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Preface

While R and Stata have many features in common, their languages are quite
different. Our goal in writing this book is to help you translate what you know
about Stata into a working knowledge of R as quickly and easily as possible.
We point out how they differ using terminology with which you are familiar
and we include many Stata terms in the table of contents and index. You can
find any R function by looking up its counterpart in Stata and vice versa. We
provide many example programs done in R and Stata so that you can see how
they compare topic by topic.

When finished, you should be able to use R to:

• Read data from various types of text files and Stata data sets.
• Manage your data through transformations, recodes, and combining data

sets from both the add-cases and add-variables approaches and restruc-
turing data from wide to long formats and vice versa.

• Create publication quality graphs including bar, histogram, pie, line,
scatter, regression, box, error bar, and interaction plots.

• Perform the basic types of analyses to measure strength of association and
group differences and be able to know where to turn to cover much more
complex methods.

Who This Book Is For

This book is, of course, for people who already know Stata. It may also be
useful to R users wishing to learn Stata. However, we explain none of the
Stata programs, only the R ones and how the packages differ, so it is not ideal
for that purpose.

This book is based on R for SAS and SPSS Users [34]. However, there is
quite a bit of additional material covered here, and, of course, the comparative
coverage is completely different.
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Who This Book Is Not For

We make no effort to teach statistics or graphics. Although we briefly state
the goal and assumptions of each analysis, we do not cover their formulas
or derivations. We have more than enough to discuss without tackling those
topics too. This is also not a book about writing R functions, it is about
using the thousands that already exist. We will write only a few very short
functions. If you want to learn more about writing functions, we recommend
John Chamber’s Software for Data Analysis: Programming with R [5]. How-
ever, if you know Stata, reading this book should ease your transition to more
complex books like that.

Practice Data Sets and Programs

All of the programs, data sets, and files that we use in this book are avail-
able for download at http://r4stats.com. A file containing corrections and
clarifications is also available there.
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1

Introduction

1.1 Overview

R [38] is a powerful and flexible environment for research computing. Written
by Ross Ihaka, Robert Gentleman (hence the name “R”), the R Core Develop-
ment Team, and an army of volunteers, R provides a wider range of analytical
and graphical commands than any other software. The fact that this level of
power is available free of charge has dramatically changed the landscape of
research software.

R is a variation of the S language, developed by John Chambers, Rick
Becker, and others at Bell Labs1. The Association of Computing Machinery
presented John Chambers with a Software System Award and said that the S
language “. . . will forever alter the way people analyze, visualize, and manip-
ulate data. . . ” and went on to say that it is “. . . an elegant, widely accepted,
and enduring software system, with conceptual integrity. . . .” The original S
language is still commercially available as Tibco Spotfire S+. Most programs
written in the S language will run in R.

Stata, a product of Stata Corporation, has not yet incorporated an inter-
face to R in its software, but users have already posted programs to use R
within the Stata environment. It is expected that more facilities of this sort
will be developed in the near future.

For each aspect of R we discuss, we will compare and contrast it with Stata.
Many of the topics end with example programs that do almost identical things
in both software applications. R programs are often longer than similar Stata
code, but this is typically the case because R functions are more specific than
Stata commands.

Many R functions will appear familiar to Stata users; that is, R functions
such as lm or glm will appear somewhat similar to Stata’s regress and glm
commands. There are other aspects of the two languages, however, that may
1 For a fascinating history of S and R, see Appendix A of Software for Data

Analysis: Programming with R [5].

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 1
and Computing, DOI 10.1007/978-1-4419-1318-0 1,
© Springer Science+Business Media, LLC 2010
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appear more confusing at first. We hope to ease that confusion by focusing on
both the similarities and differences between R and Stata in this text. When
we examine a particular analysis (e.g., comparing two groups with a t-test)
someone who knows Stata will have very little trouble figuring out what R
is doing. However, the basics of the R language are very different, so that is
where we will spend the majority of our time.

We introduce topics in a carefully chosen order, so it is best to read
from beginning to end the first time through, even if you think you do not
need to know a particular topic. Later you can skip directly to the sec-
tion you need. We include a fair amount of redundancy on key topics to
help teach those topics and to make it easier to read just one section as a
future reference. The glossary in Appendix A defines R concepts in terms
that Stata users will understand and provides parallel definitions using R
terminology.

1.2 Similarities Between R and Stata

Stata is an excellent statistics package. One of the authors has used Stata for
over 20 years and has authored many Stata commands.

Perhaps more than any other two research computing environments, R
and Stata share many of the features that make them outstanding:

• Both include rich programming languages designed for writing new ana-
lytic methods, not just a set of prewritten commands.

• Both contain extensive sets of analytic commands written in their own
languages.

• The pre-written commands in R, and most in Stata, are visible and open
for you to change as you please.

• Both save command or function output in a form you can easily use as
input to further analysis.

• Both do modeling in a way that allows you to readily apply your models
for tasks such as making predictions on new data sets. Stata calls these
postestimation commands and R calls them extractor functions.

• In both, when you write a new command, it is on an equal footing with
commands written by the developers. There are no additional “Developer’s
Kits” to purchase.

