from the Kettle libext directory into the Report Designer lib folder, just
as you did with the janino.jar file in the recipe.

For more information about Pentaho Reporting, just visit the following wiki website:
http://wiki.pentaho.com/display/Reporting/Pentaho+Reporting+Community
+Documentation.

Alternatively, you can get the book, Pentaho Reporting 3.5 for Java Developers, Packt
Publishing by Will Gorman.

Creating a Pentaho report directly from PDI
Reports are usually very useful when they are processed as needed for given parameters.
Sometimes those parameters are dynamically generated at runtime and are not necessarily
known to a user. For this recipe, we will be using the built-in functionality of PDI to process the
report created in the previous recipe to find the current weather for a given set of cities.

Getting ready
Before continuing this exercise, you will need the forecast.prpt report created in the last
recipe. This can be obtained either through Packt's website or by creating the report as per
the previous recipe in this chapter.

How to do it...
Follow the steps to generate reports within PDI:

1. Create a new transformation.

Integrating Kettle and the Pentaho Suite

330

2. Add Data Grid to the canvas from the pallet. Add two fields:

 � city, type: String

 � scale, type: String

3. On the Data tab, add a few cities and a scale of either C or F.

4. Add an Add constants step to the canvas. There will be one field in this step:

 � Name: report_file

 � Type: String

 � Value: forecast.prpt

5. Add a Calculator step and fill it in with the following details:

6. Add Modified Java Script Value to the canvas. Enter the following code (courtesy: the
sample for Pentaho Report Generation):
var Report_Template;
var Report_Output;

// Create full path combining transformation directory + filename
Report_Template = getVariable("Internal.Transformation.Filename.
Directory"," ")+"/"+ report_file;
Report_Output = getVariable("Internal.Transformation.Filename.
Directory"," ")+"/"+ report_name;

// Trim the leading 'file:C///' characters from the full path
Report_Template = substr(Report_Template,6);
Report_Output = substr(Report_Output,6);

7. Two fields should be generated from the script: Report_Template and
Report_Output.

8. Finally, add a Pentaho Reporting Output step to the canvas. Your transformation
should now look similar to the following screenshot:

Chapter 9

331

9. Open the Pentaho Reporting Output step. Click on the Get Report Parameters
button and find the forecast.prpt file. The report's parameters will be filled into
the parameter data grid. Fill in the step's options as shown:

10. Click on OK, save, and run the transformation. A CSV file for each city entered in the
data grid should now be generated.

How it works...
A Pentaho reporting file stores all the details about the report (including how to get it's data)
which makes it easy to use with the Pentaho Reporting file output step. In the transformation
we created a list of cities, what scale we wanted the temperature to return as, where the
report file lives, and how we wanted the name of the output to be formatted.

Integrating Kettle and the Pentaho Suite

332

We can pass pretty much any variables we want to a report and get the desired output.

There's more...
To make this transformation even more interesting, we can perform more complicated actions
such as e-mailing the report files out to desired recipients or move them to another server for
further processing. The flexible capabilities of Pentaho allow for almost any use case.

See also
 f Creating a Pentaho report with data coming from PDI

 f The Sending e-mails with attached files recipe in Chapter 10, Getting the Most
Out of Kettle

 f The Putting files on a remote server recipe, in Chapter 5, File Management

Configuring the Pentaho BI Server for
running PDI jobs and transformations

The Pentaho BI Server is a collection of software components that provide the architecture and
infrastructure required to build business intelligence solutions. With the Pentaho BI Server, you
are able to run reports, visualize dashboards, schedule tasks, and more. Among these tasks,
there is the ability to run Kettle jobs and transformations. This recipe shows you the minor
changes you might have to make in order to be able to run Kettle jobs and transformations.

Getting ready
In order to follow this recipe, you will need some experience with the Pentaho BI Server.

For configuring the Pentaho BI server, you obviously need the software. You can download the
latest version of the Pentaho BI Server from the following URL: http://sourceforge.net/
projects/pentaho/files/Business%20Intelligence%20Server/.

Make sure you download the distribution that matches
your platform.

If you intend to run jobs and transformations from a Kettle repository, make sure you have the
name of the repository and proper credentials (username and password).

Chapter 9

333

How to do it...
Perform the following steps:

1. If you intend to run a transformation or a job from a file, skip to the
How it works... section.

2. Edit the settings.xml file located in the \biserver-ce\pentaho-solutions\
system\kettle folder inside the Pentaho BI Server installation folder.

3. In the repository.type tag, replace the default value files with rdbms. Provide
the name of your Kettle repository and the username and password, as shown in the
following example:
<kettle-repository>

 <!-- The values within <properties> are passed directly to the
Kettle Pentaho components. -->

 <!-- This is the location of the Kettle repositories.xml file,
leave empty if the default is used: $HOME/.kettle/repositories.xml
-->
 <repositories.xml.file></repositories.xml.file>

 <repository.type>rdbms</repository.type>

 <!-- The name of the repository to use -->
 <repository.name>pdirepo</repository.name>

 <!-- The name of the repository user -->
 <repository.userid>dev</repository.userid>

 <!-- The password -->
 <repository.password>1234</repository.password>

</kettle-repository>

4. Start the server. It will be ready to run jobs and transformations from your
Kettle repository.

How it works...
If you want to run Kettle transformations and jobs, then the Pentaho BI server already
includes the Kettle libraries. The server is ready to run both jobs and transformations from
files. If you intend to use a repository, you have to provide the repository settings. In order to
do this, you just have to edit the settings.xml file, as you did in the recipe.

Integrating Kettle and the Pentaho Suite

334

There's more...
To avoid any inconvenience, be sure that the version of the libraries included are the same or
newer than the version of Kettle you are using. For instance, Pentaho BI Server 4.8 includes
Kettle 4.4 libraries. If you are using a different version of the server, then you can verify
the Kettle version by looking in the following folder: \biserver-ce\tomcat\webapps\
pentaho\WEB-INF\lib.

This folder is inside the server installation folder. You should look for files named kettle-
core-<version>.jar, kettle-db-<version>.jar, and kettle-engine-
<version>.jar. The Version will be the actual version of the files (for instance, kettle-
core-4.4.1-GA.jar).

There is even an easier way: in the Pentaho User Console (PUC), go into the BI Developer
Examples folder under the Samples folder and look for the Data Integration with
Kettle folder. Within the Data Integration with Kettle folder, look for option 2,
Get Environment Information. Run it and you will get detailed information about the Kettle
environment.

For your information, the transformation that is run
behind the scenes is GetPDIEnvironment.
ktr located in the biserver-ce\pentaho-
solutions\bi-developers\etl folder.

See also
 f Executing a PDI transformation as part of a Pentaho process

 f Executing a PDI job from the Pentaho User Console

Executing a PDI transformation as part of
a Pentaho process

Everything in the Pentaho platform is made of action sequences. An action sequence is, as
its name suggests, a sequence of atomic actions that together accomplish small processes.
Those atomic actions cover a broad spectrum of tasks, for example, getting data from a table
in a database, running a piece of JavaScript code, launching a report, sending e-mails, or
running a Kettle transformation. For this recipe, suppose that you want to run the sample
transformation to get the current weather conditions for some cities. Instead of running this
from the command line, you want to interact with this service from the PUC. You will do it with
an action sequence.

Chapter 9

335

Getting ready
In order to follow this recipe, you will need a basic understanding of action sequences and
at least some experience with the Pentaho BI Server and Pentaho Design Studio, the action
sequences editor.

Before proceeding, make sure that you have a Pentaho BI Server running. You will also
need Pentaho Design Studio. You can download the latest version from the following URL:
http://sourceforge.net/projects/pentaho/files/Design%20Studio/.

Finally, you will need the sample transformation weather.ktr.

How to do it...
This recipe is split into two parts: first, you will create the action sequence, and then you will
test it from the PUC. So perform the following steps:

1. Launch Design Studio. If this is your first use, then create the solution project where
you will save your work.

2. Copy the sample transformation to the solution folder.

3. Create a new action sequence and save it in your solution project with the name
weather.xaction.

4. Define two inputs that will be used as the parameters for your transformation:
city_name and temperature_scale.

5. Add two Prompt/Secure Filter actions and configure them to prompt for the name
of the city and the temperature scale.

6. Add a new process action by selecting Get Data From | Pentaho Data Integration.

7. Now, you will fill in the Input Section of the process action configuration. Give the
process action a name.

8. For Transformation File, type solution:weather.ktr. For Transformation Step,
type current_conditions_normalized and for Kettle Logging Level, type or
select basic.

9. In Transformation Inputs, add the inputs city_name and temperature_scale.

10. Select the XML source tab.

11. Search for the <action-definition> tag that contains the following line:
<component-name>KettleComponent</component-name>

12. You will find something like this:
<action-definition>
<component-name>KettleComponent</component-name>
 <action-type>looking for the current weather</action-type>

Integrating Kettle and the Pentaho Suite

336

 <action-inputs>
 <city_name type="string"/>
 <temperature_scale type="string"/>
 </action-inputs>
 <action-resources>
 <transformation-file type="resource"/>
 </action-resources>
 <action-outputs/>
 <component-definition>
 <monitor-step><![CDATA[current_conditions]]></monitor-step>
 <kettle-logging-level><![CDATA[basic]]></kettle-logging-
 level>
 </component-definition>

</action-definition>Below <component-definition>, type the
following:
<set-parameter>
 <name>TEMP</name>
 <mapping>temperature_scale</mapping>
</set-parameter>

<set-argument>
 <name>1</name>
 <mapping>city_name</mapping>
</set-argument>

In fact, you can type this anywhere between <component-definition>
and </component-definition>. The order of the internal tags is
not important.

13. Go back to the tab named 2. Define Process.

14. Now, fill in Output Section of the Process Data Integration process action. For
Output Rows Name, type weather_result and for Output Rows Count Name,
type number_of_rows.

15. Below the Process Data Integration process action, add If Statement. As the
condition, type number_of_rows==0.

16. Within If Statement, add a Message Template process action.

17. In the Text frame, type No results for the city {city_name}. For
Output Name, type weather_result.

18. Finally, in the Process Outputs section of the action sequence, add weather_result
as the only output.

Chapter 9

337

19. Your final action sequence should look like the one shown in the following screenshot:

20. Save the file.

Now, it is time to test the action sequence that you just created:

1. Log in to the PUC and refresh the repository, so that weather.xaction that you just
created shows up.

2. Browse the solution folders and look for xaction and double-click on it.

3. Provide the name of a city and change the temperature scale, if you wish.

4. Click on Run; you will see a page generate with the names and values of the
weather data.

Integrating Kettle and the Pentaho Suite

338

5. You can take a look at the Pentaho console to see the log of the transformation
running behind the scenes.

6. Run the action sequence again. This time, type the name of a fictional city, for
example, my_invented_city. This time, you will see the following message:
Action Successful
weather_result=No results for the city my_invented_city

How it works...
You can run Kettle transformations as part of an action sequence by using the
Pentaho Data Integration process action located within the Get Data From
category of process actions.

The main task of a PDI process action is to run a Kettle transformation. In order to do
that, it has a list of checks and textboxes where you specify everything you need to run
the transformation and everything you want to receive back after having run it.

The most important setting in the PDI process action is the name and location of the
transformation to be executed. In this example, you had a .ktr file in the same location
as the action sequence, so you simply typed solution: followed by the name of the file.

Then, in the Transformation Step textbox, you specified the name of the step in the
transformation that would give you the results you needed. The PDI process action (just as any
regular process action) is capable of receiving input from the action sequence and returning
data to be used later in the sequence. Therefore, in the dropdown list in the Transformation
Step textbox, you could see the list of available action sequence inputs. In this case, you just
typed the name of the step.

If you are not familiar with action sequences, note that the
dropdown list in the Transformation Step textbox is not
the list of available steps. It is the list of available action
sequence inputs.

You have the option of specifying the Kettle log level. In this case, you selected Basic.
This was the level of log that Kettle wrote to the Pentaho console. Note that, in this case,
you also have the option of selecting an action sequence input instead of one of the log
levels in the list.

As said earlier, the process action can use any inputs from the action sequence. In this case,
you used two inputs: city_name and temperature_scale. Then you passed them to the
transformation in the XML code:

 f By putting city_name between <set-parameter></set-parameter>, you
passed the city_name input as the first command-line argument.

Chapter 9

339

 f By putting temperature_scale between <set-argument></set-argument>,
you passed temperature_scale to the transformation as the value for the named
parameter TEMP.

As mentioned, the process can return data to be used later in the sequence. The textboxes in
the Output Section are meant to do that. Each textbox you fill in will be a new data field to be
sent to the next process action. In this case, you defined two outputs: weather_result and
number_of_rows. The first contains the dataset that comes out of the step you defined in
Transformation Step, in this case, current_conditions_normalized. The second has
the number of rows in that dataset.

You used those outputs in the next process action. If number_of_rows was equal to zero,
then you would overwrite the weather_result data with a message to be displayed to the
user. Finally, you added weather_result as the output of the action sequence, so that the
user either sees the current conditions for the required city, or the custom message indicating
that the city was not found.

There's more...
The following are some variants in the use of the Pentaho Data Integration process action.

Specifying the location of the transformation
When your transformation is in a file, you specify the location by typing or browsing for the
name of the file. You have to provide the name relative to the solution folder. In the recipe,
the transformation was in the same folder as the action sequence, so you simply typed
solution: followed by the name of the transformation including the extension ktr.

If instead of having the transformation in a file, it is located in a repository, you should check
the Use Kettle Repository option. The Transformation File textbox will be replaced with two
textboxes named Directory and Transformation File. In these textboxes, you should type the
name of the folder and the transformation exactly as they are in the repository. Alternatively,
you can select the names from the available dropdown lists.

In these dropdown lists, you will not see the available directories
and transformations in the repository. The lists are populated
with the available action sequence inputs. This also applies to
specifying the location of a job in an action sequence.

Supplying values for named parameters, variables and arguments
If your transformation defines or needs named parameters, Kettle variables or command-line
arguments, you can pass them from the action sequence by mapping KettleComponent inputs.

First of all, you need to include them in the Transformation Inputs section. This is equivalent
to typing them inside the KettleComponent action-definition XML element.

Integrating Kettle and the Pentaho Suite

340

Then, depending on the kind of data to pass, you have to define a different element:

Element in the
transformation

Element in the action sequence Description

Command line
parameter

<set-argument></set-argument> Values that normally get
passed via kitchen.sh or
pan.sh (that is, log level,
logfile location, and so on)

Variable <set-variable></set-variable> Values that normally are
passed via kettle.
properties

Named parameter <set-parameter></set-
parameter>

Values that are passed
as part of a job or
transformation

In the recipe you mapped one command- line argument and one named parameter.

With the following lines, you mapped the input named temperature_scale with the named
parameter TEMP:

<set-parameter>
 <name>TEMP</name>
 <mapping>temperature_scale</mapping>
</set-parameter>

In the case of a variable, the syntax is exactly the same.

In the case of arguments instead of a name, you have to provide the position of the
parameter: 1, 2, and so on.

Design Studio does not implement the capability of mapping
inputs with variables or named parameters. Therefore, you
have to type the mappings in the XML code. If you just want
to pass command-line arguments, you can skip this task.
Because, by default, it is assumed that the inputs you enter
are command-line arguments.

This way of providing values for named parameters, variables,
and command-line arguments also applies to jobs executed
from an action sequence.

Chapter 9

341

Keeping things simple when it's time to deliver a plain file
Reporting is a classic way of delivering data. In the PUC, you can publish not only Pentaho
reports, but also third-party ones, such as Jasper reports, for example. However, what if the final
user simply wants a plain file with some numbers in it? You can avoid the effort of creating it with
a reporting tool. Just create a Kettle transformation that does it and call it from an action, in the
same way you did in the recipe. This practical example is clearly explained by Nicholas Goodman
in his blog post, Self Service Data Export using Pentaho. The following is the link to that post,
which also includes sample code for downloading: http://www.nicholasgoodman.com/
bt/blog/2009/02/09/self-service-data-export-using-pentaho/.

See also
 f Configuring the Pentaho BI Server for running PDI jobs and transformations

 f Executing a PDI job from the Pentaho User Console

Executing a PDI job from the Pentaho
User Console

Pentaho User Console (PUC) is a web application included with the Pentaho Server,
conveniently built for you to generate reports, browse cubes, explore dashboards, and more.
Among the list of tasks, is the ability to run Kettle jobs. As mentioned in the previous recipe,
everything in the Pentaho platform is made up of action sequences. Therefore, if you intend
to run a job from the PUC, you have to create an action sequence that does it.

For this recipe, you will use a job that simply deletes all files with extension .tmp found in
a given folder. The objective is to run the job from PUC through an action sequence.

Getting ready
In order to follow this recipe, you will need a basic understanding of action sequences and
at least some experience with the Pentaho BI Server and Pentaho Design Studio, the action
sequences editor.

Before proceeding, make sure you have a Pentaho BI Server running. You will also need
Pentaho Design Studio; you can download the latest version from the following URL:
http://sourceforge.net/projects/pentaho/files/Design%20Studio/.

you will also need a job like the one described in the introduction to the recipe. The
job should have a named parameter called TMP_FOLDER; simply delete all files with
extension .tmp found in that folder.

You can develop the job before proceeding (call it delete_files.kjb), or download it from
Packt's site. Finally, pick a directory on your computer (or create one) with some .tmp files
for deleting.

Integrating Kettle and the Pentaho Suite

342

How to do it...
This recipe is split into two parts: First, you will create the action sequence and then you will
test the action sequence from the PUC.

1. Launch Design Studio. If it is the first time you have launched, create the solution
project where you will save your work.

2. Copy the sample job to the solution folder.
3. Create a new action sequence and save it in your solution project with the name

delete_files.xaction.
4. Define an input that will be used as the parameter for your job: folder. As Default

Value, type the name of the folder with the .tmp files, for example, c:\myfolder.
5. Add a process action by selecting Execute | Pentaho Data Integration Job.
6. Now, you will fill in Input Section of the process action configuration. Give the process

action a name.
7. As Job File, type solution:delete_files.kjb.
8. In the Job Inputs, add the only input you have: folder.
9. Select the XML source tab.
10. Search for the <action-definition> tag that contains the following line:

<component-name>KettleComponent</component-name>

11. You will find something similar to the following:
 <action-definition>
 <component-name>KettleComponent</component-name>
 <action-type>Pentaho Data Integration Job</action-type>
 <action-inputs>
 <folder type="string"/>
 </action-inputs>
 <action-resources>
 <job-file type="resource"/>
 </action-resources>
 <action-outputs/>
 <component-definition/>
 </action-definition>

12. Replace the <component-definition/> tag with the following:
 <component-definition>
 <set-parameter>
 <name>TMP_FOLDER</name>
 <mapping>folder</mapping>
 </set-parameter>
 </component-definition>

13. Save the file.

Chapter 9

343

Now, it is time to test the action sequence that you just created:

1. Log in to the Pentaho BI Server and refresh the repository.

2. Browse the solution folders and look for the delete_files action you just
created. Double-click on it.

3. You should see a window with the legend Action Successful.

4. You can take a look at the Pentaho console to see the log of the job.

5. Take a look at the folder defined in the input of your action sequence.
There should be no .tmp files.

How it works...
You can run Kettle jobs as part of an action sequence by using Pentaho Data Integration Job
process action located within the Execute category of process actions.

The main task of a PDI Job process action is to run a Kettle job. In order to do that, it has
a series of checks and textboxes where you specify everything you need to run the job, and
everything you want to receive back after having run it.

The most important setting in the PDI process action is the name and location of the job to be
executed. In this example, you had a .kjb file in the same location as the action sequence,
so you simply typed solution: followed by the name of the file.

You can specify the Kettle log level, but it is not mandatory. In this case, you left the log level
empty. The log level you select here (Basic, by default) is the level of log that Kettle writes to
the Pentaho console when the job runs.

Besides the name and location of the job, you had to provide the name of the folder needed
by the job. In order to do that, you created an input named folder and then you passed it
to the job. You did it in the XML code by putting the name of the input enclosed between
<set-parameter> and </set-parameter>.

When you ran the action sequence, the job was executed deleting all .tmp files in the
given folder.

The action sequence in this recipe has just one process
action (the PDI Job). This was made on purpose to keep the
recipe simple, but it could have had other actions as well,
just like any action sequence.

Integrating Kettle and the Pentaho Suite

344

There's more...
The main reason for embedding a job in an action sequence is for scheduling its execution
with the Pentaho scheduling services. This is an alternative approach to the use of a system
utility such as cron in Unix-based operating systems or the Task Scheduler in Windows.

See also
 f Configuring the Pentaho BI Server for running PDI jobs and transformations

 f Executing a PDI transformation as part of a Pentaho process

Generating files from the PUC with PDI and
the CDA plugin

As you know, PDI allows you to generate Excel, CSV, and XML files and, starting with the latest
version, also JSON files. You do it with a transformation that has to be executed from Spoon
or the command line. There is a quicker way to generate those kinds of files in an interactive
fashion from PUC. This recipe teaches you how to do it by using the Community Data Access
(CDA) plugin.

You will experiment with the CDA Editor and the CDA Previewer for querying the current
weather conditions in a given city. Then, you will learn how to export the results to different
formats. You will do that from PUC.

Getting ready
In order to follow this recipe, you will need some experience with the Pentaho BI Server.

Regarding the software, you will need a Pentaho BI Server running. You will also need the CDA
plugin. You can download the installer from http://cda.webdetails.org or the source
code from http://code.google.com/p/pentaho-cda/.

The Community Dashboard Editor (CDE) includes CDA.
Therefore, if you have CDE installed, just skip the CDA
installation. You can also install CDA from the BI Server
Marketplace (found under Tools | Marketplace).

Finally, you will need the sample transformation weather_np.ktr.

Chapter 9

345

How to do it...
This recipe is split in two parts. In the first part, you will create a CDA file for getting the data
you need. In the second part, you will export the results.

So, perform the following steps in order to complete the first part:

1. Create the solution project where you will save your work.

2. Inside the folder of your project, copy the weather_np.ktr transformation into your
project directory.

3. Also inside that folder, create an empty file with a .cda extension. Name it
weather.cda.

4. Log in to the Pentaho User Console and refresh the repository. You should see the
solution folder with the file that you just created.

5. Right-click on the file and select Edit. A new tab window should appear with the
CDA Editor ready to edit your CDA file, as shown in the following screenshot:

6. The white area is where you will type the CDA file content. Type the skeleton
of the file:
<?xml version="1.0" encoding="UTF-8"?>
<CDADescriptor>
 <data sources>
 </data sources>

7. </CDADescriptor>Inside the <data sources> tag, type the connection to the
Kettle transformation:
<Connection id="weather" type="kettle.TransFromFile">
<KtrFile>weather_np.ktr</KtrFile>
 <variables datarow-name="CITY"/>
 <variables datarow-name="Scale" variable-name="TEMP"/>
</Connection>

Integrating Kettle and the Pentaho Suite

346

8. Now you will define a data access to that data source. In CDA terminology, this is
a query over the preceding connection. Below the closing tag </data sources>,
type the following:
<DataAccess access="public"
 cache="true"
 cacheDuration="3600"
 connection="weather"
 id="current"
 type="kettle">
 <Columns/>
 <Parameters>
 <Parameter default="Orlando, FL"
 name="CITY"
 type="String"/>
 <Parameter default="C"
 name="Scale"
 type="String"/>
 </Parameters>
 <Query>current_conditions_normalized</Query>
 <Output indexes="0,1"/>
</DataAccess>

9. Click on the Save button located at the top of the editor window.

10. Click on Preview and a new window is displayed with the CDA Previewer.

11. In the dropdown list, select the data access that you just defined.

12. Take a look at the Pentaho server console. You should see how the weather_np
transformation is being executed. The following is an excerpt of that log:
... - weather_np - Dispatching started for transformation
[weather_np]
... - Get ${TEMP}, ${SPEED} and ${CITY} - Finished processing
(I=0, O=0, R=1, W=1, U=0, E=0)
... - key & days & format - Finished processing (I=0, O=0, R=1,
W=1, U=0, E=0)
... - worldweatheronline - Finished processing (I=0, O=0, R=1,
W=2, U=0, E=0)
... - ...
... - current_conditions_normalized - Finished processing (I=0,
O=0, R=11, W=11, U=0, E=0)

13. In the previewer, you will see the results of the CDA query.

14. Try changing the values for the parameters: city and temperature scale.

15. Click on Refresh and the data should be refreshed accordingly.

16. Now that you have a CDA file with a connection and a data access, let's export some
results to .csv format.

Chapter 9

347

17. Copy the URL of the previewer and paste it into a new tab window of your
browser. Assuming that you are running the server on localhost, and your
solution is in the folder pdi_cookbook/CDA, the complete URL should look
like the following URL: http://localhost:8080/pentaho/content/cda/
previewQuery?path=pdi_cookbook/CDA/weather.cda.

By double-clicking on the CDA file, the editor opens in a tab inside
the PUC. This prevents you from copying the URL.

In order to be able to copy the URL, double-click on the tab that
contains the CDA Editor. Alternatively, you can right-click on the
CDA file and select Open in New Window.

18. In the URL, replace previewQuery with doQuery.

19. At the end of the URL, add the following:
&dataAccessId=current
¶mCITY=›Buenos Aires, Argentina›
¶mScale=F
&outputType=csv

These parameters are written in four lines for simplicity. You
should type all in a single line one next to the other.

20. Press Enter. A csv will be generated that should look like the following:
FEATURE;VALUE
City;Buenos Aires, Argentina
Observation time;06:25 PM
Weather description;Moderate or heavy rain in area
Temperature;91
Wind speed;24
Wind direction;W
Precipitation;0.2
Humidity;53
Visibility;3
Pressure;9982
Cloud Cover;100

How it works...
In this recipe, you exported the results of a Kettle transformation to a .csv file from the PUC.
In order to do that, you used CDA.

Integrating Kettle and the Pentaho Suite

348

First, you created a CDA file. You edited it with the CDA Editor. The purpose of this file was to
firstly define a connection to the Kettle transformation and then a query over that connection.
Let's explain them in detail.

The connection or CDA data source is the definition of the source of your data, in this case,
a Kettle transformation. The following is the definition of your connection:

<Connection id="weather" type="kettle.TransFromFile">
 <KtrFile>weather_np.ktr</KtrFile>
 <variables datarow-name="CITY"/>
 <variables datarow-name="Scale" variable-name="TEMP"/>

</Connection>
The id element must be unique in the CDA file. The type="kettle.TransFromFile"
portion identifies this as a connection to a Kettle transformation. You provide the name of
the Kettle transformation inside the tags <KtrFile></KtrFile>.

Then you have the variables. The variables are the means for passing parameters from CDA
to Kettle; datarow-name is the name you use in the CDA file, while variable-name is the
name of the Kettle named parameter. For example, the named variable TEMP defined in the
transformation is referred to as Scale inside the CDA file.

If both names coincide, you can just put datarow-name and
omit variable-name, as in the case of the CITY variable.

Each variable you define in a CDA connection of type kettle,
TransFromFile must be defined as a named parameter
in the transformation. That was the reason for using the
transformation weather_np.ktr instead of weather.ktr.

Now, let's have a look at the CDA query. A CDA DataAccess is a query over a CDA data
source. In the case of Kettle, a CDA DataAccess has the details of a Kettle transformation
execution. A CDA query is enclosed inside a tag named DataAccess:

<DataAccess access="public"
 cache="true"
 cacheDuration="3600"
 connection="weather"
 id="current"
 type="kettle">
</DataAccess>

Here you define a unique data access ID (id="current"), the data access type
(type="kettle"), and the connection (connection="weather"). The connection
must be declared earlier in the same file.

The <columns></columns> tag is useful if you want to rename the columns or perform
operations between them, which was not the case here. Therefore, you left it empty.

Chapter 9

349

Then you have a parameters section:

 <Parameters>
 <Parameter default="Orlando, FL"
 name="CITY"
 type="String"/>
 <Parameter default="C"
 name="Scale"
 type="String"/>

 </Parameters>

Here you define one <Parameter> tag for each parameter you want to pass to the
transformation. The parameters you type here will be available in the CDA Previewer
for you to change.

In order to be able to pass the parameters, they have to be
defined in the data source as explained earlier.

Inside the <Query></Query> tag, you type the name of the transformation step that
returns the data you need. The sample transformation has three steps that return data:
current_conditions, current_conditions_normalized, and forecast. You
typed the second of these steps.

Finally, the <Output> tag is meant to indicate which columns you want and in which order.
The output fields of the current_conditions_normalized step are FEATURE and
VALUE. You wanted both fields and in the same order, therefore, you typed indexes="0,1".

You can edit the CDA files in any text editor. Just remember that if
you do not use the CDA Editor, you should periodically refresh the
solution repository in order to be able to preview them.

Once you created the contents of the file, you saved it, and previewed the results with the CDA
Previewer. This previewer shows the results as a table.

After previewing the results, you experimented with the doQuery feature of the CDA API.

The Community Data Access API documentation provides more
details on all the functions of CDA and how it can interact with
other Pentaho components. It is available from Web Details at
http://www.webdetails.pt/ctools/cda.html.

Integrating Kettle and the Pentaho Suite

350

The doQuery function allows you to export the results of a data access to different formats. In
order to run a doQuery, you have to provide the following parameters:

Parameter Description Example
dataAccessId ID of the DataAccess to run dataAccessId=current

param + <name of
param.>

One of this for each parameter you
want to pass to the transformation

paramCITY='Buenos
Aires, Argentina'

outputType Desired output type. Available output
types: Json (default if the parameter
is omitted), csv, Excel, and XML

outputType=csv

The parameters you provided in the recipe (shown in the preceding table) meant: run the
DataAccess with ID current, supplying the parameter CITY with values Buenos Aires,
Argentina and Scale with value F, and give me a .csv file with the results.

There's more...
CDA is a plugin for the Pentaho BI Suite developed by Webdetails, one of the main Pentaho
Community Contributors and now a member of the Pentaho family.

CDA was designed as an abstraction tool between sources of information, for example, Kettle
transformations, databases, or Mondrian cubes, and the CDF. As such, it is mainly used in the
context of Pentaho Dashboards.

However, it also serves for exporting data to different formats from the PUC. That was exactly
what you did in the recipe.

If you are interested in knowing more about CDA, then you will find the complete
documentation at the following URL: http://cda.webdetails.org.

Populating a CDF dashboard with data
coming from a PDI transformation

A dashboard, in its broad sense, is an application that shows you visual indicators, for
example, bar charts, traffic lights, or dials. A CDF dashboard is a dashboard created with the
Community Dashboard Framework. CDF accepts many kinds of data sources, the output of a
Kettle transformation being one of them.

In this recipe you will create a very simple dashboard that shows this capability. You will
type the name of a city and the dashboard will display graphically the 5-days forecast for
that city. The forecast information will be obtained with the sample transformation explained
in the introduction.

Chapter 9

351

Getting ready
In order to follow this recipe, you will need minimal experience with the Pentaho BI Server.
Some experience with the CDE is also desirable.

Before proceeding, make sure you have a Pentaho BI Server running. You will also need the
CDE. You can download it from http://cde.webdetails.org. To install it, simply unzip
the downloaded material and follow the instructions in the INSTALL.txt file. Alternatively,
you can download CDE through the Marketplace found under Tools > Marketplace.

Finally, you will need the sample transformation weather_np.ktr.

How to do it...
Perform the following steps:

1. Log in to the Pentaho User Console.

2. Create the solution folder where you will save your work.

3. Copy the sample transformation to the solution folder and refresh the repository.

4. From the File menu, select New | CDE Dashboard or click on the CDE icon in
the toolbar.

5. Save the dashboard in the solution folder that you just created, close the dashboard
window, and refresh the repository. A new file with extension wcdf will appear in the
solution folder.

6. Go to the solution folder, right-click on the dashboard file and select Edit.
The dashboard editor will appear. Maximize the window, so that you can
work more comfortably.

7. Define the dashboard layout by adding rows and columns from the layout toolbar,
until you get the following screen:

8. Now, let's add the visual elements of the dashboard: click on Components from the
menu at the top-right area of the editor.

Integrating Kettle and the Pentaho Suite

352

9. From the Generic category, add Simple parameter. Name it city_param and type
Orlando, FL for Property value.

10. From the Selects category, add a TextInput Component. Name it city_text box.
For Parameter, select city_param and for HtmlObject, select filter_panel.

11. Click on Save on the menu at the top of the editor.

12. Click on Preview; you will see the dashboard with a textbox prompting for the
city_name parameter, showing the default value Orlando, FL.

13. Close the preview window.

14. Now, you will add the chart that will display the forecast. From the Charts category,
add CCC Bar Chart.

15. Fill in the properties as follows:

 � For Name, type forecast_bars

 � For Width, type 350

 � For Height, type 250

 � For data source, type forecast

 � For Crosstab mode, select True

 � For Title, type 5-days forecast

 � For HtmlObject, select chart_panel

 � For Listeners, select city_param

16. Click on the Parameters property and, in the window that displays, add one
parameter. For Arg0, type CITY and for Val0, type city_param, and then click on Ok.

Finally, you have to create the data source for that chart: forecast. The following steps
will do it:

1. Click on Data Sources from the menu at the top-right area of the editor. In the
list of available data sources, click on KETTLE Queries and select kettle over
kettleTransFromFile. A new data source will be added.

2. Fill in the list of properties as explained in the following steps.

3. For Name, type forecast.

4. For Kettle Transformation File, type weather_np.ktr.

5. Click on Variables and in the window that displays, click on Add. For Arg0,
type CITY and click on Ok.

6. Click on Parameters and in the window that displays, click on Add.

 � For Arg0, type CITY

 � For Val0 type Orlando, FL

 � For Type0 leave the default String and click on Ok.

Chapter 9

353

7. Click on Output Options and in the window that shows up, click on Add three times. For
Arg0, Arg1, and Arg2, type 1, 2, and 3 respectively and click on Ok. Click on Column
Configurations and, in the window that displays, click on Add twice. In the first row,
type 2 for Arg0 and MIN for Val0. In the second row, type 3 for Arg1 and MAX for Val1.

8. Click on the little square to the side of the Query property. The Sql Wizard shows up.
In the editing area, type next_days and click on Ok.

9. Save the dashboard by clicking on Save and click on Preview to see the dashboard.
You should see a result similar to that shown in the following screenshot:

5-days forecast

2013-08-27 2013-08-28 2013-08-29 2013-08-30 2013-08-31
0

5

10

15

20

25

30

MIN MAX

Orlando, FL

10. If you take a look at the Pentaho console, then you will see the log of the
Kettle transformation that is executed.

11. Try changing the value for the city and press Enter. The chart should be
refreshed accordingly.

How it works...
In this recipe, you created a very simple dashboard. The dashboard allows you to enter the
name of a city and then refreshes a bar chart displaying the 5-days forecast for that city. The
special feature of this dashboard is that it gets data from a web service through the execution
of a Kettle transformation.

Integrating Kettle and the Pentaho Suite

354

In order to use the output of your Kettle transformation the as data source, you just have to
add a new data source from KETTLE Queries | kettle over kettleTransFromFile and configure
it properly. This configuration involves providing the following properties:

Property Meaning / Purpose Example
Name Unique data source name inside the

dashboard.
forecast

Kettle
Transformation File

Name of the transformation file. weather_np.ktr

Variables Name of variables that are passed to the
transformation. You have to provide it in
pairs (<CDE parameter>,<Kettle named
parameter>) or (<CDE parameter>,"") if
both coincide.

"CITY",""

Access Level Public (available from outside) / Private
(available only from other data sources)

Public

Parameters Name, default value, and type for
each parameter to be passed to the
transformation.

"CITY", "Orlando,
FL", "String"

Output Options
(opt)

Indexes of the columns to pick among the
fields coming out from the transformation.

1,2,3

Column
Configurations (opt)

Renaming the columns coming out from the
transformation.

2,"MIN"

Column
Configurations II
(opt)

Calculating new columns based on other
columns.

AVG, (MAX + MIN)/2

Query Name of the step that delivers the data. next_days

Cache Keep results in cache (True/False). TRUE

Cache Duration Time to keep the results in cache in seconds. 3600

Once you configured your Kettle transformation as a data source, it was ready to be used in
the components of your dashboard.

There's more...
CDF is a community project whose objective is mainly to integrate dashboards in the
Pentaho's solution repository structure. In the recipe, you used the CDE, which is a graphical
editor that complements the power of the CDF engine. With CDE, you can create dashboards
without having to get involved in the low-level details of the CDF files, thus focusing on the
business requirements.

Chapter 9

355

Kettle is just one of several kinds of data sources accepted by CDF. Behind the scenes, most
of the data sources definitions are saved in a CDA file.

If you already have a CDA file that has a data access for your
transformation, you can avoid configuring the data source twice
and use the Community Data Access | CDA data source instead.

CDF is bundled with the Pentaho BI Suite, but maintained by Webdetails with the
help of the community. For more information about CDF, see the full documentation
in the following website: http://cdf.webdetails.org. For more on CDE visit
http://cde.webdetails.org.

10
Getting the Most

Out of Kettle

In this chapter, we will cover:

 f Sending e-mails with attached files

 f Generating a custom logfile

 f Running commands on another server

 f Programming custom functionality

 f Generating sample data for testing purposes

 f Working with JSON files

 f Getting information about transformations and jobs (file-based)

 f Getting information about transformations and jobs (repository-based)

 f Using Spoon's built in optimization tools

Introduction
The recipes in this chapter cover a variety of topics that don't fit into any of the previous
categories. The topics range from customizing a Kettle log to understanding the structure of a
Kettle database repository. Feel free to browse the pages and see if there is a recipe that fits
your needs.

Getting the Most Out of Kettle

358

Sending e-mails with attached files
Nowadays, it is very common to use e-mails to exchange digital messages from one author to
several recipients. These e-mails can also have a list of files attached that will be sent along
with the message. Kettle offers job entries and transformation steps that allow the sending
of e-mails with attached files. In this recipe, you will use the Email job entry to send an e-mail
with a set of files attached with a particular condition: the files must have been modified after
a given date.

Getting ready
You need a directory named filesToAttach containing sample files. You will also need
access to an SMTP server. You can use the smtp.gmail.com server. You also need at least
one valid account to play with.

How to do it...
Carry out the following steps:

1. Create a new transformation.
2. Drop Get Files Names from the Input category.
3. Under the File tab, type or browse for the filesToAttach folder in the File or

directory textbox. Type .* in the Regular Expression textbox and click on the Add
button to populate the Selected files grid.

4. Under the Filter tab, uncheck the Add filename to result checkbox.
5. Add a Filter rows step from the Flow category. Here, add a new condition, select

the field lastmodifiedtime, the operator ', and enter a constant value date to
compare with, for example, 2010/11/01. Don't forget to select the Conversion
format expression to match the date format.

6. Add a Set files in result step (Job category).
7. Create a hop from the Filter rows step towards this step. When asked for the kind

of hop, select Main output of step. The transformation will look similar to the one
shown in the following screenshot:

8. Double-click on the Set file in result step. Select filename in the Filename field, and
General in the Type of file to prompt.

Chapter 10

359

9. Create a new job, and drop a START job entry into the canvas.

10. Add a Transformation job entry from the General category.

11. Double-click on this job entry and type the complete path of the previously created
transformation (or browse for it) in the Transformation filename textbox.

12. Add a Mail validator job entry from the email category. In this step, type the
destination account in the Email address textbox.

13. Add a Mail job from the Mail category.

14. Under the Addresses tab, fill in the Destination address textbox and the Sender
address textbox with two valid e-mail addresses (they can be the same if you only
have one account to play with). In addition, you need to complete the Sender name
textbox. For example, you can type your name.

You can specify more than one account, using a space as a
separator in the destination address of the email and Mail
validator job entries.

15. Complete the Server tab as shown in the following screenshot:

You need to fill the Authentication user and Authentication
textboxes with a valid user and password. If your account
is user@gmail.com, you have to type user in the
Authentication user textbox, and your e-mail password in the
Authentication textbox.