• Both have legions of devoted users who have written numerous extensions
and who continue to add the latest methods many years before their com-
petitors.

• Both can search the Internet for user-written commands and download
them automatically to extend their capabilities quickly and easily.

• Both hold their data in the computer’s main memory, offering speed but
limiting the amount of data they can handle.
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1.3 Why Learn R?

With so many similarities, if you already know Stata, why should you bother
to learn R?

• To augment Stata; i.e. to be able to perform statistical analyses that are
not available in Stata, but which are available in R. R offers a vast number
of analytical methods. There are now over 3,000 add-on packages available
for R and this number is growing at an exponential rate. Therefore, know-
ing both gives you a much greater range of tools for analyzing data.

• To stay current with new analytic methods. The majority of statistics
textbooks, and journal articles, now being published use either Stata or
R for examples. R appears to be used more in many journals. Stata users
not understanding R are therefore not able to learn as much from texts or
articles using R for examples than they would be if they understood the
language.

• If you continue to do all of your data management in Stata, you can learn
just enough R to import your data and run the procedures you need.

• R is directly accessible from inside many statistics packages. SAS, SPSS,
and STATISTICA offer the ability to run R programs from within their
software. This means that when developers write programs in R, they are
assured a very wide audience. Roger Newson has written an interface [36]
between Stata and R that provides some of this ability. We expect to see
more done on this topic in the near future.

• R has been object-oriented since its first version. Many of its commands
sense the types of data structures you have and do the best thing for each.
For example, once you tell it that gender is a categorical variable, it will
take statistically proper actions if you use it as a linear regression predic-
tor. At the time of publication, Stata Corporation had just announced its
future move toward object orientation.

• Both languages consist of a core set of functions that are written in the
C language. However, only developers at Stata Corporation can modify
its most fundamental commands. Every aspect of R is open for anyone
to modify in any way they like. This complete flexibility attracts many
developers.

• Both R and Stata offer graphics that are flexible, easy to use, and of high
quality. However, R also offers the very flexible and powerful Grammar of
Graphics approach. As we will see, developers have even gone so far as
replacing R’s core graphical system.

• R is free. This means, of course, that you can use it for free, but it also
means developers know that their work is available to everyone. That helps
attract developers and is a major reason that there are so many add-on
packages for it.
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1.4 Is R Accurate?

When people first learn of R, one of their first questions is “Can a package
written by volunteers be as accurate as one written by a large corporation?”
People envision a lone programmer competing against a large corporate team.
Having worked closely with several software companies over the years, we
can assure you that this is not the case. A particular procedure is usually
written by one programmer, even at Stata Corporation. A thorough testing
process is then carried out by a few people within the company and then more
thoroughly by Stata users on publication of the new command or function.

The R Development Core Team runs each release of R through validation
suites that have known correct answers to ensure accurate results. They also
go through “Alpha,” “Beta,” and “Release Candidate” testing phases, which
are open to the public. Each phase has tighter restrictions on modifications
of R. Finally, the production version is released. The details of this process
are provided in R: Regulatory Compliance and Validation Issues, A Guidance
Document for the Use of R in Regulated Clinical Trial Environments, available
at http://www.r-project.org/doc/R-FDA.pdf [11].

When bugs are found in Stata, the developers typically make a fix within
days. Users are in continual communication with other users and developers
through the Statalist. An average of 100 communications are posted daily.
Questions are answered by other users or by Stata staff.

R also has open discussions of its known bugs and R’s developers fix them
quickly too. However, software of the complexity of Stata and R will never be
completely free of errors, regardless of its source.

1.5 What About Tech Support?

If a package is free, who supports it?
Stata users may call toll-free or e-mail technical support for problems

they experience with the software or for advice on how to run various software
commands. The response is near immediate, with a day delay in response being
on the high side. Even experienced Stata users sometimes require technical
advice for new commands or functions or have difficulties learning new areas
of statistics or new methodologies (e.g. the matrix programming). We have
always found support to he helpful and friendly.

You can also get support through the Stata Listserver, where it is normal
to get assistance from someone the very day you post your request.

R’s main source of support is the R-help mailing list. Other users and often
developers themselves will often provide immediate help. Sometimes you may
obtain different answers from various responders, but that is part of the nature
of statistics. For details on the various R e-mail support lists, see Chapter 4,
“Help and Documentation.”

http://www.r-project.org/doc/R-FDA.pdf
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There are several commercial versions of R available, and the companies
that sell them do provide phone support. Here are some of these companies
and their web sites:

XL-Solutions Corp., http://www.experience-rplus.com/
Revolution Computing, Inc., http://www.revolution-computing.com/
Random Technologies, LLC, http://random-technologies-llc.com/

1.6 Getting Started Quickly

If you wish to start using R quickly, you can do so by reading fewer than 50
pages of this book. Since you have Stata to do your basic descriptive statistics,
you are likely to need R’s modeling functions. Here are the steps you can follow
to use them.

1. Read the remainder of this chapter and Chapter 2, “Installing and Up-
dating R.” Download and install R on your computer.