The default port for the SMTP Server is 465, but if you use a
secure connection through TLS, then the default is 587.

Getting the Most Out of Kettle

360

16. Under the Email Message tab, complete the Subject textbox and the Comment area
with sample text. Also, check the Only send comment in the mail body? checkbox.

17. Select the Attached Files tab and check the option Attach file(s) to message?.

18. Select the option General in the Select file type listbox.

19. Check the Zip files to single archive? checkbox. Type a filename in the Name of zip
archive textbox (for example, files.zip).

20. Running the job, an e-mail will be sent to the destination address (if it is valid). It will
include an attached ZIP file with all of the files from the filesToAttach folder that
fulfill the date condition.

How it works...
The first task in the example was to create a transformation that gets the files that will be
sent as an attachment with the e-mail. For this, you used the Get Files Names step to get the
files inside the filesToAttach folder, and then the Filter rows step to filter the files with
lastmodifiedtime greater than a specific date, in this case, 2010/11/01. Only the files
that pass this condition will be set in the result. Remember to uncheck the Add filename to
result checkbox in the Get Files Names step, because you don't want all the files, only the
result after the row filtering.

The job runs this transformation, and then executes the Email job entry. This job is quite self-
explanatory. Under the Addresses tab, you must complete the destination and sender e-mails
addresses, and the e-mail content under the Email Message tab. The example uses Gmail's
SMTP server (smtp.gmail.com), but you can use any e-mail server as long as you have
access to the information required in the Server tab. Take a look at the firewall configuration if
you have problems reaching the specified address.

Under the Attached Files tab, you selected the file type option named General; this
indicates that all the files included in the result list will be attached to the e-mail. In addition,
you configured the entry to zip all files into a single file.

If the previous jobs or transformations also added files to results, then those files will be
attached as well. Therefore, a Delete filenames from result job entry might be required at
the beginning of this job. You used the Mail validator job entry to verify the e-mail address
structure. If the structure is not correct, then the Email job entry will not run. You could use
the SMTP check? checkbox here, if you want to validate the existence of the accounts.

There's more...
You will find more features about sending e-mails in the following subsections:

Chapter 10

361

Sending logs through an e-mail
Let's assume that you want to include the log of the transformation inside the attached ZIP
file. This is very simple; just double-click on the Transformation entry job and set the logfile
under the Logging settings tab, as shown in the following screenshot:

You can specify a more detailed level of log in the Loglevel listbox if you want.

Then, you need to include this file as an attached file. Double-click on the email job entry,
select the Attached Files tab, and select the Log item in the Select file type list box. As you
need to select both General and Log items, you have to do it by pressing the Ctrl key:

After running the job, an e-mail will still be sent, but this time, the ZIP file attached will also
contain a new file named logFile.log with the log information.

Getting the Most Out of Kettle

362

Sending e-mails in a transformation
There is a transformation step named Mail, in the Utility category, which is very similar to the
Mail job entry. The main difference is that the Mail step sends one e-mail for each existent row.

Its configuration has listboxes instead of textboxes to refer to different settings (addresses,
server configuration, subject, body, and so on). Here you should refer to existing fields instead
of typing them.

In some cases, you could use either the step or the job entry with similar results, but there are
particular scenarios where one approach is better than the other. For example:

 f If you need to send several e-mails to different destination addresses and/or with
different content, and/or with different attached files, it is better to use the Mail
transformation step.

 f If you need to send an e-mail with some information about the executed process—for
example, the time that it took to execute it—you must use the Mail job entry.

 f If you need to send only one e-mail with attached files coming from different jobs or
transformations, you should use the Mail job entry.

 f For an advanced example of using the Mail step for mailing, you can follow the given
link: http://kjube.blogspot.com/2011/01/mailing-new-years-cards.
html. The blog post by KJube explains a transformation that sends best wishes for
New Year to a list of people. The following two considerations arise about the example
provided: the transformation uses the Excel Writer plugin step. If you are working with
Kettle 4.1, you should install the plugin in order to open the transformation. That's not
the case for Kettle 4.2, in which the plugin is already included as an Experimental step.

 f The values for the Server configuration and Sender name and Sender address are
stored in Kettle variables; they don't change from row to row. However, as explained
earlier, you cannot type the values directly in the step configuration window. You
should refer to existing fields instead. Therefore, it is necessary to get those variables
in a previous step.

Generating a custom logfile
When you run a transformation or a job, all of what is happening in the process is shown in
the Execution Results window, which has a tab named Logging where you can check the
execution of your transformation step by step. By default, the level of the logging detail is
Basic, but you can change it to show different levels of detail.

Under the Logging tab, you can see information about how the step is performing, for
example, the number of rows coming from previous steps, the number of rows read, the
number of rows written, errors in execution, and so on. All this data is provided by the
steps automatically, but what if you want to write your custom messages to the Logging
information? To do this, there is a step and an entry named Write to log, in the Utility folder.

Chapter 10

363

To put them into practice, let's take a simple transformation that reads a text file with book
novelties and splits them into two Excel files depending on their price. The objective here is to
include, in the Logging window, custom messages about the incoming number of books and
also how many of these books are cheap or expensive.

Getting ready
For checking this recipe, you will need a text file that includes information about book title's
novelties. For example:

title;author_id;price;title_id;genre
Bag of Bones;A00002;51,99;123-353;Fiction
Basket Case;A00003;31,00;123-506;Fiction
Carrie;A00002;41,00;123-346;Fiction
Cashflow Quadrant;A00007;55,00;323-604;Business
Harry Potter and the Half-Blood Prince;A00008;61,00;423-005;Childrens
Harry Potter and the Prisoner of Azkaban;A00008;29,00;423-
003;Childrens
Power to the People;A00005;33,00;223-302;Non-fiction
Who Took My Money;A00007;21,00;323-603;Business

You can download the sample file from Packt's website.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Text file input step into the canvas. Set the file to read under the File tab, and
type ; as the character Separator under the Content tab. Finally, use the Get Fields
button under the Fields tab to populate the grid automatically. Previewing this step,
you will obtain the data of the books from the text file. Now, let's add the steps for
counting the books and writing the information.

3. Add a Group by step from the Statistics folder. Create a hop from the text file to
this step. In the Aggregates grid at the bottom, add a new field named qty, choose
a field (for example, title_id) in the Subject column, and select the Number of
Values (N) option in the Type column.

4. Add a User Defined Java Expression from the Scripting category and link it to the
previous step. Create a new field named line of String type with the following
Java expression:
"Book news = " + Java.lang.Long.toString(qty)

Getting the Most Out of Kettle

364

5. From the Utility folder, add a Write to log step and create a hop from the previous
step towards this one; name it Write books counting. Add the line field to the
Fields grid. Choose Basic logging in the Log level listbox.

6. Run the transformation using Basic logging and check the Logging tab for the results.

7. You can verify the basic logging information where you should see the following line:
2011/01/25 10:40:40 - Write books counting.0 - Book news = 8

Now, you will generate two Excel files and write the information about cheap and expensive
books to the log:

1. Drop one Filter rows, two Excel output, two Group by, two UDJE, two Block this step
until steps finish (from Flow category), and two Write to log steps into the canvas.
Link the steps, as shown in the following screenshot:

2. Create a hop from the Text file input step to the Filter rows step. Here, set the
condition price <= 50. We will use an arbitrary price of $50 to determine if a
book is cheap or expensive.

3. Point one Excel Output step filename to cheapBooks.xls, and use the Get Fields
button to populate the grid under the Fields tab.

4. In the Group by step, add a new field named qty in the Aggregates grid, choose the
field title_id in the Subject column, and select the Number of Values (N) option in
the Type column.

5. Add a field named line of String type in the UDJE step with the following
Java expression:
"Cheap books = " + Java.lang.Long.toString(qty)

6. In the Block this step until steps finish steps, select the step named Write books
counting in the step name column of the grid.

Chapter 10

365

7. Finally, in the Write to log step, add the line field to the Fields grid and choose Basic
logging in the Log level listbox.

8. Now, repeat the last five steps in order to configure the lower stream. This time, use the
Excel Output step (named Excel Output 2) to generate the expensiveBooks.xls
file and replace the text Cheap for Expensive in the other UDJE step.

Running the transformation using Basic logging, you can verify that your custom messages
have been written to the log under the Logging tab. Here's an example:

How it works...
The main objective in this recipe is to explain how you can write personalized messages to the
logging windows. The task of the transformation is simple—it reads a text file at the beginning,
uses a Filter rows step to split the list of books into cheap and expensive ones, and then
writes two Excel spreadsheets with these details.

Now, let's analyze the task of customizing the log. In the first part of the recipe you wrote into
the log the number of books:

 f The Group by step does the counting

 f The UDJE step creates the personalized string in a new field

 f Finally, the Write to log step writes this string to the log

Getting the Most Out of Kettle

366

After each of the Excel output steps, there is the same sequence of steps (Group by, UDJE,
and Write to log), in order to write a message with the number of cheap books and the
number of expensive books into the log. There is also a Block this step until steps finish step
in this sequence before the Write to log step; this is because you want to be sure that the
total number of books will be written first.

There's more...
This recipe showed you the classic way for adding messages to the log. The following
subsections show you some variants or alternative approaches.

Filtering the logfile
Instead of adding text to the log, you may want to filter text in the existing log.

If you select the Logging tab in the Execution Results window, you will see a toolbar. Under
that toolbar, there is a button named Log settings that allows you to apply a filter. If you
type some text into the Select filter textbox, the log of the subsequent executions of the
transformation will only show the lines that contain that text. For example, you could use the
same text prefix in all of your custom messages, and then apply a filter using this fixed text to
see only those messages.

This also works if you run the transformation from a job, and even if you restart Spoon
because the filter is saved in a Kettle configuration file.

This is valid only in Spoon. If you intend to run a job or a transformation with Pan or Kitchen
and you need to filter a log, for example, by keeping only the lines that contain certain words,
then you have to take another approach. One way for performing that would be to save the
job or transformation log in a file and then run another transformation that parses and filters
that logfile.

Creating a clean logfile
The Logging window shows not only your messages, but also all of the information processed
by the steps. Sometimes you need a clean logfile showing only your custom messages and
discarding the rest.

There is another problem related to that—when you configure the Write to log step, you
need to specify a level for your log. (in the recipe, you used Basic logging.) If you run your
transformation using a different log level, you will not see any of your personalized messages.
One alternative would be using a Text file output instead of the Write to log step. With this,
you will produce a new text file with only your desired messages. Be sure to point all of the
Text file output steps to the same filename under the File tab, and use the Append checkbox
under the Content tab, in order to avoid overwriting the file with each run.

Chapter 10

367

Isolating logfiles for different jobs or transformations
It is possible that you want to see different log levels depending on the job or transformation,
or that you simply want to isolate the log for a particular job or transformation. This is a simple
task to accomplish. In the main job, right-click on the Job or Transformation entry of interest;
under the Logging settings tab check the Specify logfile? option and you will be able to
specify a name for the logfile as well as the log level desired. In this way, you can create
different logfiles with different log levels for each of the jobs and transformations that are
part of your main job.

See also
 f Sending e-mails with attached files

 f Programming custom functionality

Running commands on another server
There are many times in which data integration code needs to be augmented by other
processes, or perhaps trigger other processes after a job or transformation finishes. Kettle
has built-in steps that can execute scripts on local and remote servers and make it part of a
normal job process.

For this recipe, we will execute some basic shell commands on another server and return
the results. There are two ways to execute commands, one via the job and another via the
transformation. This recipe will show an example of both.

Getting ready
While we are showing steps that can connect to other servers with this recipe, we will be
running commands locally. The process is virtually identical, with the exception that the
connection parameters will be different. As long as you can connect to the box and have
permissions to run the script written into the step, the process should execute.

The steps mentioned in this recipe are not limited to running
just Linux commands. Check out the wiki for more details:
http://wiki.pentaho.com/display/EAI/Shell
and http://wiki.pentaho.com/display/EAI/
Run+SSH+commands.

Getting the Most Out of Kettle

368

How to do it...
Follow the steps to execute a script from a job:

1. Create a new job and add a Start step from the pallet onto the canvas.

2. Add a Shell step from the pallet onto the canvas.

3. Create a hop from the Start step to the Shell step.

4. Open the Shell step and check the Insert script tickbox.

5. Switch to the Script tab and enter the following code:
export TEST_VAR="Hello world!"
echo $TEST_VAR

6. Click on OK and close the step.

7. Save and execute the job. Checking out the logging output you should see the output
of the echo, which should look similar to the following:

Now we will utilize the transformation step to execute a script via SSH:

1. Create a new transformation.

2. From the Utility folder of the pallet, bring a Run SSH commands step and
a Write to log step onto the canvas.

3. Create a hop from the Run SSH commands step to the Write to log step.

4. Open the Run SSH commands step. Enter the following details:

1. Server name/IP address: localhost

2. Server port: 22

3. Timeout: 0

4. Username: This is the account that has access to localhost

5. Password: This is the password for the account

Chapter 10

369

5. Uncheck the Use key checkbox.

6. Switch to the Settings tab. Enter the following commands into the Commands textbox:
export TEST_VAR="Hello world again!"
echo $TEST_VAR

7. Click on OK. Open the Write to log step and add the stdOut field to the Fields grid.

8. Click on OK. Save and execute your transformation. Your log should output the value
of the TEST_VAR parameter:

How it works...
While the scripts run for this recipe are rather simple, there is nothing preventing more
complicated scripts or programs being executed through these steps. The transformation run
SSH commands step also allows for parameters or a script created within the stream to be
executed. This will allow for dynamic shell scripts to be run based on the data being output
through the normal data integration process.

See also
 f The Executing a job or a transformation from a job by setting arguments and

parameters dynamically recipe in Chapter 8, Executing and Re-using Jobs
and Transformations

Programming custom functionality
In Kettle, you have a lot of functionality provided by the built-in steps, but if that is not enough
for you, there is a step named User Defined Java Class where you can program custom
functionality with Java code. In this way, you can accomplish complex tasks, access Java
libraries, and even access the Kettle API. The code you type into this step is compiled once
and executed at runtime for each passing row.

Let's create a simple example of the use of the UDJC step. Assume that you have a text file
containing sentences; you want to count the words in each row and split the flow of data into
two streams depending on the number of words per sentence.

Getting the Most Out of Kettle

370

Note that, in order to develop a more interesting exercise, we added some extra
considerations, as follows:

 f There are several characters as separators, not only the blank spaces

 f Sometimes, you can have a sequence of separators together

 f Some sentences have a special character at the end, and some don't

Getting ready
You need a text file containing sentences, for example:

This is a sample text.
Another text with special characters, , , END OF FILE
hello,man
I wish you a happy new year:2011
The,last.but,not;the.least

You can download the sample file from Packt's website.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Text file input step from the Input category. Browse to your file under the Files
tab, and click on the Add button to populate the selected files grid. For example:
${Internal.Transformation.Filename.Directory}\samplefile.txt

3. Under the Content tab, uncheck the Header checkbox, and type ##### in the
Separator textbox.

4. Under the Fields tab, add a field named line of String type.

5. Add a UDJC step from the Scripting category. Also, drop two Dummy steps from the
Flow category and name them: short sentences step and long sentences step.

6. Create the hops between the steps as per the ones shown in the following screenshot:

Chapter 10

371

7. Double-click on the UDJC step.

8. Under the Fields tab of the bottom grid, add a new field named qty. Select Integer in
the Type listbox.

9. Under the Target steps tab, create two tags and name them: shortOnes and
longOnes. Then, select the steps as shown in the following screenshot:

10. In the Classes and code fragments section on the left, open the Code Snippets
folder. Expand the Common use option and drop the Main item to the editing area on
the right. A fragment of Java code will be written for the function processRow().

11. Replace or complete this fragment with the following code:
private RowSet shortSentences = null;
private RowSet longSentences = null;

public boolean processRow(StepMetaInterface smi,
 StepDataInterface sdi) throws KettleException
{
 Object[] r = getRow();
 if (r == null) {
 setOutputDone();
 return false;
 }

 if (first) {
 first = false;
 shortSentences = findTargetRowSet("shortOnes");
 longSentences = findTargetRowSet("longOnes");
 }
 r = createOutputRow(r, data.outputRowMeta.size());
 String linein;
 linein = get(Fields.In, "line").getString(r);
 long len = linein.length();
 long qty = 0;
 boolean currentSpecialChar = false;

 for (int i=0;i<len;i++) {
 char ch = linein.charAt(i);
 switch(ch) {

Getting the Most Out of Kettle

372

 case ',':
 case '.':
 case ' ':
 case ';':
 case ':':
 if (!currentSpecialChar) qty++;
 currentSpecialChar = true;
 break;
 default:
 currentSpecialChar = false;
 break;
 }
 }

 if (!currentSpecialChar) qty++;
 get(Fields.Out, "qty").setValue(r, qty);
 if (qty < 7) {
 putRowTo(data.outputRowMeta, r, shortSentences);
 }
 else {
 putRowTo(data.outputRowMeta, r, longSentences);
 }

 return true;
}

The code snippet added with the Main item generates a row
with this line:

r = createOutputRow(r, outputRowSize);

This line must be replaced with the following code to compile
correctly:

r = createOutputRow(r, data.outputRowMeta.size());

12. This code adds the desired functionality. If you preview this step, you will obtain a new
field named qty with the number of words in each sentence. The results for the file
used as an example would be:

Chapter 10

373

13. This UDJC step also redirects the rows to the short sentences step or the long
sentences step depending on the field qty. You can preview both steps and verify
that the sentences with exactly seven or more than seven words flow to the long
sentences step, and those with fewer words flow to the short sentences step.

How it works...
The first step in the recipe has the task of reading the text file. You have used ##### as
separator characters because that string is not present in the file. This assures you that the
field line will contain the entire line of your file.

Now, you need to develop some custom code that counts the words in the line field.
This task can't be accomplished using standard Kettle steps, so you have programmed the
necessary functionality in Java code inside a UDJC step. Let's explore the dialog for the UDJC
step, which is shown in the following screenshot:

Most of the window is occupied by the editing area. Here you write the Java code using the
standard syntax of that language. On the left, there is a panel with many code fragments
ready to use (Code Snippets), and a section with sets and gets for the input and output fields.
To add a code fragment to your script either double-click on it, drag it to the location in your
script where you wish to use it, or just type it in the editing area.

The Input and Outputs fields appear automatically in the tree when the Java code compiles
correctly; you can use the Test class button to verify that the code is properly written. If an
error occurs, you will see an error window; otherwise, you will be able to preview the results
of the transformation step.

Getting the Most Out of Kettle

374

The Fields tab on the bottom is to declare the new fields added by the step. In this case, you
declared the field qty of Integer type. This field will be the output variable that will return
the word count.

Under the Target steps tab, you can declare the steps where the rows will be redirected. In
the recipe, you pointed to the two target Dummy steps; one for the short sentences, and the
other for the long ones.

Let's see the Java code in detail.

At the beginning, there is a section with the variable declarations:

private RowSet shortSentences = null;
private RowSet longSentences = null;

These variables will represent the two possible target steps. They are declared at the
beginning because, in this way, they keep their values between the row processing.

Then, you have the main function:

public boolean processRow(StepMetaInterface smi, StepDataInterface
 sdi) throws KettleException
{
 Object[] r = getRow();
 if (r == null) {
 setOutputDone();
 return false;
 }

The processRow() function processes a new row. The getRow() function gets the next row
from the input steps. It returns an object array with the incoming row. A null value means
that there are no more rows for processing.

The following code only executes for the first row:

if (first) {
 first = false;
 shortSentences = findTargetRowSet("shortOnes");
 longSentences = findTargetRowSet("longOnes");
 }

You can use the flag first to prepare a proper environment before processing the rows.
In this case, you set the target steps into two variables for further use.

The next code uses the get() method to set the internal variable linein with the value
of the line field.

 r = createOutputRow(r, data.outputRowMeta.size());
 String linein;
 linein = get(Fields.In, "line").getString(r);

Chapter 10

375

Here is the main cycle:

 long len = linein.length();
 long qty = 0;
 boolean currentSpecialChar = false;

 for (int i=0;i<'len;i++) {
 char ch = linein.charAt(i);
 switch(ch) {
 case ',':
 case '.':
 case ' ':
 case ';':
 case ':':
 if (!currentSpecialChar) qty++;
 currentSpecialChar = true;
 break;
 default:
 currentSpecialChar = false;
 break;
 }
 }

It parses the entire sentence looking for characters used as separators. If one of these
separators is found, then it will increment the qty variable by one and set the flag
currentSpecialChar to true, in order to not increment the value if the next character
is also a separator.

The next line is to count the last word of the sentence only if it wasn't counted in the main cycle:

 if (!currentSpecialChar) qty++;

Here we set the new field named qty with the value of the internal variable qty, which has
the word count:

 get(Fields.Out, "qty").setValue(r, qty);

Finally, if the word count is lower than 7 (an arbitrary value), then the row will be passed to the
short sentences step; otherwise the target will be the long sentences step:

 if (qty < 7) {
 putRowTo(data.outputRowMeta, r, shortSentences);
 }
 else {
 putRowTo(data.outputRowMeta, r, longSentences);
 }

 return true;
}

Getting the Most Out of Kettle

376

If you only have one target step, then you can use the
simpler putRow() method.

There's more...
To learn about the syntax of the Java language, visit the following URL:
http://download.oracle.com/javase/tutorial/.

As mentioned earlier, you can access the Kettle API from inside the UDJC code. To learn the
details of the API, you should check the source. For instructions on getting the code, follow
the link: http://community.pentaho.com/getthecode/.

To learn more about the UDJC step, visit the Pentaho Community Wiki at
http://wiki.pentaho.com/display/EAI/User+Defined+Java+Class.

Let us see some more information to take advantage of this very useful step.

Data type's equivalence
The code you type inside the UDJC step is pure Java. Therefore, the fields of your
transformation will be seen as Java objects according to the following equivalence table:

Data type in Kettle Java Class
String Java.lang.String

Integer Java.lang.Long

Number Java.lang.Double

Date Java.util.Date

BigNumer BigDecimal

Binary byte[]

The opposite occurs when you create an object inside the Java code and want to expose it as
a new field to your transformation. For example, in the Java code, you defined the variable qty
as long but under the Fields tab, you defined the new output field as Integer.

Generalizing your UDJC code
You can generalize your UDJC code by using parameters. You can add parameters and their
values using the grid located under the Parameters tab at the bottom of the UDJC window.

In our example, you could have defined a parameter named qtyParameter with the value 7.
Then, in the Java code, you would have obtained this value with the following line of code:

long qty = getParameter("qtyParameter");

Chapter 10

377

Looking up information with additional steps
You can also have additional steps that provide information to be read inside your Java code.
They are called Info steps. You declare them in the grid located under the Info step tab at the
bottom of the UDJC window.

In our recipe, suppose that you have the list of separators defined in a Data Grid step. In
order to pick the separators from that list, you have to create a hop from the Data Grid
towards the UDJC step and fill the Info step grid. You must provide a Tag name (for example,
charsList) and select the name of the incoming step. Then, in the Java code, you can use
the findInfoRowSet() method to reference the info step, and the getRowFrom() method
to read the rows in a cycle. Check the code:

RowSet data = findInfoRowSet("charsList");
Object[] dataRow = null;
while((dataRow = getRowFrom(data)) != null){
//Do something
}

Customizing logs
You can add your custom messages for different levels of logging very easily. You can select
the fragment of necessary code from the Step logging node in the Code Snippets folder, or
just type the method in the edit area. For example:

 if (qty <' 10) logBasic("Long sentence found!");

Scripting alternatives to the UDJC step
As an alternative to the UDJC step, there is another step named User Defined Java
Expression, also in the Scripting category. This step allows you to create new fields in an easy
way by typing Java expressions. This step doesn't replace the functionality of that one, but it is
more practical when the task you have to accomplish is simple.

For examples on how to use this step, browse the different recipes
in the book. There are several examples that use the UDJE step.

If you are more familiar with JavaScript language, instead of UDJC you could use the Modified
Java Script Value (MJSV) step. Take into account that the code in the JavaScript step is
interpreted, against UDJC that is compiled; this means that a transformation that uses the
UDJC step will have much better performance. The UI for the MJSV step is very similar to the
UI for the UDJC step; there is a main area to write the JavaScript code, a left panel with many
functions as snippets, the input fields coming from the previous step, and the output fields.
You can learn more about JavaScript in the following link: http://www.w3schools.com/
js. As an additional resource, you can get Pentaho 3.2 Data Integration: Beginner's Guide,
Packt Publishing by María Carina Roldán. There is a complete chapter devoted to the use of
the Modified Java Script Value step.

Getting the Most Out of Kettle

378

Finally, if you prefer scripting to Java programming, there is a Kettle plugin named Ruby
Scripting developed by Slawomir Chodnicki, one of the most active Kettle contributors. As the
name suggests, the step allows you to develop custom functionality by scripting Ruby code.
The UI for the Ruby plugin is very similar to the UI for the UDJC step. In this case, you don't
have snippets but you have many sample transformations that demonstrate the capabilities of
the plugin. Along with the samples, you have a couple of links to Ruby resources on the web.
The plugin is available at the following URL: https://github.com/type-exit/Ruby-
Scripting-for-Kettle.

Generating sample data for testing purposes
Having sample data to test your transformations is very useful and allows you to move faster
through your development and testing process. There are several cases where you will want to
generate sample data, for example:

 f To quickly populate datasets with random data

 f Manually generate specific information

 f Generate large volumes of custom data

Take a subset from a large volume of data. In this recipe you will learn how to generate a
dataset with 100 random rows in different formats (integer, string, and dates). Then, in the
There's more section, you will find alternative solutions for generating data for testing.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Generate rows step from the Input category. Here, set the Limit textbox
to 100.

3. Add a Generate random value step from the Input category. Add two elements to the
grid: randomInteger of random integer type, and randomString of random
string type.

4. Doing a preview on this last step, you will obtain a list of 100 random strings
and integers. One example of these values would be: 1925608989 (integer) and
1jhn0udelvmpe (string)

Chapter 10

379

All the integer values have a large number of digits. What if, for some particular purpose, you
want an integer with few digits or an integer in a specific range of values? Let's create
a random integer in another way:

1. Drop a User Defined Java Expression from the Scripting category. Add a new field
named shortInteger and type the following text in the Java expression column:
(int)Math.floor(Math.random()*3650). Also, select Integer in the Value
type column.

2. Do a preview and check the new shortInteger field; it will have values between
0 and 3649.

Now, let's do a simple trick to create a random date:

1. In its Field's grid of the Generate rows step, create a new field named aDate, select
Date in the Type listbox, use MM/dd/yyyy as the Format, and type 01/01/2000 in
the Value column.

2. Add a Calculator step from the Transform category and complete the grid, as shown
in the following screenshot:

3. Finally, if you run a preview on this last step, you will have your desired random values
in different formats. See the following screenshot, as an example:

Getting the Most Out of Kettle

380

How it works...
In this recipe you have learnt the use of the Generate random value step in order to generate
random integer and string values. The Generate rows step at the beginning has the purpose
of generating 100 blank rows, which will be filled later with random values. You can vary the
Limit textbox if you desire a different number of rows.

Also, you have used the random function inside a Java expression, in order to generate a short
integer by taking advantage of the User Defined Java Expression step. In this way you can
also set the range for your random numbers.

Notice that, in the Generate rows step, you have declared a new field named aDate with
the value 01/01/2000. This date will then be used in the Calculator step. You generated a
random date using a calculation that adds a random integer to the original date 01/01/2000.
The integer has a value between 0 and 3649, which represents about 10 years, so the
random date will be between 01/01/2000 and 28/12/2010.

There's more...
From the Generate random value step, you can also generate the following:

 f Random numbers: This consists of float values between 0 and 1

 f Universally Unique Identifier (UUID): This involves identifier standards such as
b8f395d5-1344-11e0-af0b-6319f7359ecb

 f Random message authentication code (HMAC): This is typically used in cryptography,
for example, d59ee7a0e026aa1edc5c3398531d4452

In the following subsections you will find more ways to generate data for testing in
other scenarios.

Using a Data grid step to generate specific data
The Data grid step allows you to create a dataset including both metadata and values inside
the transformation. The step has the following two tabs:

 f Meta: Under this tab, you add the fields and define their type and format. You can
define fields using any of the Kettle data types.

 f Data: Under this tab, you can enter the values for the fields defined previously.

This step is very useful when you need to populate a short list of rows with particular fields
and/or values, thus avoiding creating a text file for that purpose.

Chapter 10

381

Let's look at a practical example of the use of Data Grid. Suppose that you have created a
regular expression and want to be sure that it is properly written, you can populate a data grid
with a single String field. As values, you can type the list of values against which you want
to test the regular expression, including values that should match the expression and values
that shouldn't. After the Data Grid, just add a Regexp Evaluation step, enter your regular
expression, and do a preview on this step. That is a very easy and quick way of testing with the
help of a Data Grid.

Working with subsets of your data
On many occasions, you have to develop transformations that will process huge volumes of
information. However, working with that volume during the development process is not a good
idea, it slows down your development process, and makes testing what you are doing difficult.
It's better to work with a small sample of that information.

There is a step named Reservoir Sampling in the Statistic folder that allows you to return a
subset of your incoming stream. In this step, you must set the number of rows to get in the
Sample size textbox, and also set the Random seed, used internally in the step to produce a
random sample of your data.

In the same category you can find the Sample rows step. This step also generates a subset
of your incoming stream but, in this case, the rows are not chosen in a random way, you must
specify the range as explained in Chapter 7, Understanding and Optimizing Data Flows.

See also
 f The Processing rows differently based on the row number recipe in Chapter 7,

Understanding and Optimizing Data Flows

Working with JSON files
JavaScript Object Notation (JSON) is a lightweight language-independent data interchange
format. It uses conventions similar to the C or JavaScript languages, with some rules for
the representation of structured data. The object is represented as a collection of the
name_of_field:value_of_field pairs and you can have an array of these elements
using the [] characters.

PDI allows reading and writing these kinds of files using the JSON input and JSON output
steps from the Input category. Let's see an example of reading a JSON file. Let's assume that
you have a file named museums.js that you want to read for further processing. The file has
the following information:

{"data": {
 "museum": [
 {

Getting the Most Out of Kettle

382

 "country": "Italy",
 "city": "Venice",
 "id_museum": "109"
 "name": "Palazzo Ducale"},
 {
 "country": "Mexico",
 "city": "Mexico City",
 "id_museum": "36"
 "name": "Museo de Arte Contemporaneo de Monterrey"},
 {
 "country": "Italy",
 "city": "Florence",
 "id_museum": "47"
 "name": "Museo di San Marco"}
]
 }
 }

In addition, you want to read it for further processing.

Getting ready
To run this recipe, you need the museums.js file with the museum information shown earlier.
You can also download the file from Packt's site.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a JSON input step from the Input category.

3. Type the name of the file with its complete path in the File or directory textbox
located under the File tab, for example, ${Internal.Transformation.
Filename.Directory}\museums.js. Click on the Add button.

4. Complete the Fields tab, as shown in the following screenshot:

Chapter 10

383

5. Previewing the transformation, you will obtain a dataset with the museum information
from the museums.js JSON source file.

How it works...
The JSON input step reads and interprets the museum.js JSON data using the Path column
under the Files tab. Here, you must use a JSONPath expression, in a similar way to how the
XPath expressions are used in XML files. A basic overview of the JSONPath syntax elements is
shown in the following table:

JSONPath Description
$ Root object
. Child operator
[] Array operator
[,] Union operator in XPath

The child operator is used to access different levels inside the JSON structure, for example,
$...city means the city element inside the museum element inside the data element
from the root.

If you want to access a particular element, you should use $.data.museum[1].city, that
means the city of the second museum element inside the data element from the root.

In JSON, the lists are zero-based.

There's more...
You can find more information about the JSON language at the following URL:
http://www.json.org/.

In the following subsections you will find some considerations about reading and writing
JSON files.

Reading JSON files dynamically
In this recipe, you used the JSON input step to read the museum.js JSON file, but you can
also read the JSON data from a field by checking the Source is defined in a field? checkbox
and selecting the field in the Get source from field listbox.

Getting the Most Out of Kettle

384

Another option is when the name of the JSON file is in a field. In this case, instead of typing
the name of the file, you must check both the Source is defined in a field? and Source is a
filename? checkboxes and select the field that contains the name of the JSON file in the Get
source from field listbox.

Writing JSON files
If you need to create a file or a field in JSON format, you can use the JSON output step from
the Output category. Under the General tab of this step, there is a listbox named Operation
where you can choose either a file or field destination.

If you choose a file destination, you need to fill the Output File section with information about
the file to be generated. If you choose the Output value operation, you must type the name of
the new field in the Output Value textbox.

Then, under the Fields tab, you need to populate the grid with the source fields coming from
the data source, and the element name for the JSON structure.

For example, assume that you are using a data source with authors' information like
the following:

"lastname","firstname","country","birthyear"
"Larsson","Stieg","Swedish",1954
"King","Stephen","American",1947
"Hiaasen","Carl ","American",1953
"Handler","Chelsea ","American",1975
"Ingraham","Laura ","American",1964
"Ramsey","Dave ","American",1960
"Kiyosaki","Robert ","American",1947,"A00007"
"Rowling","Joanne ","English",1965

"Riordan", "Rick", "American", 1964. If you add a JSON output step and an Output value
operation, you will obtain a new field with each row in JSON format, with a value, as follows:

{"data":[{"lastname":"Larsson"},{"firstname":"Stieg"},{"country":"
 Swedish"},{"birthyear":1954}]}

Chapter 10

385

Previewing the step, the result should be similar to the following:

Getting information about transformations
and jobs (file-based)

The transformations and jobs are files with .ktr and .kjb extensions, but are, in fact,
well-formed XML documents. You can open these files with a text editor to see their structures.
You could take advantage of this feature to process some information within these files. Let's
look at an example: assume that you want to lookup the Modified Java Script Value steps.
You want to know where and how many of these steps are there because you want to replace
them with a User defined Java Class step, which provides better performance.

Getting ready
In order to use this recipe, you need a directory with a set of transformations, some of them
including the Modified Java Script Value steps. The example points to the Kettle sample
transformation directory.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Get data from XML step from the Input category into the canvas.

3. Type or browse for the source transformations directory under the File tab, for
example, C:\Pentaho\pdi-ce-4.1\samples\transformations. Type
.*\.ktr in the Regular Expression textbox. Click on the Add button to populate
the Selected files grid.

Getting the Most Out of Kettle

386

4. Select the Content tab and type /transformation/step in the Loop XPath
textbox as shown in the following screenshot.

5. Complete the Fields tab, as shown in the following screenshot:

6. Under the Additional output fields tab, type filename in the Short filename field.

7. If you preview this step, you will obtain a list of all the steps from the transformations
source directory, including information about what kind of step is it. Here's an example:

8. Add a Filter rows step from the Flow category. Add the following condition:
Type = ScriptValueMod.

Chapter 10

387

9. Now, previewing the step, you will obtain only the name of the Modified Java Script
Value steps included in the transformations, as well as the transformation filenames
where these steps were found.

How it works...
In this recipe, you used the Get data from XML step to read the transformation files located
in the directory C:\Pentaho\pdi-ce-4.1\samples\transformations. By using
the /transformation/step XPath node, you are getting a new row for each step in the
transformations. As fields, you picked from that node the name of the step and its type.

Then, you used a Filter rows step to keep only the rows where the type of the step was equal
to ScriptValueMod. This means, the Modified Java Script Value steps.

In the Get data from XML step, you also included the short filename of the transformation
because you wanted to identify the source file of the transformations that had those steps.

Getting the Most Out of Kettle

388

There's more...
The following are some of the most important nodes in the transformation and job XML files.
With these nodes, you can loop through the jobs and transformations you have created to
get specific details about the entire repository of processes (like what data sources are used,
what steps are used in which processes, and so on).The following table lists the common XML
nodes for transformations.

LoopXPath Information
/transformation Root node for each transformation.
/transformation/info One node for each transformation file. Here, you have

the name and description of the transformation, its
parameters, and the creation dates among others.

/transformation/notepads From here you can get the notepads.
/transformation/info/log You can get information about the transformation

logging configuration.
/transformation/connection One node for each database connection used in the

transformation (or one for each database connection
defined, if you didn't check the Only save used
connections to XML? option)

/transformation/step One node for each step of the transformation. You
have the entire configuration of the step in this node;
the most important elements here are the name of the
step and its type.

 /transformation/step/file One node for each file or folder pointed to from a step.
It includes data about the name of the file or folder,
the mask typed, subfolders, and so on.

/transformation/step/field One node for each field declared under the Fields
tab of a step. You can get all the information about
the fields, such as the name, its type, or the format
configuration.

/transformation/order/hop One node for each hop. Here you have the links
between the steps.

Chapter 10

389

Job XML nodes
The following table lists the common XML nodes for Jobs.

LoopXPath Information
 /job One node for each job. From here, you can get the name of

the job and the parameters among other things.
/job/notepads From here you can get the notepads.
/job/connection One node for each database connection used in the job

(or one for each database connection defined if you didn't
check the Only save used connections to XML? option)

/job/job-log-table These nodes have the job logging configuration.
/job/jobentry-log-table

/job/channel-log-table

/job/entries/entry One node for each job entry. You can look here for
the name of the entries, their type, and the entire
configuration fields for the entries.

/job/hops/hop One entry for each link between job entries.

Steps and entries information
You can check the name and the type of all steps in the Step Information… option from the
Help menu of Spoon, as shown in the following screenshot:

Getting the Most Out of Kettle

390

The ID column represents the steps identification, the Name column is how it appears in
Spoon, and the Description column is the tooltip. You also can see the category of the step
in the category column.

In the recipe, you compared the type field in the transformation against the ID column in
this list.

The Job Entry Information… option shows similar information, but for the job entries.

See also
 f Getting information about transformations and jobs (file-based)
 f Getting information about transformations and jobs (repository-based)
 f The Reading simple XML files recipe in Chapter 4, Manipulating XML Structures
 f The Specifying fields by using the XPath notation recipe in Chapter 4, Manipulating

XML Structures

Getting information about transformations
and jobs (repository-based)

In the previous recipe, you learned to read the .ktr and .kjb files to get information from
the transformation and job files respectively. Spoon also allows for storing this data in tables
in a relational database when using a repository-based configuration. So, let's do the same
task that we did in the previous recipe, but this time connect to a Kettle repository. The
objective is to search for the Modified Java Script Value steps inside a set of transformations.

Getting ready
For running this recipe, you must have a Kettle repository and a set of transformations stored
in it. If you don't have a list of sample transformations to play with, then you can connect to
the repository and import them from the PDI samples directory.

How to do it...
Carry out the following steps:

1. Create a new transformation.

2. Drop a Table input step from the Input category into the canvas.

3. Create a connection to your repository database.

Chapter 10

391

4. Type the following SQL statement:
SELECT R_TRANSFORMATION.NAME AS transformation_name,
 R_STEP.NAME AS step_name,
 R_STEP_TYPE.CODE as step_type
FROM R_STEP
INNER JOIN R_STEP_TYPE ON R_STEP.ID_STEP_TYPE =
 R_STEP_TYPE.ID_STEP_TYPE
INNER JOIN R_TRANSFORMATION ON R_STEP.ID_TRANSFORMATION =
 R_TRANSFORMATION.ID_TRANSFORMATION
WHERE R_STEP_TYPE.CODE = 'ScriptValueMod'

5. Previewing this step, you will obtain a dataset with one row for each Modified Java
Script Value step. In this dataset, you have the name of the transformation (in the
transformation_name field) and the name of the Java script step (in the step_name
field). This list will vary depending on the transformations stored in the repository.

How it works...
This recipe shows you how to read the transformation tables when you are working with a
repository-based configuration.

The only thing to do here is to create a connection to the database where you have the
repository and write the correct SQL Statement. In this case, you must read the table that
contains the steps (R_STEP) and filter those which match a Modified Java Script Value step
(R_STEP_TYPE.CODE = 'ScriptValueMod'). If you open the R_STEP_TYPE table, then
you can see the list of steps and verify that the ScriptValueMod code corresponds to a
Modified Java Script Value step.