2. Read the part of Chapter 3, “Running R,” that covers your operating
system.

3. In Chapter 5, “Programming Language Basics,” read Section 5.3.2 about
factors, and Section 5.3.3 about data frames.

4. Also in Chapter 5, read Section 5.6.1, “Controlling Functions with Ar-
guments,” and Section 5.6.2, “Controlling Functions with Formulas,” in-
cluding Table 5.1, “Example formulas in Stata and R.”

5. Read Section 6.6, “Importing Data from Stata.”

After reading the pages above, do all your data management in Stata,
stripping out observations containing any missing values. Then write out only
the variables and observations you need to a comma separated values file,
mydata.csv. Assuming your variables are named y, x1, x2,. . . , your entire R
program will look something like this:

library("Hmisc") # Contains stata.get function.
library("OtherLibrariesYouNeed") # If you need any.
mydata <- stata.get("mydata.dta") # imports your Stata file
mymodel <- TheFunctionYouNeed( y ~ x1+x2, data=mydata )
summary(mymodel)
plot(mymodel) # if your function does plots.

1.7 Programming Conventions

Although R has many ways to generate practice data and has a variety of
example data sets, we will use a tiny practice data set that is easy to enter.
We can then manipulate and print it repeatedly so that you can clearly see
the changes.

http://www.experience-rplus.com/
http://www.revolution-computing.com/
http://random-technologies-llc.com/
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You can download the practice data sets and program files from http://
r4stats.com. The example programs are set to look for their matching data
files in the directory (folder) named myRfolder, but that is easy to change to
whatever location you prefer. Each program begins by loading the data as if it
were a new session. That is not required if you already have the data loaded,
but it makes it easier to ensure that previous programming does not interfere
with the example. It also allows each program to run on its own.

Each example program in this book begins with a comment stating its
purpose and the name of the file in which it is stored. For example, the
programs for selecting variables each begin with a comment like the one below.

# R Program for Selecting Variables.
# Filename: SelectingVars.R

When displaying the programs within the book, we dispense with first line
since it appears as the title of the section.

R’s “#” symbol is like Stata’s “*” symbol. Words after it are regarded
as comments, until the end of the line. The filename in the practice files
will always match, so the two files for this topic are SelectingVars.do, and
SelectingVars.R. The R data objects and Stata data sets used in this book
are also available. Their names are the same as that used in the book, with
the extensions “.dta” and “.RData” for the Stata and R files, respectively.
For example, our most widely used data object, mydata, is stored in both
mydata.dta and mydata.RData. Also, all of the R objects we create, data and
functions, are stored in myAll.RData.

1.8 Typographic Conventions

We write all programming code and the names of all commands, functions,
and packages in this Courier font.

The names of other documents and menus are in this italic font.
Menus appear in the form File>Save as. . . , which means “choose Save

as. . . from the File menu.”
When learning a new language, it can be hard to tell the commands from

the names you can choose (e.g., variable or data set names). To help differen-
tiate, we use the common prefix “my” in names like mydata or mySubset.

R uses “>” to prompt you to input a new line and “+” to prompt you
to enter a continued line. When there is no output to see, we delete the
prompt characters to achieve a less cluttered look. However, when examples
include both input and output, we leave the input prompts in place. That
helps you identify which is which. So the first three lines below are the input
we submitted and the last line is the mean that R wrote out.

> q1 <- c(1, 2, 2, 3,
+ 4, 5, 5, 5, 4)

http://r4stats.com
http://r4stats.com
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> mean(q1)

[1] 3.4444

R tends to pack its input and different sections of output tightly together.
This makes it harder to read when you are learning it. Therefore, we also add
spacing in some places to improve legibility. In the example above, we added
a blank line on either side of the line containing “> mean(q1).”
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Installing and Updating R

Stata and R are somewhat similar in that both are modular. Each comes with
a single “binary” executable file and a large number of individual functions or
commands. These are text files that users can modify in a text editor. Both
applications come with their own built-in text editors, and both allow the use
of outside text editors as well.

The binary executable files that come with R and Stata have been compiled
from the “source code” version that was written using C. When you install
R, you download the executable together with a set of add-on modules called
packages.

These are different from Stata’s ado files, which are single-purpose com-
mands or functions. R packages contain a number of related functions that
can be used for data management, graphics, or statistical analysis.

After the installation of the group of main R packages, a user may install
other packages later when they are needed. There are over 3,000 packages to
choose from. It is highly unlikely that someone would need them all.

The Comprehensive R Archive Networks (CRAN), located at http://
cran.r-project.org/, is R’s equivalent to Stata’s Statistical Software Com-
ponents (SSC) Archive. The most important difference between the two
archives is that CRAN is where you obtain R itself. The SSC contains only
add-ons to Stata, of course.

To download R, go to the CRAN link above, choose your operating system
under the web page heading Download and Install R. The binary versions
install quickly and easily. Binary versions exist for many operating systems,
including Windows, Mac OS X, and popular versions of Linux such as Ubuntu,
RedHat, Suse, and others that use either the RPM or APT installers.