The SQL statement also includes a join with the R_TRANSFORMATION table in order to get the
name of the transformation.

There's more...
A Kettle repository is made up of several tables where Kettle stores all the information related
to transformations and jobs. The next subsections explain the most significant tables found in
a repository.

Getting the Most Out of Kettle

392

Transformation tables
These tables store the information regarding Kettle transformation files from the steps and hops
that make the transformation up, to the notes that developers have added for future reference.

ID_STEP_TYPE: BIGINT [PK]
CODE: VARCHAR(255)
DESCRIPTION: VARCHAR(255)
HELPTEXT: VARCHAR(255)

R_STEP_TYPE

ID_STEP_TYPE: BIGINT [PK]
ID TRANSFORMATION: INTEGER [FK]
NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR
ID_STEP:IYPE: INTEGER [FK]
DISTRIBUTE: CHAR(1)
COPIES: INTEGER
GUI_LOCATION_X: INTEGER
GUI_LOCATION_Y: INTEGER
GUI_DRAVV: CHAR(1)

R_STEP

ID TRANSFORMATION: INTEGER [FK]
ID_STEP_FROM: INTEGER [FK]
ID_STEP_TO: INTEGER [FK]
ENABLED: CHAR(1)

ID_TRANS_HOP: BIGINT [PK]
R_TRANS_HOP

ID TRANSFORMATION: INTEGER [FK]
ID_NOTE: INTEGER [FK]

R_TRANS_NOTE

VALUE_STR: LONGVARCHAR
GUI_LOCATION_X: INTEGER
GUI_LOCATION_Y: INTEGER
GUI_LOCATION_WIDTH: INTEGER
GUI_LOCATION_HEIGHT: INTEGER
FONT_NAME: LONGVARCHAR
FONT_SIZE: INTEGER
FONT_BOLD: CHAR(1)
FONT_ITALIC: CHAR(1)
FONT_COLOR_RED: INTEGER
FONT_COLOR_GREEN: INTEGER
FONT_COLOR_BLUE: INTEGER
FONT_BACK_GROUND_COLOR_RED: INTEGER
FONT_BACK_GROUND_COLOR_GREEN: INTEGER
FONT_BACK_GROUND_COLOR_BLUE: INTEGER
FONT_BORDER_COLOR_RED: INTEGER
FONT_BORDER_COLOR_GREEN: INTEGER
FONT_BORDER_COLOR_BLUE: INTEGER
DRAW_SHADOW: CHAR(1)

ID_NOTE: BIGINT [PK]
R_NOTEID_DIRECTORY: INTEGER

NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR
EXTENDED_DESCRIPTION: LONGVARCHAR
TRANS_VERSION: VARCHAR(255)
TRANS_STATUS: INTEGER
ID_STEP_READ: INTEGER
ID_STEP_WRITE: INTEGER
ID_STEP_INPUT: INTEGER
ID_STEP_OUTPUT: INTEGER
ID_STEP_UPDATE: INTEGER
ID_DATABASE_LOG: INTEGER
TABLE_NAME_LOG: VARCHAR(255)
USE_BATCHID: CHAR(1)
USE_LOGFIELD: CHAR(1)
ID_DATABASE_MAXDATE: INTEGER
TABLE_NAME_MAXDATE: VARCHAR(255)
FIELD_NAME_IvIAXDATE: VARCHAR(255)
OFFSET_MAXDATE: DOUBLE
DIFF_MAXDATE: DOUBLE
CREATED_USER: VARCHAR(255)
CREATED_DATE: TIMESTAMP
MODIFIED_USER: VARCHAR(255)
MODIFIED_DATE: TIMESTAMP
SIZE_ROWSET: INTEGER

ID_TRANSFORIvIATION: BIGINT [PK]
R_TRANSFORMATION

ID_TRANSFORMATION: INTEGER [FK]
ID_STEP: INTEGER [FAK]
NR: INTEGER [AK]
CODE: VARCHAR(255) [AK]
VALUE_NUM: BIGINT
VALUE_STR: LONGVARCHAR

ID_STEP_ATTRIBUTE: BIGINT [PK]
R_STEP_ATTRIBUTE

Table Information
R_
TRANSFORMATION

Here we have the basic information for the transformation, such as the
transformation name or its creation date.

R_STEP One record for each step. You can get the name of the step and the
identification of its type.

R_STEP_TYPE The list of step types. Here you can get the name, the description, and
the tooltip for each kind of step

R_TRANS_HOP One record for each hop. It provides the information related to the link
between steps.

R_STEP_
ATTRIBUTE

Settings for the step. Each feature you define in a step is saved in
the columns CODE and VALUE_NUM if the feature is a number, or
CODE and VALUE_STR otherwise. For example, if the step represents
the name of a file, then you will have CODE=filename and
VALUE_STR=c:/files/sample.xls

R_TRANS_NOTE Here are the notes from the transformation. There is a note
identification field linked to the table R_NOTE, where you have the
description of the note.

Chapter 10

393

Job tables
As with the transformation tables listed in the previous section, the job tables list the details
of the jobs created within Kettle.

ID_IOBENTRY_ATTRIBUTE: BIGINT [PK]
ID_IOB: INTEGER [FK]
ID_IOBEBTRY: INTEGER [FK]
NR: INTEGER [AK]
CODE: VARCHAR(255) [AK]
VALUE_NUM: DOUBLE
VALUE_STR: LONGVARCHAR

R_IOBENTRY_ATTRIBUTE

ID_JOBENTRY: BIGNT [PK]
ID_JOB: INTEGER [FK]
ID_JOBEBTRY_TYPE: INTEGER [FK]
NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR

R_JOBENTRY

ID_JOBENTRY_TYPE: BIGINT [PK]
CODE: VARCHAR(255)
DESCRIPTION: VARCHAR(255)

R_JOBENTRY_TYPE

ID_JOB_HOP: BIGINT [PK]
ID_JOB: INTEGER [FK]
ID_JOBENTRY_COPY_FROM: INTEGER [FK]
ID_JOBENTRY_COPY_TO: INTEGER [FK]
ENABLED: CHAR(1)
EVALUATION: CHAR(1)
UNCONDITIONAL: CHAR(1)

R_JOB_HOP

ID_JOB: BIGINT [PK]
ID_DIRECTORY: INTEGER
NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR
EXTENDED_DESCRIPTION: LONGVARCHAR
JOB_VERSION: VARCHAR(255)
JOBSTATUS: INTEGER
ID_DATABASE_LOG: VARCHAR(255)
CREATED_USER: VARCHAR(255)
CREATED_DATE: TIMESTAMP
MODIFIED_USER: VARCHAR(255)
MODIFIED_DATE: TIMESTAMP
USE_BATCH_ID: CHAR(1)
PASS_BATCH_ID: CHAR(1)
USE_LOGFIELD: CHAR(1)
SHARED_FILE: VARCHAR(255)

R_JOB

ID_NOTE: BIGINT [PK]
VALUE_STR: LONGVARCHAR
GUI_LOCATION_X: INTEGER
GUI_LOCATION_Y: INTEGER
GUI_LOCATION_WIDTH: INTEGER
GUI_LOCATION_HEIGHT: INTEGER
FONT_NAME: LONGVARCHAR
FONT_SIZE: INTEGER
FONT_BOLD: CHAR(1)
FONT_ITALIC: CHAR(1)
FONT_COLOR_RED: INTEGER
FONT_COLOR_GREEN: INTEGER
FONT_COLOR_BLUE: INTEGER
FONT_BACK_GROUND_COLOR_RED: INTEGER
FONT_BACK_GROUND_COLOR_GREEN: INTEGER
FONT_BACK_GROUND_COLOR_BLUE: INTEGER
FONT_BORDER_COLOR_RED: INTEGER
FONT_BORDER_COLOR_GREEN: INTEGER
FONT_BORDER_COLOR_BLUE: INTEGER
DRAW_SHADOW: CHAR(1)

R_NOTE

ID_JOB: INTEGER [FK]
ID_NOTE: INTEGER [FK]

R_JOB_NOTE

Table Information
R_JOB Basic information on the job. For example, its name or creation

date.
R_JOBENTRY One record for each job entry. Here you get the name and the

type of the job entries.
R_JOBENTRY_TYPE The list of the job entries (identification, name, and description).
R_JOB_HOP One record for each hop. With this information, you know how

the job entries are linked.
R_JOBENTRY_ATTRIBUTE Settings for the step. Each feature you define in a step is

saved in the columns CODE and VALUE_NUM if the feature
is a number, or CODE, and VALUE_STR otherwise. See
R_STEP_ATTRIBUTE in the previous table for an example.

R_JOB_NOTE Here are the notes from the job. There is a note identification
field linked to the table R_NOTE, where you have the description
of the note.

Getting the Most Out of Kettle

394

Database connections tables
Database connection details are also stored within the Kettle repository. The associated
tables are shown in the following screenshot:

ID_DATABASE: BIGINT [PK]
NAME: VARCHAR(255)
ID_DATABASE_TYPE: INTEGER [FK]
ID_DATABASE_CONTYPE: INTEGER [FK]
HOST_NAME: VARCHAR(255)
DATABASE_NAME: VARCHAR(255)
PORT: INTEGER
USERNAME: VARCHAR(255)
PASSWORD: VARCHAR(255)
SERVERNAME: VARCHAR(255)
DATA_TBS: VARCHAR(255)
INDEX_TBS: VARCHAR(255)

R_DATABASE

ID_DATABASE_ATTRIBUTE: BIGINT [PK]
ID_DATABASE: INTEGER [FAK]
CODE: VARCHAR(255) [AK]
VALUE_STR: LONGVARCHAR

R_DATABASE_ATTRIBUTE ID_STEP: BIGINT [PK]
ID_TRANSFORMATION: INTEGER
NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR
ID_STEP_TYPE: INTEGER
DISTRIBUTE: CHAR(1)
COPIES: INTEGER
GUI_LOCATION_X: INTEGER
GUI_LOCATION_Y: INTEGER
GUI_DRAW: CHAR(1)

R_STEP

ID_DATABASE_TYPE: BIGINT [PK]
CODE: VARCHAR(255)
DESCRIPTION: VARCHAR(255)

R_DATABASE_TYPE

ID_JOBENTRY: BIGINT [PK]
ID_JOB: INTEGER
ID_JOBENTRY_TYPE: INTEGER
NAME: VARCHAR(255)
DESCRIPTION: LONGVARCHAR

R_JOBENTRY

ID_JOB: INTEGER
ID_JOBENTRY: INTEGER [FK]
ID_DATABASE: INTEGER [FK]

R_JOBENTRY_DATABASE

ID_TRANSFORMATOIN: INTEGER
ID_STEP: INTEGER [FK]
ID_DATABASE: INTEGER [FK]

R_STEP_DATABASE

ID_DATABASE_CONTYPE: BIGINT [PK]
CODE: VARCHAR(255)
DESCRIPTION: VARCHAR(255)

R_DATABASE_CONTYPE

Table Information
R_DATABASE Here we have the settings for the database connections

used in the steps or entries
R_STEP_DATABASE One record for each step that uses a database connection. It

links the step with the database identification.
R_JOBENTRY_DATABASE One record for each entry job that uses a database

connection. It links the entry job with the database
identification.

R_DATABASE_TYPE List of database engines. For example, MYSQL, ORACLE,
DB2, MSSQL, among others.

R_DATABASE_CONTYPE Type of access to the database: Native, ODBC, OCI,
Plugin, and JNDI.

Chapter 10

395

Table Information
R_DATABASE_ATTRIBUTE Here, you have the settings for each database connection.

In the CODE column, you have the name of the variable
whereas in the VALUE_STR column, you have the value.

Using Spoon's built-in optimization tools
Spoon being the developer's tool box, many of the tools used to fine tune and optimize
transformations and jobs can be found within the interface. Developers should strive to
tune their processes to match the load that it will be processing. Performance is normally
measured in a few ways: CPU, RAM, and bandwidth usage, as well as the number of records
that can be processed within a given timeframe. With this recipe, we'll dive into the different
tools and some of the common techniques that can be used to improve performance.

Getting ready
The transformation and job used in this recipe are available via Packt's website. The example
job executes the transformation, which in turn processes some randomly generated values
and inserts them into a database table. The transformation is built to not run properly and
have issues on execution. The recipe will walk through how to identify those issues using
Spoon's built in tools.

How to do it...
Follow the steps to optimize the job and transformation:

1. Open Spoon and the example job.

2. Run the job. Notice that the Execution Results pane opens and starts showing stats
on the job.

Getting the Most Out of Kettle

396

3. Right-click on the transformation and select Open transformation. The
transformation will open and you can now see the metrics for it.

4. While the transformation is running, it will come to the point where it can no longer
process data and fail. As shown in the previous screenshot, the failure occurred on
the Insert/Update step (it will be highlighted in red on the Step Metrics tab). We
need to further identify why the transformation failed. Click on the Logging tab under
Execution Results and click on the red error icon to show the lines of the logfile that
are associated with the error.

5. The error lines that pop up show that the issue is a lock wait timeout. Look at the
three Insert/Update steps in the transformation. It appears that we are trying to
enter data into the same table, which would explain the timeout. Remove the two
Insert/Update steps from the Over 100K Group Add Constants step and the Over
10M Group Add Constants step as shown in the following screenshot:

Chapter 10

397

6. Connect the Over 100K Group and Over 10M Group Add Constants steps to the
remaining Insert/Update step as shown in the following screenshot.

7. Run the transformation again to verify that the lock wait timeout has been resolved.

Another way to resolve the lock wait timeout would be to add
Block this step until steps finish steps that wait on the Insert/
Update steps to finish before it executes. A word of warning, if
using the blocking steps, be aware that a deadlock can be created
if multiple are used and they are dependent on each other.

Getting the Most Out of Kettle

398

Another common problem is around data streams. Validating stream metadata,
ensuring that fields are in the stream, and field placements are all common
problems that can impact not only whether a process will execute successfully, but
also performance. The next part of the recipe will show how to view data stream
metadata, both during development and while testing the process.

8. Right-click on the Generate random value step and select the Show Input fields
option. The stream at that point with its given metadata will appear:

9. Close the window and then right-click on the Generate random value step again, this
time selecting the Show Output fields option. A similar window will pop up with the
added field from the Generate random value step now appearing in the stream.

10. Close the window and then run the transformation again. Right-click on the Generate
random value step one more time and select Show sniff test during execution for
either input or output. A window appears showing the runtime data stream.

How it works...
Spoon takes a lot of what goes on during the processing of transformations and jobs and
exposes it to developers so they can troubleshoot and build better processes. Metadata
and live data stream analysis can help correct problems with breaking processes. While the
techniques shown in this recipe won't make processes work perfectly overnight, they can help
guide you to best practices to identify bottlenecks that would normally not be discovered until
the process is closer to production.

Chapter 10

399

There's more...
There are other tools available for monitoring performance. In the Execution Results pane,
there is a Performance Graph that can be enabled and shows various stats for a given
process. While the metrics gathering is not CPU intensive running in kitchen or pan, there are
some resources used to update the screenshot:

Metrics are collected from every step, matching the categories that are found on the Step
Metrics tab. This data can also be stored within a database for longer term trending. More
details can be found at the Pentaho wiki: http://wiki.pentaho.com/display/EAI/
Step+performance+monitoring.

The wiki also has a great article on some common performance tuning tips that can boost
throughput significantly. Check it out at http://wiki.pentaho.com/display/COM/
PDI+Performance+tuning+check-list.

11
Utilizing Visualization

Tools in Kettle

In this chapter, we will cover:

 f Managing plugins with the Marketplace

 f Data profiling with DataCleaner

 f Visualizing data with AgileBI

 f Using Instaview to analyze and visualize data

Introduction
As we have seen in earlier chapters, Kettle provides a lot of functionality out of the box, but
there are a lot of great feedback mechanisms that have been added that can help make
developing and working with data even easier. Being able to profile and visualize data streams
allows for developers to gather feedback from customers to determine if they have met
customer requirements. Some of these features are not provided directly in the tool, but are
available as plugins. One of Kettle's most distinguishing features is the ability to create and
add plugins directly into the tool.

Utilizing Visualization Tools in Kettle

402

In this chapter you will learn to work with plugins as well as work with some of the advanced
capabilities that they provide.

The plugin ecosystem is a vibrant and growing component of
the Pentaho community. Plugins are sometimes picked up
and made part of the core Kettle project. If you find that one
of the plugins mentioned in the following recipes is already in
your version of Kettle, don't be surprised!

In order to follow these recipes, you will need to have an Internet connection that will allow
you to access Pentaho's web resources. The Pentaho wiki has a page dedicated to all of the
publicly known available plugins, which can be found at http://wiki.pentaho.com/
display/EAI/List+of+Available+Pentaho+Data+Integration+Plug-Ins. Many
of the plugins listed have made their way into the newer versions of Kettle.

Another way to access plugins is through the new Marketplace feature, which provides a
simpler way of managing plugins than the manual process older versions used.

Managing plugins with the Marketplace
Before you can work with all the nifty new features and capabilities that plugins can provide,
you have to be able to manage them! In this recipe we will cover how to install and remove
plugins through the Marketplace.

The Marketplace is a new feature to Kettle 5. Earlier
versions of Kettle require the manual addition and
removal of plugins. All plugins can be found in the plugins
directory where Kettle is installed.

Getting ready
For this recipe we will require an Internet connection so that Kettle can connect to the
Marketplace and retrieve the plugin we are installing.

How to do it...
Follow the given steps to install a plugin:

1. Open Spoon and click on the Help menu and select Marketplace.

Chapter 11

403

2. The Marketplace menu will open. Select the DataCleaner Data Profiling for Kettle
version 5 or higher plugin.

3. Read through the package details. Each plugin should provide details of the author,
the location of the plugin, and so on.

4. Click on the Install this Plugin button to install DataCleaner. The files will be
downloaded and then a dialog will pop up asking you to restart Spoon.

5. Go back into the Marketplace and look for the DataCleaner plugin. You will notice
that it has been successfully installed.

To remove a plugin, follow the given steps:

1. Enter the Marketplace and select the plugin you wish to uninstall.

2. In the package details section, you will notice the Install this plugin button has
switched to an Uninstall this plugin button.

3. Click on the Uninstall this plugin button to remove the plugin.

Utilizing Visualization Tools in Kettle

404

How it works...
The Marketplace utilizes a Git repository to manage what plugins are available to download.
This way, plugin developers have an easy way to manage their plugins and provide Pentaho
with the details required to streamline the plugin management process. More details can be
found on the Pentaho wiki at http://wiki.pentaho.com/display/EAI/Marketplace.

There's more...
While the Marketplace does provide a cleaner interface to work with, it is still possible to
install plugins manually. All installed plugins can be found in the plugins directory where
Kettle is installed. The plugins should provide details on where they should be placed within
this directory.

If you are using the 4.x branch of Kettle, details on how to install the DataCleaner plugin
are provided on the Pentaho wiki at http://wiki.pentaho.com/display/EAI/
Human+Inference.

See also
 f Data profiling with DataCleaner

Data profiling with DataCleaner
Data profiling is an often overlooked process due to time or resource constraints on projects
that, in reality, can save time and catch issues before they occur in your data integration
code. For instance, finding data that doesn't match expected formats or fit within ranges,
misspellings, improperly formatted dates, or discovering strings in an expected numerical field
can all break a transformation.

DataCleaner is an open source data profiling tool that integrates with Kettle and can profile
data while code is in the process of being developed. Additionally, DataCleaner jobs can be
integrated into Kettle jobs and run as part of larger processes.

Profiling data shows the meta-information about the data being processed—from how many
values fit into ranges to how many values fit a given format. This can help data integration
developers write more optimized processes and determine if the quality of the source is
capable of meeting the requirements of the project it is being used in.

For this recipe we will be working with DataCleaner in two ways. The first will be profiling data
while within Spoon. The other will be executing a DataCleaner job as part of a Kettle job.