Since R is an Open Source project, there are also source code versions of R
for experienced programmers who prefer to compile their own copy. Using that
version, you can modify R in any way you like. Although R’s developers write
most of the analytic commands using the R language, they use other languages
such as C and FORTRAN to write the most fundamental R functions.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 9
and Computing, DOI 10.1007/978-1-4419-1318-0 2,
© Springer Science+Business Media, LLC 2010

http://cran.r-project.org/
http://cran.r-project.org/
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Each version of R installs into its own directory (folder), so there is no
problem having multiple versions installed on your computer. You can then
install your favorite packages for the new release.

2.1 Installing Add-on Packages

While the main installation of R contains many useful functions, many addi-
tional packages, written by R users, are available on the Internet. The main
site for additional packages is at the CRAN web site under Packages. The
equivalent to Stata’s Statistical Software Components (SSC) Archive, CRAN
is the best place to read about and choose packages to install. You usually do
not need to download them from there yourself. R automates the download
and installation process.

Before installing packages, your computer account should have adminis-
trative privileges and you must start R in a manner that allows administrative
control. If you do not have administrative privileges on your computer, you can
install packages to a directory to which you have write access. For instructions,
see the FAQ (Frequently Asked Questions) at http://www.r-project.org/.

To start R with administrative control on Windows Vista and Windows 7,
right-click its menu choice and then choose Run as administrator. Window’s
User Account Control will then ask for your permission to allow R to modify
your computer.

On the R version for Microsoft Windows, you can choose Packages>Install
package(s) from the menus. It will ask you to choose a CRAN site or “mirror”
that is close to you; see Fig. 2.1, left. Then it will ask which package you wish
to install (right). Choose one of each and click OK.

If you prefer to use a function instead of the menus, you can use the
install.packages function. This is just like Stata’s ssc install command.
For example, to download and install Frank Harrell’s Hmisc package [14], start
R and enter this function call:

install.packages("Hmisc", dependencies=TRUE)

The argument dependencies=TRUE tells R to install any packages that
this package “depends” on and those that its author “suggests” as useful. R
will then prompt you to choose the closest mirror site and the package you
need.

2.2 Loading an Add-on Package

Once installed, a package is on your computer’s hard drive but not quite ready
to use. Each time you start R, you also have to load the package from the
library before you can use it. You can see what packages are installed and
ready to load with the library function.

http://www.r-project.org/
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Fig. 2.1. When installing software, you first choose a mirror site (left). Then the
next window appears, from which you choose the package you need (right).
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Fig. 2.2. The library function shows you the packages that are installed and are
ready to load.

library()

That causes the window in Fig. 2.2 to appear, showing the packages you
have installed. The similar installed.packages function lists your installed
packages along with the version and location of each.

You can then load a package you need with the menu selection, Packages
>Load packages. It will show you the names of all packages that you have
installed but have not yet loaded. You can then choose one from the list.

Alternatively, you can use the library function. Here I am loading the
Hmisc package. Since the Linux version lacks menus, this function is the only
way to load packages.

library("Hmisc")

Many packages load without any messages; you will just see the “>” prompt
again. When trying to load a package, you may see the error message below. It
means you have either mistyped the package name (remember capitalization
is important) or you have not installed the package before trying to load it.
In this case, Jim Lemon and Philippe Grosjean’s prettyR package [30] name
is typed accurately, so we have not yet installed it.

> library("prettyR")

Error in library(prettyR) :
there is no package called ’prettyR’
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To see what packages you have loaded, use the search function.

> search()

[1] ".GlobalEnv" "package:Hmisc"
[3] "package:stats" "package:graphics"
[5] "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods"
[9] "Autoloads" "package:base"

We will discuss this function in detail in Chapter 13, “Managing Your Files
and Workspace.”

Since there are so many packages written by users, two packages will oc-
casionally have functions with the same name. That can be very confusing
until you realize what is happening. For example, the Hmisc and prettyR
packages both have a describe function that does similar things. In such a
case, the package you load last will mask the function(s) in the package you
loaded earlier. For example, we loaded the Hmisc package first, and now we
am loading the prettyR package (having installed it in the meantime). The
following message results:

> library("prettyR")

Attaching package: ’prettyR’
The following object(s) are masked from package:Hmisc :

describe

You can avoid such conflicts by detaching each package as soon as you
are done using it by using the detach function. For example, the following
function call will detach the prettyR package:

detach("package:prettyR")

One approach that avoids conflicts is to load a package from the library
right before using it and then detach it immediately as in the following
example:

> library("Hmisc")
> describe(mydata)

---output would appear here---
> detach("package:Hmisc")

If your favorite packages do not conflict with one anther, you can have R
load them each time you start R by putting the function calls in a file named
“.Rprofile.” That file can automate your settings just like the profile.do file
for Stata. For details, see Appendix C.
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2.3 Updating Your Installation

While Stata is configured to check for updates over the Internet every 7 days,
in R you must tell it to check using the update.packages function.