Chapter 11

405

Getting ready
This recipe assumes that the DataCleaner plugin has been installed into Spoon. The process
for installing the plugin is discussed in the earlier Managing plugins with the Marketplace
recipe. While the recipe will not require any previous experience with DataCleaner, it may
be beneficial to work with the tool before diving in to working with it within Kettle. The
DataCleaner website provides some really good documentation and can be accessed from
http://datacleaner.org/.

We will be using the books database. The scripts to create the database can be found on
Packt's website. This database has been used in other chapters, so it is likely that you have
already created and populated the database. Additionally, the code from Packt's website
also includes a simple DataCleaner job for the second part of the recipe. If you already know
how to create data profiling jobs, feel free to substitute one you have already built with the
sample one.

How to do it...
This part of the recipe will show you how to profile data while developing a transformation:

1. Open Spoon and create a new transformation.

2. From the pallet's Input folder, bring a Table input step to the canvas.

3. Open the Table input step and connect to the books database.

4. Pull all of the data from the authors table:
SELECT
 `lastname`
, `firstname`
, `nationality`
, `birthyear`
, `id_author`
FROM `authors`

5. Click the OK button to exit the step.

6. Right click on the Table input step and select the Profile option.

7. The Kettle Launch window will open. Click on Launch.

Utilizing Visualization Tools in Kettle

406

8. DataCleaner will then open and read the metadata information about the data
stream in Kettle. Notice that some analyzer defaults have already been selected
based on the data types of the data.

9. Click on the Execute button in the top-right corner. The data will be processed in the
transformation and profiled by DataCleaner. The results will be returned as in the
following screenshot:

Chapter 11

407

10. We can also customize the profiling job with other analyzers. Let's add a value
distribution analyzer by clicking on the Analyze menu and selecting Value Distribution.

11. Rerun the profiling job by selecting the Execute button. The output will now have
value distribution entries:

12. Close the results window.

13. Close DataCleaner and return to Spoon.

Now that we have seen how to run DataCleaner to profile data during development, let's now
execute a DataCleaner job at runtime:

1. Open Spoon and create a new job.

2. Add a Start step from the pallet onto the canvas.

3. Under the Utility folder in the pallet, select the Execute DataCleaner step and bring
it to the canvas. Create a hop between the Start and Execute DataCleaner steps.

4. Open the Execute DataCleaner step. This step will require some configuration to
work appropriately. Specifically, we must identify the following:

 � DataCleaner installation location: This can be the version included
with Kettle, or a version that you have downloaded. It should point to
the datacleaner.sh or datacleaner.exe file, depending on which
operating system you are running on.

 � Job file location: This is the path to the file from the book's code set, or
a profile job that you have created.

Utilizing Visualization Tools in Kettle

408

 � Output file location: The location that the output of the profiling job should
be stored in.

 � Output type: For this example, we will be using the HTML output format.

5. Click on OK to exit the step.

6. Save and run the job. The output file should be created and can be opened with any
browser. Notice that we receive similar output when we run the profiling job directly
from within DataCleaner earlier.

How it works...
DataCleaner and Kettle are both Java applications that provide interfaces that allow for the
integration of the two tools. By leveraging an existing technology, Kettle gets the benefit of
a full-fledged data profiling tool and DataCleaner gets the benefit of interfacing with a very
flexible data integration tool. In any case, developers using either tool benefit.

There's more...
While this recipe only covered the basics of using DataCleaner as part of a Kettle process or
while developing some new code, the plugin actually provides access to the more advanced
features of the DataCleaner API. For instance, with the Job step, there is the option to
add additional arguments to the DataCleaner job which can change how DataCleaner
behaves when running and building the profile output. To learn more about these options,
check out the DataCleaner documentation at http://datacleaner.org/resources/
docs/3.5.3/html/pt07.html.

Chapter 11

409

See also
 f Managing plugins with the Marketplace

Visualizing data with AgileBI
In today's world, where customers demand faster responses and the amount of data needed
to be processed has increased dramatically, traditional Business Intelligence shops have
experienced pains due to the cadence at which they can deliver value. One of the largest
challenges is taking those sometimes vague or misleading requirements around the
transformation of source data and then conforming to the new or changing business logic.

Kettle has some built-in tools that allow for developers to work with their customers to work
through the data cleansing and transforming process to determine if they are on the right
track. In this recipe we will walk through how to use the Visualize perspective.

The Visualize perspective is part of the AgileBI component of
Kettle. The primary tool in the perspective is called Analyzer.
Note that Analyzer is available in both the Community and
Enterprise editions of Kettle. It is also available as part of the
Enterprise edition of the Business Analytics Server.

Getting ready
For this recipe we will be using the books database. The scripts for building this database are
available on Packt's website.

How to do it...
Follow the given steps to visualize data:

1. Create a new transformation.
2. From the pallet's Input folder, bring over a Table input step onto the canvas.
3. Open the Table input step. Connect the step to the books database. For the SQL

statement, enter the following:
SELECT
 firstname
, lastname
, nationality
, birthyear
, title
, price
FROM authors a
LEFT JOIN books b ON a.id_author = b.id_author

Utilizing Visualization Tools in Kettle

410

4. From the pallet's Output folder, bring over a Table output step onto the canvas.
Create a hop between the Table input and Table output steps.

5. Open the Table output step. Connect the step to the books database.

6. Enter authors_books_data for the Target table field.

7. Check the Truncate table checkbox.

8. Click on the SQL button and view the CREATE statement written for the
authors_books_data table. Execute the CREATE statement and click on
OK to exit the SQL window. Then click OK to exit the step.

9. Run the transformation. Right-click on the Table output step and select the
Visualize | Analyzer option. Notice that the fields from the table are on the
left in two groups: measure and level.

10. Select the Price measure and add it the Measures field in the Layout section.

11. Select the Nationality level and add it to the Columns field in the Layout section.

12. Now add the Lastname level to the Rows field in the Layout section. We can now
see the sum of prices by the author's last name, which is not necessarily useful. Let's
assume that we have been given the requirement for finding the average price of
books per author.

Chapter 11

411

13. Right-click on Price Measure and select the Subtotals option. Uncheck the Sum
checkbox and select the Average checkbox. Click on OK.

14. Right-click on the Price Measure again and select the Column Name and Format
option. Change the format to Currency and the Decimal Places to 2.

15. Click on the More actions and options button (it looks like a gear) and select
Report options:

16. Check the options for Show Grand Totals for Rows and Show Grand Totals for
Columns. Click on OK.

17. Now you should have a view that shows the average price per nationality as well as
per author, similar to the following:

Utilizing Visualization Tools in Kettle

412

18. On the top-right side of Analyzer are the View As: options. Click on the small bar
graph icon to view the different types of visualizations available. Try a few of them out
to get a sense of the different visualization types:

How it works...
The Visualize perspective takes advantage of some of the other tools in the Pentaho suite to
allow developers to show their data faster and get a sense of whether or not they are meeting
the requirements they are developing for. The visualization tool is actually an Enterprise
edition tool called Analyzer, which is a front-end tool for the open source ROLAP (relational
OLAP) database Mondrian. The built-in version of Analyzer requires a dataset provided by
Kettle through Mondrian. Mondrian is able to work with most relational databases to build
OLAP data sources. While we kept things simple and created a table within the books
database, we could have just as easily used an in-memory database such as MonetDB or any
other relational data source.

There's more...
While the dataset used in this recipe was extremely simplistic, Mondrian and Analyzer can
easily scale to larger and more complex data. As with other tools such as DataCleaner, the
reports and visualizations created in this tool can be utilized outside of Kettle as part of the
larger Pentaho tool suite.

Chapter 11

413

To learn more about Mondrian, check out Mondrian In Action, Manning Publications by William
Back, Nick Goodman, and Julian Hyde. The Mondrian website also provides some good
documentation and can be found at http://mondrian.pentaho.com/documentation.

See also
 f The Getting data from a database recipe in Chapter 1, Working with Databases

Using Instaview to analyze and visualize data
Instaview is the latest tool to allow for fast insights into data before more intensive work is
performed. With it, data from effectively any type of data source can be queried and visualized.

Instaview is currently an Enterprise edition exclusive. If you do
not have an Enterprise license but wish to follow along, download
a 30-day trial from http://www.pentaho.com/download.

Getting ready
To be able to follow the recipe, access to the Enterprise edition of Pentaho Data Integration
is required. For data, we will be using baseball player salary details that were created in
Chapter 2, Reading and Writing Files. This data is provided in the code for this chapter on
Packt's website.

For Instaview to work appropriately, the internal MonetDB database must be turned on. This
can be done by going to the PDI installation directory and going to the /plugins/spoon/
agile-bi/platform/pentaho-solutions/system/instaview/scripts directory.
The standard command to activate MonetDB on Linux is as follows:

./startMonetDb.sh pentaho-instaview /<home_directory>/.kettle/instaview/
dbfarm/ /usr/bin/monetdb /usr/bin/monetdbd 50006 monetdb

For other operating systems, check the documentation page on the Pentaho Infocenter:

http://infocenter.pentaho.com/help/topic/troubleshooting_guide/
concept_troubleshooting_monetdb_instaview_config.html.

How to do it...
Follow the given steps to run the baseball player salary details through Instaview.

1. Open Spoon and switch to the Instaview perspective.

2. Click on the Create New button to create a new visualization/analysis.

Utilizing Visualization Tools in Kettle

414

3. Select the Local File option in the New Data Source dialog that pops up and choose
the CSV data type. Click on OK to enter the CSV file details.

4. In the CSV input step, enter the following details:

 � Filename: This gives the location to the file being analyzed

 � Delimiter: For the player_salaries file, the delimiter is ;;

5. Click on the Get Fields button. The step will query the file and make a best guess
at the format of the fields. Click on Close on the analysis results and click on OK to
close the step.

Instaview will attempt to configure the analysis file by building a transformation to load the
data into the AgileBI MonetDB database, build a Mondrian model, and cache the data into
MonetDB to work with the data in Pentaho Analyzer. If everything worked, Instaview will switch
to the View tab, which is Pentaho Analyzer. Let's play around with some of the capabilities to
get a better idea of how Analyzer can work with data:

1. Select Namelast Level and add it to the Rows Layout section.
2. Select Salarysum Measure and add it to the Measures Layout section.
3. Now right-click on Salarysum Measure in the Layout section and navigate to

Conditional Formatting | Color Scale: Green-Yellow-Red.
4. Right-click on Salarysum Measure again in the Layout section and select Column

Name and Format. Change the format to Currency.
5. Finally, right-click on Salarysum Measure in the Layout section once again and select

Sort Values High->Low.

How it works...
Instaview automates as much of the data integration and model construction as possible,
allowing users to start playing with the data and potentially gain new insights that would
have normally taken a lot longer and involve more developers. To see what Instaview did
behind the scenes, let's return back to the Configure tab and view the code created by
each of the subprocesses.

There should be a section on the Configure tab that shows the status of each process, as
shown in the following screenshot:

Chapter 11

415

Click on the Edit link for the Data Integration section. A warning about the need of
understanding the requirement of data integration code will pop up. Click on OK and
the transformation created by Instaview opens:

It is possible to modify this transformation to clean and conform to the data. Notice that the
Input step is the same as the one that opened upon creation of the CSV Instaview. The Output
step automatically is configured to move the data into the MonetDB database. Close the
transformation and return back to Instaview.

The Model process built a Mondrian model for Analyzer to work with. Clicking on the Edit
link will cause another warning pop up; this time around needing understanding of modeling
concepts. Click on OK to view the model created.

This perspective allows for the editing of models, giving advanced developers the flexibility
required to build custom Mondrian cubes. Close the model and return back to Instaview.

The Data Cache process allows for the in-memory caching to be cleared, which can be done
by clicking on the Clear link.

Utilizing Visualization Tools in Kettle

416

Pentaho Analyzer allows for a lot of different types of visualizations, from simple bar and line
graphs to scatter plots, heat maps, and geolocation diagrams. While the data used for the recipe
is simplistic, we are able to glean some insight through conditional formatting. The visualization
options can also provide a lot of insight, depending on the type of data being analyzed.

There's more...
It is also possible to build more complicated transformations and mash data together for even
greater insight as well as add more powerful capabilities to the Mondrian models automatically
built by Instaview. Consider the code developed by Instaview to be the starting point. Knowledge
of working with the various components is essential to get the most out of Instaview.

See also
 f Visualizing Data with AgileBI

 f The Getting data from Hadoop recipe in Chapter 3, Working with Big Data and
Cloud Sources

12
Data Analytics

In this chapter, we will cover:

 f Reading data from a SAS datafile

 f Studying data via stream statistics

 f Building a random data sample for Weka

Introduction
Data Analytics is the art of taking data and deriving information from it in order to make
informed decisions. A large part of building and validating datasets for the decision making
process is data integration—the moving, cleansing, and transformation of data from the
source to a target. This chapter will focus on some of the tools that take Kettle beyond the
normal data processing capabilities and integrate processes into analytical tools.

Reading data from a SAS datafile
SAS is one of the leading analytics suites, providing robust commercial tools for decision
making in many different fields. Kettle can read files written in SAS' specialized data format
known as sas7bdat using a new (since Version 4.3) input step called SAS Input. While SAS
does support other format types (such as CSV and Excel), sas7bdat is a format most similar
to other analytics packages' special formats (such as Weka's ARFF file format). This recipe will
show you how to do it.

Data Analytics

418

Why read a SAS file?
There are two main reasons for wanting to read a SAS file as part of a Kettle process. The first
is that a dataset created by a SAS program is already in place, but the output of this process
is used elsewhere in other Business Intelligence solutions (for instance, using the output for
integration into reports, visualizations, or other analytic tools). The second is when there is
already a standard library of business logic and rules built in Kettle that the dataset needs to
run through before it can be used.

Getting ready
To be able to use the SAS Input step, a sas7bdat file will be required. The Centers
for Disease Control and Prevention have some sample datasets as part of the
NHANES Dietary dataset. Their tutorial datasets can be found at their website at
http://www.cdc.gov/nchs/tutorials/dietary/downloads/downloads.htm.
We will be using the calcmilk.sas7bdat dataset for this recipe.

How to do it...
Perform the following steps to read in the calcmilk.sas7bd dataset:

1. Open Spoon and create a new transformation.

2. From the input folder of the Design pallet, bring over a Get File Names step.

3. Open the Get File Names step. Click on the Browse button and find the calcmilk.
sas7bd file downloaded for the recipe and click on OK.

4. From the input folder of the Design pallet, bring over a SAS Input step. Create a hop
from the Get File Names step to the SAS Input step.

5. Open the SAS Input step. For the Field in the input to use as filename field, select
the Filename field from the dropdown.

6. Click on Get Fields. Select the calcmilk.sas7bd file and click on OK.

If you are using Version 4.4 of Kettle, you will receive a java.
lang.NoClassDefFoundError message. There is a
work around which can be found on the Pentaho wiki at
http://wiki.pentaho.com/display/EAI/SAS+Input.

Chapter 12

419

7. To clean the stream up and only have the calcmilk data, add a Select Values step
and add a hop between the SAS Input step to the Select Values step. Open the
Select Values step and switch to the Remove tab. Select the fields generated from
the Get File Names step (filename, short_filename, path, and so on). Click on
OK to close the step.

8. Preview the Select Values step. The data from the SAS Input step should appear in
a data grid, as shown in the following screenshot:

How it works...
The SAS Input step takes advantage of Kasper Sørensen's Sassy Reader project
(http://sassyreader.eobjects.org). Sassy is a Java library used to read datasets
in the sas7bdat format and is derived from the R package created by Matt Shotwell
(https://github.com/BioStatMatt/sas7bdat). Before those projects, it was not
possible to read the proprietary file format outside of SAS' own tools.

The SAS Input step requires the processed filenames to be provided from another step
(like the Get File Names step). Also of note, while the sas7bdat format only has two
format types (strings and numbers), PDI is able to convert fields to any of the built-in
formats (dates, integers, and so on).

See also
 f The Data profiling with DataCleaner recipe in Chapter 11, Utilizing Visualization

Tools in Kettle

 f The Altering a data stream with Select Values recipe in Chapter 7, Understanding and
Optimizing Data Flows

Data Analytics

420

Studying data via stream statistics
While Kettle's forte is extracting, manipulating, and loading data, there is an entire set of tools
built for generating statistics and analytic style data from the data stream. This recipe will
focus on several of those tools that will allow for even more insight into your data. Kettle treats
the data worked on in transformations as a stream going from an input to an output. The tools
discussed in this recipe will show how to learn more about the data stream through gathering
statistics about the data for analysis.

Getting ready
This recipe will not be a single large process, but made up of smaller recipes around the same
subject. We will be using the Baseball salary dataset that can be found on the book's website
or from Lahman's Baseball Archive website, found at http://www.seanlahman.com/
baseball-archive/statistics/. The code for this recipe can also be found on the
book's website.

The recipe will be broken into smaller recipes that will focus on three steps: Analytic Query,
Group by, and Univariate Statistics. These steps will allow us to gain some insight into the
baseball player's salaries, such as the salary change from one contract to the next, frequency
of being traded, and so on.

How to do it...
Perform the following steps to learn how to use the Analytic Query step:

1. Create a new transformation and add a Text file input step from the pallet to
the canvas.

2. Have the Text file input step point to the Salaries.csv file. On the Content tab,
be sure to change the Separator from ; to ,. On the Fields tab, use the Get Fields
button to get the fields of the file.

3. Click on OK to close the Text file input step.
4. Add a Sort rows step from the pallet to the canvas. Create a hop from the Text file

input to the Sort rows step.
5. The data needs to be sorted by playerID in the ascending order, with yearID in

the descending order. Your Sort rows step should look similar to the following:

Chapter 12

421

6. From the Statistics folder, select the Analytic Query step and add it to the canvas.
Create a hop from the Sort rows step to the Analytic Query step.

7. For the Group field, select playerID. Fill in the Analytic Functions grid as follows:

8. Add a Calculator step and create a hop from the Analytic Query step to the
Calculator step.

9. Open the Calculator step. Create a new field with the following criteria:

10. Finally, preview the Calculator step. You should receive an output similar to
the following:

Now, the salary information provides a little more detail and can show how much a player
gained (or lost) over the course of their career. Now, let's look at another step that can help
show even more detail around the baseball player salary dataset—Univariate Statistics.

Data Analytics

422

Perform the following steps to learn how to use the Univariate Statistics step:

1. Create a new transformation and add a Text file input step to the canvas.

2. Have the Text file input step point to the Salaries.csv file. On the Content tab,
be sure to change the Separator from ; to ,. On the Fields tab, use the Get Fields
button to get the fields of the file. Click on OK to close the Text file input step.

3. Bring a Univariate Statistics step from the pallet to the canvas and create a hop
from the Text file input step to the Univariate Statistics step.

4. Open the Univariate Statistics step. For the Input field, select salary. Set the value
of N, Mean, Std dev, Min, Max, and Median to true.

5. Click on OK to close the Univariate Statistics step and then preview the step.
A row showing the various statistics around the salary will be displayed in the preview:

The data stream is processed, returning the salary statistics for the entire dataset. Now, as
the last part of this recipe, let's explore the Group by step.

Perform the following steps to learn how to use the Group by step:

1. Create a new transformation and add a Text file input step to the canvas.

2. Have the Text file input step point to the Salaries.csv file. On the Content tab,
be sure to change the Separator from ; to ,. On the Fields tab, use the Get Fields
button to get the fields of the file. Click on OK to close the Text file input step.

3. Add a Sort rows step to the canvas and create a hop from the Text file input step to
the Sort rows step.

4. Open the Sort rows step and sort the data on playerID in the ascending order.

5. Add a Group by step to the canvas and create a hop from the Sort rows step to the
Group by step.

6. Open the Group by step. For the Group field, select playerID. Fill in the Aggregates
data grid, as shown in the following screenshot:

Chapter 12

423

7. Click on OK to close the Group by step and preview the data. The data stream will be
grouped by the individual players and show salary statistics per player:

How it works...
This recipe covered three different ways to find out more information about the data being
processed, each collecting statistics about the data in ways that are reported on, but do not
necessarily have to be recalculated every time a report or analysis is done. For each of the
steps, there are two things to consider:

 f The data must be sorted based on the query requirements

 f The original data will not continue through the stream after being processed by
these steps

The Analytic Query step provides the ability to compare multiple records through a data
stream which has historically been a complicated thing to do with just SQL. Quite often,
comparisons need to be made within a group of data, usually in the form of tracking changes
from one record/period to the next. For our baseball salary dataset, we looked at each player
as they changed from season to season and how their salaries changed.

The Univariate Statistics step provides common statistics for the data stream being
analyzed. Having these values can be used for data validation, comparisons between data
loads, and for reporting. In the baseball salary dataset, we used the Univariate Statistics
step to see the metrics around salary (specifically the mean, min, and max salary numbers
for all the records).

The Group by step not only provides the same types of statistics as the Univariate Statistics
step, but also allows for grouping the data together. For the baseball dataset, we used the Group
by step to see the metrics around the mean, min, and max salary numbers for each player.

Data Analytics

424

See also
 f The Loading data into Hadoop recipe in Chapter 3, Working with Big Data and

Cloud Sources

 f The Getting the value of specific cells in an Excel file recipe found in Chapter 2,
Reading and Writing Files

Building a random data sample for Weka
Weka is another open source tool that is officially supported by Pentaho, that focuses on data
mining. Like it's cousins R and RapidMiner, Weka provides a library of statistical analysis tools
that can be integrated into complex decision making systems. For this recipe, we will go over
how to build a random dataset for Weka using Kettle.

Getting ready
We will be using the baseball player salaries data that can be found on the book's website
or from Lahman's Baseball Archive website, found at http://www.seanlahman.com/
baseball-archive/statistics/. The code for this recipe can also be found on the
book's website.

This recipe also takes advantage of the ARFF Output plugin. This is available either via the
Marketplace (for Kettle 5 and higher) or from the wiki at http://wiki.pentaho.com/
display/EAI/List+of+Available+Pentaho+Data+Integration+Plug-Ins.

How to do it...
Perform the following steps to build a random data sample for Weka:

1. Create a new transformation and add a Text file input step to the canvas.

2. Have the Text file input step point to the Salaries.csv file. On the Content tab,
be sure to change the Separator from ; to ,. On the Fields tab, use the Get Fields
button to get the fields of the file. Click on OK to close the Text file input step.

3. Add a Reservoir Sampling step from the Statistics folder in the pallet to the canvas.
Create a hop from the Text file input step to the Reservoir Sampling step.

4. Open the Reservoir Sampling step. Change the value of the Sample size (rows) field
to 1000. Click on OK to close the step.

5. Add an ARFF Output step to the canvas. Create a hop from the Reservoir Sampling
step to the ARFF Output step.

6. Open the ARFF Output step. For the File name field, call the file
baseball_salaries.

Chapter 12

425

7. Switch to the Content tab. Ensure the Format matches the environment that you are
working in (DOS for Windows, Unix for *nix).

8. Switch to the Fields tab. Use the Get Fields button to get the data stream fields into
the Fields data grid. The step will make a best guess at the ARFF type for each data
element. Click on OK to close the step.

9. Run the transformation. An ARFF file will be generated and can be used to work with
the data within Weka.

How it works...
This recipe utilizes two steps, the first (Reservoir Sampling) of which can be used by anything
that only needs a random data sample to process. The second one transforms the dataset
into the standard format for Weka.

Reservoir Sampling takes large datasets and randomly selects records to create a smaller
representative sample of the data. The two options in the step, sample size and random
seed, control how big the sample set should get and how the records are randomly selected.
For more details on the step, check out the Pentaho wiki at http://wiki.pentaho.com/
display/DATAMINING/Using+the+Reservoir+Sampling+Plugin.

The ARFF Output step takes the data stream and stores the data in the standard format that
Weka uses to process data. The first part of the file is the header, which provides the field
details (name, type, and so on) and can also store the data source details (who created it,
when the dataset was created, and so on). The second part fits the typical comma-separated
values format, with each record's fields separated by a comma. To learn more about the format,
check out the Weka wiki at http://weka.wikispaces.com/ARFF+(stable+version).

There's more...
There is another Kettle plugin that will actually take advantage of a model built in Weka and
return the results back for further processing within Kettle. The step is called Weka Scoring
and is a great place to start integrating machine learning into normal data integration
processes. To learn more about the plugin, check out the wiki at http://wiki.pentaho.
com/display/DATAMINING/Using+the+Weka+Scoring+Plugin.

There is a sub forum dedicated to working with Pentaho and Weka on the forums: http://
forums.pentaho.com/forumdisplay.php?81-Pentaho-Data-Mining-WEKA.

To learn more about Weka, check out the Weka website for tutorials and other references
http://www.cs.waikato.ac.nz/ml/weka.

Data Analytics

426

See also
 f The Managing plugins with the Marketplace recipe in Chapter 11, Utilizing

Visualization Tools in Kettle

 f Studying data via stream statistics

A
Data Structures

This appendix describes some structures used in several recipes throughout the book.

There are two objectives in describing them here (besides keeping the explanation in a single
place), one is that you understand the structure of the data being used. The second, is allowing
you to create your own data in the format of your choice—database, Excel file, and so on, except
of course when the data is used in a recipe that explains database steps, in which case the
data should be in a database.

Books data structure
The Books database is a simple structure that holds details on a sample list of books and
their authors. The recipes that use the Books database are based on you being part of a
fictitious book store. In the following diagram, you can see the relationship between the
authors' and books' tables, where a single author can have many books:

Authors
id_author

lastname
firstname
nationality
birthyear

Books
id_title

title
id_author
price
genre

Data Structures

428

Books
The Books table stores the following details for each book:

Field Description Example
id_title Identification for the book. It is a string with the

format CCC-CCC (3 characters, a hyphen, and
3 more characters).

123-456

title Title of the book. The Tommyknockers

id_author Identification for the author of a book; it
references to the authors' data.

A00002

price Price for the book. It's a decimal value. 39.00

genre Genre of the books. Fiction

Possible values are:
Fiction, Non-fiction,
Business or Children

Authors
The Authors table stores the following details for each author:

Field Description Example
id_author Identification for the author A00002

lastname Author's last name King

firstname Author's first name Stephen

nationality Author's nationality American

birthyear Year of author's birth. It's a numeric value. 1947

Appendix A

429

museums data structure
The museums database stores data about museums and the cities that they reside in.
The recipes using this data source are based on you being part of a tourism company. The
following diagram shows the relationship between museums and cities, where a single city
can have many museums:

museums
id_museum

name
id_city

cities
id_city

city
country

museums
The museums table contains the following details for each museum:

Field Description Example
id_museum Identification for the museum 3

name Museum's name Museo de Arte
Latinoamericano

id_city Identification for the city; it references
to the cities' data

1

cities
The cities table contains the following details for each city:

Field Description Example
id_city Identification for the museum 1

city City's name Buenos Aires

country City's country Argentina

Data Structures

430

outdoor data structure
The outdoor database contains details on outdoor equipment and the categories they are
part of. The recipes that use the outdoor dataset are based on you being part of an outdoor
equipment store. The following diagram shows the relationship between the many outdoor
products to their given category:

products
id_product

desc_product
price
id_category

categories
id_category

category

products
The products table contains the following details for each product:

Field Description Example
Id_product Identification for the product 12

desc_
product

Product's description Kelty Grand Mesa
2-Person Tent (Ruby/Tan)

price Product's price $107.96

Id_category Identification for the category; it
references to the categories' data

4

categories
The categories table contains the following details for each category:

Field Description Example
Id_category Identification for the category 4

category Category's description Tents

Appendix A

431

Steel Wheels data structure
Some specific recipes use the Steel Wheels database included in Pentaho. This database
represents the data for a fictional store named Steel Wheels. In the following diagram you can
see the tables used in the recipes and how they are related:

CUSTOMERNAME
CONTACTLASTNAME
CONTACTFIRSTNAME
PHONE
ADDRESSLINE1
ADDRESSLINE2
CITY
STATE
POSTALCODE
COUNTRY
SALESREPEMPLOYEENUM
CREDITLIMIT
EMPLOYEENUMBER

customers

CUSTOMERNUMBER

LASTNAME
FIRSTNAME
EXTENSION
EMAIL
OFFICECODE
REPORTSTO
JOBTITLE
offices_OFFICECODE

employees

EMPLOYEENUMBER

CITY
PHONE
ADDRESSLINE1
ADDRESSLINE2
STATE
COUNTRY
POSTALCODE
TERRITORY

offices

OFFICECODE

PRODUCTNAME
PRODUCTLINE
PRODUCTSCALE
PRODUCTVENDOR
PRODUCTDESCRIPTION
QUANTITYINSTOCK
BUYPRICE
MSRP
ORDERNUMBER

products

PRODUCTCODE

orderdetails

ORDERNUMBER
PRODUCTCODE

QUANTITYORDERD
PRICEEACH
ORDERLINENUMBER

ORDERDATE
REQUIREDDATE
SHIPPEDDATE
STATUS
COMMENTS
CUSTOMERNUMBER

orders

ORDERNUMBER

Data Structures

432

Lahman Baseball Database
The Lahman Baseball Database is one of the most comprehensive baseball statistics
datasets available. While the data we work with in the recipes is with the csv file format
dataset, it is relational data, and does come in SQL and Access formats as well. The data is
provided by Sean Lahman through a Creative Commons Attribution-ShareAlike 3.0 Unported
License. The following diagram shows the tables that we work with in the book:

playerlD: VARCHAR(9) [PFK]
yearlD: INTEGER [PK]
stint: INTEGER [PK]

teamID: VARCHAR(3)
IgID: VARCHAR(2)
G: INTEGER
G_batting: INTEGER
AB: INTEGER
R: INTEGER
H: INTEGER
2B: INTEGER
3B: INTEGER
HR: INTEGER
RBI: INTEGER
SB: INTEGER
CS: INTEGER
BB: INTEGER
SO: INTEGER
IBB: INTEGER
HBP: INTEGER
SH: INTEGER
SF: INTEGER
GIDP: INTEGER
G_old: INTEGER

batting

lahmanID: INTEGER [PK]

playerlD: VARCHAR(10)
managerlD: VARCHAR(10)
hofID: VARCHAR(10)
birthYear: INTEGER
birthMonth: INTEGER
birthDay: INTEGER
birthCountry: VARCHAR(50)
birthState: VARCHAR(2)
birthCity: VARCHAR(50)
deathYear: INTEGER
deathMonth: INTEGER
deathDay: INTEGER
deathCountry: VARCHAR(50)
deathState: VARCHAR(2)
deathCity: VARCHAR(50)
nameFirst: VARCHAR(50)
nameLast: VARCHAR(50)
nameNote: VARCHAR(255)
nameGiven: VARCHAR(255)
nameNick: VARCHAR(255)
weight: INTEGER
height: DOUBLE
bats: VARCHAR(1)
throws: VARCHAR(1)
debut: VARCHAR(10)
finalGame: VARCHAR(10)
college: VARCHAR(50)
lahman40ID: VARCHAR(9)
lahman4 5ID: VARCHAR(9)
retrolD: VARCHAR(9)
holtzID: VARCHAR(9)
bbrefID: V4RCH4R(9)

master

playerlD: VARCHAR(9) [PFK]
schoollD: VARCHAR(15) [PFK]

yearMin: INTEGER
yearMax: INTEGER

schoolsplayers

schoolID: VARCHAR(15) [PK]

schoolName: VARCHAR(255)
schoolCity: VARCHAR(55)
schoolState: VARCHAR(55)
schoolNick: VARCHAR(55)

schools

yearID: INTEGER [PK]
teamID: VARCHAR(3) [PK]
lgID: VARCHAR(2) [PK]
playerID: VARCHAR(9) [PFK]

salary: DOUBLE

salaries

Note that in the recipes that involve the master table we refer to it as Player, since that
is the data in that source.

B
References

This appendix lists a few recommended references to other books and resources to dig
deeper into the topics covered in this Cookbook. Both Pentaho and the community have
pulled together a great collection of resources that assist in diving into the Pentaho stack.
While some of the references refer to older versions of their particular software, they are
still very much relevant in the areas they cover.

Books
 f William D. Back, Nicholas Goodman, and Julian Hyde. Mondrian in Action. Manning

Publications (Shelter Island), 2014.

 f Roland Bouman and Jos Van. Dongen. Pentaho Solutions. Wiley Publications
(Indianapolis, IN), 2009.

 f Matt Casters, Roland Bouman, and Jos Van. Dongen. Pentaho Kettle Solutions.
Wiley Publications (Indianapolis, IN), 2010.

 f Will Gorman. Pentaho Reporting 3.5 for Java Developers. Packt Publications
(Birmingham), 2009.

 f María Carina Roldán. Pentaho 3.2 Data Integration: Beginner's Guide.
Packt Publications (Birmingham), 2010.

 f Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining. Morgan Kaufmann
Publications (Burlington, MA), 2011.

References

434

Online
 f The Pentaho Community Wiki at http://wiki.pentaho.com/display/COM/

Community+Wiki+Home

 f The Pentaho Forums at http://www.forums.pentaho.com

 f The Pentaho Feature and Bug-fix Tracker at http://www.jira.pentaho.com

 f IRC on Freenode at #pentaho

 f Pentaho Community Tools at http://www.webdetails.pt/ctools.html

Index
Symbols
${Internal.Transformation.Filename.Directory}

variable 71
${OUTPUT_FOLDER variable 280
@ character 135
 /job 389
/job/channel-log-table 389
/job/connection 389
/job/entries/entry 389
/job/hops/hop 389
/job/jobentry-log-table 389
/job/job-log-table 389
/job/notepads 389
/transformation 388
/transformation/connection 388
/transformation/info 388
/transformation/info/log 388
/transformation/notepads 388
/transformation/order/hop 388
/transformation/step 388
/transformation/step/field 388
/transformation/step/file 388

A
access level property 354
action sequence 334
Add sequence step

about 270
usage avoiding, to enumerate rows 271

Advanced tab 289
AgileBI

data, visualizing with 409-412
alternative notation

for separator 68
Analytic Query step 98, 423

Append streams step 88, 89
ARFF Output plugin 424
ARFF Output step 425
Argument tab 286
Attached Files tab 360
authors table, books data structure 428
authors.txt file 66
AWS Console

security page, URL 108
AWS S3 Instance

data, reading from 107, 109

B
Baseball Database

URL 116
Big Data wiki

URL 116
Blocking step 232
Block this step until steps finish 232
books

references, URL 433, 434
books data structure

about 427
authors table store 428
books table store 428

books table, books data structure 428
BSON (binary JSON) 129

C
cache duration property 354
cache property 354
Carte 284
categories table, outdoor data structure 430
CDA

URL 350

436

CDA API 349
CDA Editor 344
CDA plugin

used, for creating files from PUC 344-350
CDA Previewer 344
CDF 257, 350
CDF dashboard

populating, with PDI transformation
data 350-355

cells
searching for, in Excel file 101
value, retrieving in Excel file 97-100

Centers for Disease Control and Prevention
URL 418

checksums
adding, to verify datasets 246-248

cities table, museums data structure 429
Column Configurations II (opt) property 354
Column Configurations (opt) property 354
Combination lookup/update step 31
commands

running, on another server 367-369
Comma Separated Values. See CSV
Community Acronym Generator (CAG) 255
Community Chart Framework (CCF) 256
Community Dashboard Editor (CDE) 344
Community Dashboard Framework 350
Community Data Access plugin. See

CDA plugin
condition based

stream, splitting into multiple
streams 233-236

Copy Files job entry 172, 173
Copy previous results to args? option 296
Copy previous results to parameters?

option 296
Copy rows to result step 188, 306
Credit card validator 229
CSV 70, 86
custom functionality

programming 369-373

D
Damerau-Levenshtein 220
data

analyzing, InstaView used 413-415

from table, deleting 35-40
getting, from path 140
getting, selectively 141, 142
loading, in Hadoop 115-118
loading, in HBase 122-126
loading, in MongoDB 129, 130
loading, in Salesforce.com 112-114
processing into shared transformations,

filter criteria used 272-274
processing into shared transformations,

sub-transformations used 272-274
reading, from AWS S3 instance 107, 109
reading, from SAS datafile 417-419
retrieving, from database 14-16
retrieving from database, parameters

used 16-19
retrieving from database, runtime built

query used 21, 22
retrieving, from Hadoop 119-121
retrieving, from HBase 127-129
retrieving, from MongoDB 130, 131
retrieving, from Salesforce.com 114, 115
studying, via stream statistics 420-423
validating, at runtime 227, 229
visualizing, InstaView used 413-415
visualizing, with AgileBI 409-412

dataAccessId parameter 350
data analytics 417
database

about 7
connecting to 9-11
connecting to, not supported by Kettle 14
connection, changing at runtime 51-53
connection, checking at runtime 14
connection properties, advanced 13
data, retrieving from 14-16
data retrieving from, parameters used 16-19
data retrieving from, runtime built

query used 21, 22
Pentaho BI platform databases 8, 9
sample database 8
similar database connections,

avoiding 12, 13
table from PDI (design time), altering 40-43
table from PDI (design time), creating 40-43
table from PDI (runtime), altering 43-45
table from PDI (runtime), creating 43, 45

437

values looking for, complex conditions
used 204-207

values looking for, dynamic queries
used 207-210

database design tasks
repetitive database design tasks, performing

from PDI 62, 64
Database join step 206, 207
Database lookup step 201-203, 207
database metadata

SQL queries, building via 57-62
database table

values, looking for 200-202
DataCleaner

documentation, URL 408
installation location 407

Data grid step
about 320
using, to generate specific data 380

data profiling
with DataCleaner 404-408

datasets
pairs creating, from multiple

datasets 255, 256
verifying, checksums added 246-248

data stream
altering, with Select values 274, 275

data structure
about 427
books data structure 427
Lahman Baseball Database 432
museums data structure 429
outdoor data structure 430
steel wheels data structure 431

data subsets
working with 381

data types 69
date fields

URL 87
Delete file job entry 176
DELETE operation 39
Delete step 39
desc_product fieldname 86
Detect empty stream step 268
developerforce

URL 112
document store 129

Document Type Definition. See DTD
doQuery feature 349
Double Metaphone 221
DTD

about 146-148
limitations 148
URL 148

DTD definitions
XML files, validating against 146-148

DTD Validator job entry
XML files, validating against 148

Dummy steps
about 235
usage, avoiding 236

dynamic sheets
Excel file, writing with 105-107

Dynamic SQL row step 209, 210

E
Email job entry 358
e-mails

logs, sending through 361
sending, in transformation 362
sending, with attached files 358-360

encoding
about 68
URL 136

Encr 284
entries

copied rows, accessing 296
ETL Metadata Injection step 320
Excel file

cell, searching for 101
cells value, retrieving 97-100
labels. horizontally arranged 100
reading 95, 96
values. horizontally arranged 100
writing, with dynamic sheets 105-107
writing, with multiple sheets 101-104

Excel output step 366
Excel Writer plugin step 362
Execute a transformation window 280
Extensible Markup Language. See XML
Extract, Transform, and Load (ETL) tool 272

438

F
Feedly

URL 167
fields

creating, with XML structure 154, 155
file name, using as 93-95
fixed width fields, files reading with 70
specifying, path notation used 137-140
XML data 136, 137

Fields tab 374
files

about 66
comparing 188-190
custom list, copying 183, 184
custom list, deleting 185-188
custom list, moving 183, 184
decrypting 195-197
deleted files, identifying 177
detail files 78
encrypting 195-197
Excel file, reading 95, 96
existence detecting, before copying 174
fields metadata, altering 69
fields names, altering 69
fields order, altering 69
format 68
logfiles 78, 79
master files 78
multiple files deleting 175, 176
multiple files, moving 172-174
multiple files, reading at once 70-72
multiple files with similar structure,

generating 93
name, providing 90-92
name, using as field 93-95
putting, on remote server 181, 182
reading, with fixed width fields 70
retrieving, from remote server 178, 179
semi-structured files, reading 72-77
semi-structured file, writing 87, 89
simple file, reading 66-68
simple file, writing 84, 86
single file, deleting 175, 176
single file, moving 172-174
specifying, to transfer 180

transferred, information retrieving 181
with fields occupying multiple rows,

reading 82-84
with one field by row, reading 79-82

File Transfer Protocol (FTP) 178
File Transfer Protocol Secure. See FTPS
Filter rows step 233
findInfoRowSet() method 377
fixed width fields

files, reading with 70
folders

comparing 188-190
creating 174

format
about 69
providing, to output fields 86

Freenode
IRC, URL 434

FTPS
about 181
URL 181

FTP server
connection, considerations 180

FULL OUTER join 261
fuzzy match algorithm

about 219
Damerau-Levenshtein 220
Double Metaphone 221
Jaro 220
Jaro-Winkler 220
Levenshtein 220
Metaphone 221
Needleman-Wunsch 220
Pair letters Similarity 221
Refined SoundEx 221
SoundEx 221