> update.packages()

graph :
Version 1.15.6 installed in C:/PROGRA~1/R/R-26~1.1/library
Version 1.16.1 available at
http://rh-mirror.linux.iastate.edu/CRAN

Update (y/N/c)? y

R will ask you if you want to update each package. If you enter “y,” it will
do it and show you the following. This message, repeated for each package,
tells you what file it is getting from the mirror you requested (Iowa State)
and where it placed the file.

trying URL ’http://rh-mirror.linux.iastate.edu
/CRAN/bin/windows/contrib/2.6/graph_1.16.1.zip’

Content type ’application/zip’ length 870777 bytes (850 Kb)
opened URL
downloaded 850 Kb

This next message tells you that the file was checked for errors (its sums
were checked) and it says where it stored the file. As long as you see no error
messages, the update is complete.

package ’graph’ successfully unpacked and MD5 sums checked

The downloaded packages are in
C:/Documents and Settings/muenchen/Local Settings/

Temp/Rtmpgf4C4B/downloaded_packages
updating HTML package descriptions

Moving to a whole new version of R is not as easy. First, you download
and install the new version just like you did the first one. Multiple versions
can coexist on the same computer. You can even run them at the same time if
you wanted to compare results across versions. When you install a new version
of R, you also have to install any add-on packages again. You can do that in
a step-by-step fashion as we discussed above. An easier way is to define a
character variable like “myPackages” that contains the names of the packages
you use. The following is an example that uses this approach to install all of
the packages we use in this book.

myPackages <- c("car","foreign","hexbin",
"ggplot2","gmodels","gplots", "Hmisc",
"lattice", "reshape","ggplot2","prettyR","Rcmdr")

install.packages(myPackages, dependencies=TRUE)
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We will discuss the details of the c function used above later. We will also
discuss how to store programs like this so you can open and execute them
again in the future.

You can automate the creation of myPackages (or whatever name you
choose to store your package names) by placing the code that defines it in
your .Rprofile. Putting it there will ensure that myPackages is defined every
time you start R. As you find new packages to install, you can add to the
definition of myPackages. Then installing all of them when a new version of R
comes out is easy. Of course, you do not want to place the install.packages
function into your .Rprofile. There is no point in installing package every time
you start R! For details, see Appendix C.

2.4 Uninstalling R

When you get a new version of any software package, it is good to keep the
old one around for a while in case any bugs show up in the new one. Once
you are confident that you will no longer need an older version of R, you can
remove it.

On Microsoft Windows, R does not have an uninstaller accessible from
the usual Windows Add or Remove Programs control panel. Instead, you can
choose Start>Programs>R, Uninstall R x.x.x, where x.xx.x is the version of
R you are using. That menu choice runs the uninstall program, unins000.exe.
That program will remove R and any packages you have installed. That file
is located in the folder c:/program files/R/R x.x.x/.

To uninstall R on the Macintosh, simply drag the application to the trash.
Linux users can uninstall R by deleting /usr/local/lib/R.
Although it is rarely necessary to uninstall a single package, you can do so

with the uninstall.packages function. First though, you must make sure it
is not in use by detaching it. For example, to remove just the Hmisc package,
use the following:

detach("package:Hmisc") #If it is loaded.

remove.packages("Hmisc")

Recall that R uses “#” to begin comments, so “#If it is loaded.” is just a
comment to document the program.

2.5 Choosing Repositories

While most R packages are stored at the CRAN site, there are other repos-
itories. If the Packages window does not list the one you need, you may
need to choose another repository. Several repositories are associated with
the BioConductor project. As they say at their main web site, “BioConductor
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is an open source and open development software project for the analysis and
comprehension of genomic data [16].” Another repository is at the Omegahat
Project for Statistical Computing [48],

To choose your repositories, choose Packages>Select repositories. . . or en-
ter the following function call and the Repositories selection window will ap-
pear (Fig. 2.3). Note that two CRAN repositories are selected by default. Your
operating system’s usual mouse commands work as usual to make contiguous
or noncontiguous selections. On Microsoft Windows, that is Shift-click and
Ctrl-click, respectively.

> setRepositories()

If you are working without a windowing system, R will prompt you to
enter the number(s) of the repositories you need.

--- Please select repositories for use in this session ---
1: + CRAN
2: + CRAN (extras)
3: Omegahat
4: BioC software
5: BioC annotation
6: BioC experiment
7: BioC extra

Enter one or more numbers separated by spaces
1: 1,2,4

Fig. 2.3. Selecting repositories will determine which add-on packages R will offer
to install.
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2.6 Accessing Data in Packages

You can get a list of data sets available in each loaded package with the data
function. A window listing the default data sets will appear (Fig. 2.4).

> data()

Fig. 2.4. The data function displays all of the practice data sets for the packages
you have loaded.

You can use these practice data sets directly. For example, to look at the
top of the CO2 file (capital letters C and O, not zero!), you can use the head
function.

> head(CO2)

Plant Type Treatment conc uptake
1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2

The similar tail function shows you the bottom few observations.
If you only want a list of data sets in a particular package, you can use the

package argument. For example, if you have installed the car package [12]
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(from John Fox’s Companion to Applied Regression book), you can load it
from the library and see the data sets only it has (Fig. 2.5) with the following
statements. Recall that R is case sensitive, so using a lowercase “un” would
not work.

> library("car")
> data(package="car")
> head(UN)

infant.mortality gdp
Afghanistan 154 2848
Albania 32 863
Algeria 44 1531
American.Samoa 11 NA
Andorra NA NA
Angola 124 355

Fig. 2.5. Display of data sets in the car package.

To see all of the data sets available in all installed packages, even those
not loaded from the library, enter the following function call:

data( package=.packages( all.available=TRUE ) )
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Running R

There are several ways you can run R:

• Interactively using its programming language. You can see the result of
each function call immediately after you submit it.

• Interactively using one of several graphical user interfaces (GUIs) that
you can add on to R. Some of these use programming and some use menus
much like Stata.

• Noninteractively in batch mode using its programming language. You enter
your program into a file and run it all at once.

You can ease your way into R by continuing to use Stata or your favorite
spreadsheet program to enter and manage your data and then use one of the
methods below to import and analyze it. As you find errors in your data (and
you know you will), you can go back to your other software, correct them,
and then import it again. It is not an ideal way to work, but it does get you
into R quickly.

3.1 Running R Interactively on Windows

You can run R programs interactively in several steps:

1. Start R by choosing Start>All Programs>R>R x.x.x (where x.x.x is the
version of R you are using). The main R Console window will appear
looking like the left window in Fig. 3.1. Then enter your program choosing
one of the methods described in steps 2 and 3 below.

2. Enter R functions into the R console. You can enter function calls into
the console one line at a time at the “>” prompt. R will execute each line
when you press the Enter key. If you enter them into the console, you can
retrieve them with the up arrow key and edit them to run again. We find
it much easier to use the program editor described in the next step.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 19
and Computing, DOI 10.1007/978-1-4419-1318-0 3,
© Springer Science+Business Media, LLC 2010
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Fig. 3.1. R graphical user interface on Microsoft Windows.

If you type the beginning of an R function, such as “me” and press Tab,
R will show you all of the R functions that begin with those letters, such
as mean or median. If you enter the name of a function and an open
parenthesis, such as “mean(,” R will show you the arguments that you
can use with that function.

3. Enter R functions into the R Editor. Open the R Editor by choosing
File>New Script. You can see it in the bottom right corner of Fig. 6.1.
You can enter programs as you would in the Stata commandline.

4. Submit your program from the R Editor. To submit just the current line,
you can hold the Ctrl key down and press “r,” for run, or choose Edit>Run
line or selection. To run a block of lines, select them first and then submit
them the same way. To run the whole program, choose Edit>Run All.

5. As you submit program statements, they will appear in the R Console
along with results and/or error messages. Make any changes you need and
submit the program again until finished. You can clear the console results
by choosing Edit>Clear console or by holding the Ctrl key down and
pressing “l” (i.e. CTRL-l). See Help>Console for more keyboard shortcuts.

6. Save your program and output. Click on either the console window or the
R Editor window to make it active and choose File>Save to file. Unlike
in Stata, the console output will contain the commands and their output
blended together.

7. Save your data and any functions you may have written. The data and/or
function(s) you created are stored in an area called your workspace. You
can save that with the menu selection, File>Save Workspace. . . . In a later
R session you can retrieve it with File>Load Workspace. . . . You can also
save your workspace using the save.image function:
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save.image(file="myWorkspace.RData")

Later, you can read the workspace back in with the function call:

load("myWorkspace.RData")

For details, see Chapter 13, “Managing Your Files and Workspace.”
8. Optionally save your history. R has a history file that saves all of the

function calls you submit in a given session. This is just like the Stata log
menu. Unlike Stata, however, the history of the past function calls is not
cumulative on Windows computers. You can save the session history to
a file using File>Save History. . . and you can load it into future session
with File>Load History. . . . There are also various R functions to do these
tasks.

savehistory(file="myHistory.Rhistory")
loadhistory(file="myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if
you do not provide one. We prefer to always save a cumulative history file
automatically. For details, see Appendix C.

9. To quit R, choose File>Exit or submit the function quit() or just q(). R
offers to save your workspace automatically on exit. If you are using the
save.image and load functions to tell R where to save and retrieve your
workspace in step 4 above, you can answer No. If you answer Yes, it will
save your work in the file “.RData” in your default working directory. Next
time you start R, it will load the contents of the .RData file automatically.
Creating a .RData file this way is a convenient way to work. However, we
prefer naming each project ourselves as described in step 4 above.

3.2 Running R Interactively on Macintosh

Like Stata, R programs run interactively on the Macintosh. R does so in
several steps.

1. Start R by choosing R in the Applications folder. The R console win-
dow will appear (see left window in Fig. 3.2). Then enter your program
choosing one of the methods described in steps 2 and 3 below.

2. Enter R functions in the console window. You can enter function calls
into the console one line at a time at the “>” prompt. R will execute each
line when you press the Enter key. If you enter them into the console,
you can retrieve them with the up arrow key and edit them to run again.
We find it much easier to use the program editor described in the next
step. If you type “me” at the command prompt and press Tab or hold
the Command key down and press “.” (i.e., CTRL-period), R will show
you all of the R functions that begin with those letters, such as mean or
median. When you type a whole function name, the functions arguments
will appear below it in the console window.
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Fig. 3.2. R graphical user interface on Macintosh.

3. Enter R functions into the R Editor. Open the R Editor by choosing
File>New Document. The R Editor will start with an empty window.
You can see it in the center of Fig. 3.2. You can enter R programs as you
would on the Stata command line or write do or ado files in the Stata
editor.