Fuzzy match step 217, 219

G
GENRE parameter 107
Get a file with FTP job entry 179, 180
Get data from XML step 137, 146
Get Fields button 70, 91, 137
Get files from result step 146
getRowFrom() method 377
Get rows from result step 296

439

Get System Info step
about 92, 176
URL 92

Get XML Data step 136
Gnu Privacy Guard (GnuPG)

about 195
URL 196

Group by step 423

H
Hadoop

data, loading in 115-118
data, retrieving from 119-121
versions, URL 116

Hadoop File System (HDFS) 118
HBase

data, loading in 122-126
data, retrieving from 127, 128

headers
modifying 86

hexadecimal notation 68
HMAC 380
Hortonworks Sandbox environment

URL 116
HTML page

creating, XML transformation used 162-165
creating, XSL transformation used 162

Hypersonic (HSQLDB)
URL 9

I
Ian Varley

URL 124
Include unspecified field 315
Info steps 377
INNER join 261
Input and Outputs field 373
InstaView

using, to analyze data 413-415
Internal.Job.Filename.Directory 173
internet

values, looking over 225, 226
Internet Information Services (IIS) 223
intranet

values, looking over 225, 226
invoice headers (INV) 78

J
Janino library 325
Jaro 220
Jaro-Winkler 220
Java language

syntax, URL 376
Java Script Object Notation (JSON) 129
JavaScript step

using, to control entries execution in jobs 303
Job file location 407
jobs

copied rows, accessing 296
executing, by setting arguments 287-289
executing, for every file in files list 297
executing, for row in dataset 293-295
executing, on conditions known

at runtime 290-292
logfiles, isolating for 367
loops, implementing 302
multiple jobs, running in parallel 275-277
part executing, multiple times on true

condition 298-301
running, by setting static arguments 284-286
running, by setting static

parameters 284-286
running, with Kitchen 283, 284

Job XML nodes 389
JSON files

reading dynamically 383
working with 381, 383
writing 384, 385

Json Input step 132
junk dimension tables 31

K
Kettle. See also PDI
Kettle

about 72
data type 376

KettleComponent inputs 339
kettle.properties file 71
Kettle Transformation File property 354
Kitchen

jobs, running with 283
URL 283

KJube 362

440

L
Lahman Baseball Database 432
Lahman’s Baseball Archive website

URL 420, 424
LEFT OUTER join 261
Levenshtein 220
Linux commands

URL 367
Location field 84
logfile

about 78, 79
clean logfile, creating 366
custom logfile, creating 362-366
filtering 366
isolating, for different jobs 367
isolating, for different transformations 367

logs
sending, through e-mail 361

M
Mail job entry 195
Mail validator 229
Mail validator job entry 359
Mapping input specification step 313, 314
Mapping output specification step 273
Mapping (sub-transformation) step 272
Marketplace

plugins, managing with 402-404
Merge Join step 259
Merge Rows (diff) step 251
metadata injection

using, to re-use transformations 316-320
Meta-data tab 275
Metaphone 221
Modified Java Script Value (MJSV) step 377
Mondrian distribution

URL 8
Mondrian website

URL 413
MongoDB

data, loading in 129, 130
data, retrieving from 130, 131
documentation, URL 132
URL, for downloading 129

MongoDB Input step 132

multiple sheets
Excel file, writing with 101-104

museums data structure
about 429
cities table 429
museums table 429

museums table, museums data structure 429
MySQL sample databases

URL 8

N
name

providing, to files 91
named parameter 281
name property 354
Needleman-Wunsch 220
nested Filter rows steps

usage, avoiding 237, 238
NewsBlur

URL 167
numeric fields

URL 87

O
OLAP (On-line Analytical Processing

databases) 324
OpenOffice calc files 96
Open Pretty Good Privacy (OpenPGP)

about 195
URL 195

Oracle Java API documentation
URL 69

outdoor data structure
about 430
categories table 430
products table 430

Outer join? option 206
output fields

format, providing 86
Output file location 408
Output Options (opt) property 354
outputType parameter 350

P
Pair letters Similarity 221

441

Pan
URL 283

parameters property 354
Parameters tab 286
param + <name of param.> parameter 350
parent-child table 53-57
parent_job.getVariable() function 301
parent_job.setVariable function 301
path

data, getting from 140
specifying, time saving on 143

path notation
on sharing, multiple nodes getting 142, 143
URL 140
used, for specifying fields 137-140

PDI
about 66, 321
Pentaho report, creating 329-332
Pentaho report, creating with data 324-329
used, for creating files from PUC 344-350

PDI (design time)
database table, altering 40-43
database table, creating 40-43

PDI job
executing, from Pentaho User

Console 341-344
running, Pentaho BI Server

configured 332-334
PDI (runtime)

database table, altering 43-45
database table, creating 43-45

PDI transformation data
CDF dashboard, populating with 350-355

PDI transformations
elements 340
executing, as Pentaho process part 334-339
location, specifying 339
running, Pentaho BI Server

configured 332, 333
PEDI 134
Pentaho

on forums, URL 425
wiki page, URL 321

Pentaho BI platform databases
hibernate 8
quartz 8
Sampledata 8

Pentaho BI Server
configuring, to run PDI jobs 332-334
configuring, to run PDI

transformations 332-334
Pentaho BI Suite Community Edition (CE)

URL 321
Pentaho Business Intelligence Suite 321
Pentaho Community Tools

URL 434
Pentaho Community Wiki

URL 376, 434
Pentaho Data Integration. See PEDI
Pentaho Design Studio

URL 335
Pentaho Feature and Bug-fix Tracker

URL 434
Pentaho Forums

URL 434
Pentaho report

creating, from PDI 329-332
creating with data, from PDI 324-329

Pentaho Report Designer
URL 324

Pentaho Reporting Engine 324, 329
Pentaho Server log 78
Pentaho User Console. See PUC
Pentaho wiki

about 402
URL 82, 399, 418

Pentaho wiki page
URL 320

plugins
managing, with MarketPlace 402-404

Preview document structure 130
previous_result.getNrLinesOutput()

function 301
process flow

creating 303-308
products table, outdoor data structure 430
proximity

used, for looking values 217-221
PUC

about 334
files, creating with CDA plugin 344-350
files, creating with PDI 344-350
PDI jobs, executing 341, 343

442

Q
query property 354

R
R_DATABASE 394
R_DATABASE_ATTRIBUTE 395
R_DATABASE_CONTYPE 394
R_DATABASE_TYPE 394
Really Simple Syndication. See RSS feed
records

inserting, alternative 26
reference stream 251
Refined SoundEx 221
Regular Expressions (RegExp) syntax 173
relational databases (RDBMS). See database
remote server

files, putting 181-183
files, retrieving from 178, 179

Remove tab 275
Reservoir Sampling 425
result object 303
RIGHT OUTER join 261
R_JOB 393
R_JOBENTRY 393
R_JOBENTRY_ATTRIBUTE 393
R_JOBENTRY_DATABASE 394
R__JOBENTRY_TYPE 393
R_JOB_HOP 393
R_JOB_NOTE 393
ROLAP (relational OLAP) 412
row denormalizer 82
Row flattener step 81
rows

enumerating, Add sequence step usage
avoiding 271

inserting, alternative 27
inserting, on simple primary key

generation 28-31
inserting on simple primary key generation,

stored values based 32-35
in table, inserting 23-26
in table, updating 23-26
last row in stream, identifying 271
new rows between existent rows,

interspersing 261-264

of two streams, merging with different
structure 240-244

of two streams, merging with same structure
240-244

processing differently, row number
based 268-270

specific rows, identifying 271
updating, alternative 26, 27

R package
by Matt Shotwell, URL 419

RSS feed
creating 167, 168
reading 165, 166
URL 165

RSS Output step 169
R_STEP 392
R_STEP_ATTRIBUTE 392
R_STEP_DATABASE 394
R_STEP_TYPE 392
R_TRANSFORMATION 392
R_TRANS_HOP 392
R_TRANS_NOTE 392
Ruby Scripting 378
runtime

data, validating at 227, 229

S
S3 CSV Input step 109
Salesforce.com

data, loading in 112-114
data, retrieving from 114, 115
docs, URL 115

Salesforce Input step 115
sample data

creating, for testing purposes 378-380
sas7bdat 417
SAS datafile

data, reading from 417-419
SAS file

reading, need for 418
SAS Input step 417, 419
Sassy

URL 419
Select & Alter tab 70, 275
Select bucket button 109

443

SELECT statement
multiple execution 20

Select values step
about 275
adding 69
used, for altering data stream 274, 275

semi-structured files
reading 72-78
writing 87-89

separator
alternative notation 68

serialize/de-serialize mechanism 308
Set files in result step 297
SFTP

about 181
URL 181

shims
about 116
for sandbox, URL 116
setting up in Kettle, URL 116

Simple Object Access Protocol (SOAP) 222
Slawomir Chodnicki’s blog

URL 195
Sort rows step 270
SoundEx 221
sources

values, looking for 211-214
Split Fields step 95
Spoon

built-in optimization tools, using 395-398
SQL queries

building, via database metadata 57-61
SSH File Transfer Protocol. See SFTP
Steel Wheels structure 431
stream

complex conditions difficulties,
avoiding 238, 239

Dummy steps usage, avoiding 236
Kettle variable value, comparing against 237
last row, identifying 271
metadata, checking 245
middle, variables getting in 257
multiple stream joining, conditions

based 258-261
multiple streams, differences

creating 249-252
multiple streams differences, using 252, 254

nested Filter rows steps usage,
avoiding 237, 238

output rows number, limiting 257, 258
rows, merging 245
splitting into multiple streams, condition

based 233-236
steps, executing on empty stream 265-267

Stream Lookup step
about 214, 215
alternatives 215

stream statistics
used, for studying data 420-423

subtransformation
transformation part, moving to 309-315

Synchronize after merge step 49, 50

T
table

data, deleting from 35-39
deleting 45-50
inserting 45-50
rows, inserting 23-25
rows, updating 23-25
updating 45-50

Table Input step 16
Table Output step 27
Target steps tab 374
TEMP 322
Text file input step 66, 233
Text file output step 89
transformation part

moving, to subtransformation 309-315
transformations

about 280
copied rows, accessing 296
data, sharing between 309
data, transferring between 309
e-mails, sending in 362
executing, by setting arguments 287-289
executing, for every file in files list 297
executing, for row in dataset 297
executing, on conditions known

at runtime 290-292
logfiles, isolating for 367

444

multiple transformations, running
in parallel 275-277

reusing, metadata injection used 316-320
running, by setting static arguments 284-286
running, by setting static

parameters 284-286
sample 280, 322-324
weather_np.ktr file 323

transformations (file-based)
information, retrieving 385-388
Job XML nodes 389
steps and entries information 389, 390

transformations (repository-based)
Database connections tables 394
information, getting on 390, 391
Job tables 393
Transformation tables 392

transformations, sample
about 280
file list 282
hello 281
random list 281
sequence 282

U
UDJC code 376
UDJC step

scripting alternatives 377
UDJE step 364
Univariate Statistics step 422, 423
Universally Unique Identifier (UUID) 380
Use Kettle Repository option 339
User Defined Java Expression (UDJE) 87, 90

V
Valid in the parent job 176
Value Mapper step

using 216
values

looking for, in database table 200-202
looking for, in sources 211-214
looking for, over internet 225, 226
looking for, over intranet 225, 226
looking for, proximity used 217-221
looking for, web service used 222-224

values, looking for
in database, complex conditions

used 204-207
in database, dynamic queries used 207-210

variables property 354

W
W3C recommendation

URL 140
W3C (World Wide Web Consortium)

URL 134
w3schools

URL 134
Web details

URL 349
web scraping 225
web service

used, for looking values 222-225
Web Service Definition Language (WSDL) 223
Weka

about 424
on forums, URL 425
random data sample, building for 424, 425
URL 425
wiki, URL 425

Weka Scoring
URL 425

well-formed document
URL 144

X
XML

about 133
data, in field 136, 137
file name, in field 137

XML document
creating 153, 154

XML files
large XML files recommendations, URL 136
reading 134-136
validating, against DTD definitions 146-148
validating, against XSD schema 148-152
well-formed XML files, validating 143-146

XML Join step 161
XML output step 154

445

XML root structure
creating 156

XML Schema Definition. See XSD schema
XML structure

complex XML structures, creating 155-161
creating 159
used, for creating fields 154, 155

XSD schema
XML files, validating against 148-153

XSD Validator step 148, 152, 229
XSLT (Extensible Stylesheet Language

Transformations)
about 162
URL 162

Z
ZIP files

unzipping files, avoiding 195
working with 191-195
zipping files, avoiding 195

Thank you for buying

Pentaho Data Integration Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Pentaho 5.0 Reporting by
Example: Beginner's Guide
ISBN: 978-1-78216-224-7 Paperback: 342 pages

Create high-quality, professional, standard reports using
today's most popular open source reporting tool

1. Install and configure PRD in Linux and Windows.

2. Create complex reports using relational
data sources.

3. Produce reports with groups, aggregate functions,
parameters, graphics, and sparklines.

4. Install and configure Pentaho BI Server to execute
PRD reports.

Instant Pentaho Data
Integration Kitchen
ISBN: 978-1-84969-690-6 Paperback: 68 pages

Explore the world of Pentaho Data Integration
command-line tools which will help you use the Kitchen

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Understand how to discover the repository
structure using the command line scripts.

3. Learn to configure the log properly and how to
gather the information that helps you investigate
any kind of problem.

4. Explore all the possible ways to start jobs and
learn transformations without any difficulty.

Please check www.PacktPub.com for information on our titles

Pentaho Data Integration 4
Cookbook
ISBN: 978-1-84951-524-5 Paperback: 352 pages

Over 70 recipes to solve ETL problems using
Pentaho Kettle

1. Manipulate your data by exploring, transforming,
validating, integrating, and more.

2. Work with all kinds of data sources such as
databases, plain files, and XML structures
among others.

3. Use Kettle in integration with other components of
the Pentaho Business Intelligence Suite.

4. Each recipe is a carefully organized sequence of
instructions packed with screenshots, tables, and
tips to complete the task as efficiently as possible.

Pentaho 3.2 Data Integration:
Beginner's Guide
ISBN: 978-1-84719-954-6 Paperback: 492 pages

Explore, transform, validate, and integrate your data
with ease

1. Get started with Pentaho Data Integration
from scratch.

2. Enrich your data transformation operations by
embedding Java and JavaScript code in PDI
transformations.

3. Create a simple but complete Datamart Project
that will cover all key features of PDI.

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Databases
	Introduction
	Connecting to a database
	Getting data from a database
	Getting data from a database by providing parameters
	Getting data from a database by running
a query built at runtime
	Inserting or updating rows in a table
	Inserting new rows where a simple primary key has to be generated
	Inserting new rows where the primary key has to be generated based on stored values
	Deleting data from a table
	Creating or altering a database table from PDI (design time)
	Creating or altering a database table from PDI (runtime)
	Inserting, deleting, or updating a table depending on a field
	Changing the database connection
at runtime
	Loading a parent-child table
	Building SQL queries via database metadata
	Performing repetitive database design tasks from PDI

	Chapter 2: Reading and
Writing Files
	Introduction
	Reading a simple file
	Reading several files at the same time
	Reading semi-structured files
	Reading files having one field per row
	Reading files with some fields occupying two or more rows
	Writing a simple file
	Writing a semi-structured file
	Providing the name of a file (for reading
or writing) dynamically
	Using the name of a file (or part of it)
as a field
	Reading an Excel file
	Getting the value of specific cells in an Excel file
	Writing an Excel file with several sheets
	Writing an Excel file with a dynamic number of sheets
	Reading data from an AWS S3 Instance

	Chapter 3: Working with Big Data and Cloud Sources
	Introduction
	Loading data into Salesforce.com
	Getting data from Salesforce.com
	Loading data into Hadoop
	Getting data from Hadoop
	Loading data into HBase
	Getting data from HBase
	Loading data into MongoDB
	Getting data from MongoDB

	Chapter 4: Manipulating
XML Structures
	Introduction
	Reading simple XML files
	Specifying fields by using Path notation
	Validating well-formed XML files
	Validating an XML file against DTD definitions
	Validating an XML file against an
XSD schema
	Generating a simple XML document
	Generating complex XML structures
	Generating an HTML page using XML and XSL transformations
	Reading an RSS Feed
	Generating an RSS Feed

	Chapter 5: File Management
	Introduction
	Copying or moving one or more files
	Deleting one or more files
	Getting files from a remote server
	Putting files on a remote server
	Copying or moving a custom list of files
	Deleting a custom list of files
	Comparing files and folders
	Working with ZIP files
	Encrypting and decrypting files

	Chapter 6: Looking for Data
	Introduction
	Looking for values in a database table
	Looking for values in a database with complex conditions
	Looking for values in a database with dynamic queries
	Looking for values in a variety of sources
	Looking for values by proximity
	Looking for values by using a web service
	Looking for values over an intranet
or the Internet
	Validating data at runtime

	Chapter 7: Understanding and Optimizing Data Flows
	Introduction
	Splitting a stream into two or more streams based on a condition
	Merging rows of two streams with the
same or different structures
	Adding checksums to verify datasets
	Comparing two streams and generating differences
	Generating all possible pairs formed from two datasets
	Joining two or more streams based on
given conditions
	Interspersing new rows between
existent rows
	Executing steps even when your stream
is empty
	Processing rows differently based on the row number
	Processing data into shared transformations via filter criteria and sub-transformations
	Altering a data stream with Select values
	Processing multiple jobs or transformations in parallel

	Chapter 8: Executing and Reusing Jobs and Transformations
	Introduction
	Launching jobs and transformations
	Executing a job or a transformation by setting static arguments and parameters
	Executing a job or a transformation
from a job by setting arguments and
	parameters dynamically
	Executing a job or a transformation whose name is determined at runtime
	Executing part of a job once for every row
in a dataset
	Executing part of a job several times until
a condition is true
	Moving part of a transformation to a
sub-transformation
	Using Metadata Injection to reuse transformations

	Chapter 9: Integrating Kettle and the Pentaho Suite
	Introduction
	Creating a Pentaho report with data coming from PDI
	Creating a Pentaho report directly from PDI
	Configuring the Pentaho BI Server for running PDI jobs and transformations
	Executing a PDI transformation as part of a Pentaho process
	Executing a PDI job from the Pentaho
User Console
	Populating a CDF dashboard with data coming from a PDI transformation

	Chapter 10: Getting the Most
Out of Kettle
	Introduction
	Sending e-mails with attached files
	Generating a custom log file
	Running commands on another server
	Programming custom functionality
	Generating sample data for testing purposes
	Working with JSON files
	Getting information about transformations and jobs (file-based)
	Getting information about transformations and jobs (repository-based)
	Using Spoon's built-in optimization tools

	Chapter 11: Utilizing Visualization Tools in Kettle
	Introduction
	Managing plugins with the Marketplace
	Data profiling with DataCleaner
	Visualizing data with AgileBI
	Using Instaview to analyze and visualize data

	Chapter 12: Data Analytics
	Introduction
	Reading data from a SAS data file
	Studying data via stream statistics
	Building a random data sample for Weka

	Appendix A: Data Structures
	Books data structure
	museums data structure
	Outdoor data structure
	Steel Wheels structure
	Lahman Baseball Database

	Appendix B: References
	Books
	Online

	Index