4. Submit your program from the R Editor. To submit one or more lines,
highlight them, then hold the Command key, and press Return, or choose
Edit>Execute. To run the whole program, select it by holding down the
Command key and pressing “a,” and then choose Edit>Execute.

5. As your submit program statements, they will appear in the R Console
along with results and/or error messages. Make any changes you need and
submit the program again until finished.

6. Save your program and output. Click on a window to make it the active
window and choose File>Save to file. The function calls and their output
are blended together, unlike Stata.

7. Save your data and any functions you may have written. The data and/or
function(s) you created are stored in an area called your workspace. You
can save your workspace with Workspace>Save Workspace File. . . . In
a later R session you can retrieve it with Workspace>Load Workspace
File. . . . You can also perform these functions using the R functions
save.image and load.

save.image(file="myWorkspace.RData")

load("myWorkspace.RData")

For details, see Chapter 13, “Managing Your Files and Workspace.”
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8. Optionally save your history. R has a history file that saves all of the
functions you submit in a given session (and not the output). This is just
like the Stata log menu. The history file is not cumulative on Macintosh
computers. You can view your history by clicking on the Show/Hide R
command history icon in the console window (to the right of the lock
icon). You can see the command history window on the right side of
Fig. 3.2. Notice that it has alternating stripes, matching its icon. Clicking
the icon once makes the history window slide out to the right of the
console. Clicking it again causes it to slide back and disappear. You can
see the various buttons at the bottom of the history, such as Save History
or Load History. You can use them to save your history or load it from a
previous session. You can also use R functions to do these tasks.

savehistory(file="myHistory.Rhistory")

loadhistory(file="myHistory.Rhistory")

The filename can be anything you like, but the extension should be “.Rhis-
tory.” In fact the entire filename will be simply “.Rhistory” if you do not
provide one. We prefer to always save a cumulative history file automati-
cally. For details, see Appendix C.

9. Exit R by choosing R>Quit R. Users of any operating system can quit
by submitting the function quit() or just q(). R will offer to save your
workspace automatically on exit. If you are using the save.image and
load functions to tell R where to save/retrieve your workspace in step 4
above, you can answer No. If you answer Yes, it will save your work in the
file “.RData” in your default working directory. Next time when you start
R, it will load the contents of the .RData file automatically. Creating a
.RData file this way is a convenient way to work. However, we recommend
naming each project yourself, as described in step 4 above.

3.3 Running R Interactively on Linux or UNIX

You can run R programs interactively in several steps.

1. Start R by entering the command “R,” which will bring up the “>”
prompt, where you enter commands. For a wide range of options, refer
to Appendix B , An Introduction to R [52], available at http://www.
r-project.org/ under Manuals, or in your R Help menu. You can enter
R functions using either of the methods described in steps 2 and 3 below.

2. Enter R functions into the console one line at a time at the “>” prompt.
R will execute each line when you press the Enter key. You can retrieve a
function call with the up arrow key and edit it, and then press Enter to
run again. You can include whole R programs from files with the source
function. For details, see Section 3.4, “Running Programs That Include
Other Programs.” If you type the beginning of an R function name like
“me” and press the Tab key, R will show you all of the R functions that

http://www.r-project.org/
http://www.r-project.org/
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begin with those letters, such as mean or median. If you type the function
name and an open parenthesis like “mean(” and press Tab, R will show
you the arguments you can use to control that function.

3. Enter R functions into a text editor. Although R for Linux or UNIX does
not come with its own GUI or program editor, a popular alternative is to
use the Emacs editor in ESS mode. It color-codes your programs to help
find syntax errors. You can submit your programs directly from Emacs to
R. See the R FAQ at http://www.r-project.org/ under R for Emacs
for details.

4. Save your program and output. Linux or UNIX users can route input and
output to a file with the sink function. You must specify it in advance of
any output you wish to save.

sink("myTranscript.txt", split=TRUE)

The argument split=TRUE tells R to display the text on the screen as
well as route it to the file. The file will contain a transcript of your work.
The function calls and their output are blended together, unlike Stata.

5. Save your data and any functions you may have written. The data and/or
function(s) you created are stored in an area called your workspace. Users
of any operating system can save it by calling the save.image function.

save.image(file="myWorkspace.RData")

Later, you can read the workspace back in with the function call

load("myWorkspace.RData")

For details, see Chapter 13, “Managing Your Files and Workspace.”
6. R has a history file that saves all of the functions you submit in a given

session. This is just like the Stata log menu. The Linux/UNIX version of R
saves a cumulative set of function calls across sessions. You can also save
or load your history at any time with the savehistory and loadhistory
functions.

savehistory(file="myHistory.Rhistory")

loadhistory(file="myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if
you do not provide one.

7. Quit R by submitting the function quit() or just q(). R offers to save
your workspace automatically on exit. If you are using the save.image
and load functions to tell R where to save/retrieve your workspace in
step 4 above, you can answer No. If you answer Yes, it will save your
work in the file “.RData” in your default working directory. Next time
you start R, it will load the contents of the .RData file automatically.
Creating an .RData file this way is a convenient way to work. However,
we prefer naming each project ourselves as described in step 4 above.

http://www.r-project.org/
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3.4 Running Programs That Include Other Programs

When you find yourself using the same block of code repeatedly in different
programs, it makes sense to save it to a file and include it into the other
programs where it is needed. Stata does this using a global constant, where
the program code is assigned a unique name and recalled into the program
code by giving the constant with a leading dollar sign. To include a program
in R, use the source function

source("myprog.R")

One catch to keep in mind is that by default R will not display any results
that sourced files may have created. Of course, any objects they create —
data, functions, and so forth — will be available to the program code that
follows. If the program you source creates actual output that you want to see,
you can source the program in the following manner:

source("myprog.R", echo=TRUE)

This will show you all of the output created by the program. If you prefer
to see only some results, you can wrap the print function around only those
functions whose output you do want displayed. For example, if you sourced
the following R program, it would display the standard deviation, but not the
mean:

x <- c(1, 2, 3, 4, 5)
mean(x) # This result will not display.
print( sd(x) ) # This one will.

An alternative to using the source function is to create your own R pack-
age. However, that is beyond the scope of this book.

3.5 Running R in Batch Mode

You can write a program to a file and run it all at once, routing its results to
another file (or files). This is called batch processing. If you had a program
named myprog.do, you would run it with the following command:

"C:\Program Files\Stata10\wstata" /b do myprog.do

Stata would run the program and place the results into a log file called
myprog.log.

In R, you can find the details of running batch on your operating system
by starting R and entering the following command. Note that the letters of
BATCH must be all uppercase.
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help(BATCH)

The following operating system command is an example of running an
R batch job on Microsoft Windows. You will need to change the path of
Rterm.exe to reflect its location on your computer and fill in your version in
place of x.x.x.

"C:\Program Files\R\R-x.x.x\bin\Rterm.exe"
--no-restore --no-save < myprog.r > myprog.out

The command wraps to two lines in this book, but enter it as a single
line. It is too long to fit in a standard cmd.exe window, so you will need to
change its default width from 80 to something wider, like 132. R will execute
myprog.r and write the results to myprog.out.

It is easier to write a small batch file like myR.bat.

"G:\Program Files\R\R-x.x.x\bin\Rterm.exe"
--no-restore --no-save < %1 > %1.Rout 2>&1

Once you have saved that in the file myR.bat, you can then submit
batch programs with the following command. It will route your results to
myprog.Rout. You can also download this batch file with this book’s example
programs and data sets at http://r4stats.com.

myR myprog.R

UNIX users can run a batch program with the following command. It, too,
will write your output to myprog.Rout.

R CMD BATCH myprog.R

There are, of course, many options to give you more control over how your
batch programs run. See the help file for details.

3.6 Graphical User Interfaces

The main R installation provides an interface to help you enter programs. It
does not include a point-and-click graphical user interface (GUI) for running
analyses. There are, however, several GUIs written by R users. You can learn
about several at the main R web site, http://www.r-project.org/ under
Related Projects and then R GUIs.

3.6.1 R Commander

Our favorite GUI for general statistical analysis is John Fox’s R Commander
[13], which is similar to the Stata GUI. It provides menus for many analytic
and graphical methods and shows you the R function calls that it enters,
making it easy to learn to program in R as you use it. Since it does not
come with the main R installation, you have to install it one time with the
install.packages function.

http://r4stats.com
http://www.r-project.org/
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install.packages("Rcmdr", dependencies=TRUE)

R Commander uses many other packages, and R will download and install
them for you if you use the dependencies=TRUE argument.

Let us review the steps of a basic R Commander session. Below are the
steps we followed to create the screen image you see in Fig. 3.3 .

1. We started R. For details see the section “Running R Interactively on
Windows,” or similarly named sections for other operating systems pre-
viously covered in this chapter.

2. Then, from within R itself we started R Commander by loading its package
from the library. That brought up the window that looks something like
Fig. 3.3.

library("Rcmdr")

Fig. 3.3. The R Commander GUI, before any work is done.

3. We then chose Data>Load a data set and browsed to myRfolder, where
our practice data sets are stored. We had to tell it to look for All Files
because by default it looks for .RDA file types and ours are .RData. We
then chose the file mydata.RData. R Commander uses a different file
extension because it is unable to deal with more than one data set at
a time. Since mydata.RData contains only one data set, it works fine.

4. We next click on the View data set button in order to view the data. Then
the data appeared, as shown in Fig. 3.4.

5. We then chose Statistics>Summaries>Active Data Set. The output you
see on the bottom of the screen in Fig. 3.5.
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Fig. 3.4. R Commander’s Data Viewer window that appears when you click the
View data set button.

Fig. 3.5. The R Commander GUI with work in progress.



3.6 Graphical User Interfaces 29

6. Finally, we chose Statistics>Means. . . . You see that the menu is still
open, showing that we can choose various t-tests and analysis of variance
(ANOVA) procedures.

You can learn more about R Commander at http://cran.r-project.
org, under Packages.

3.6.2 Rattle for Data Mining

Graham William’s Rattle package [57] provides a tabbed-dialog box style of
user interface. Although its emphasis is on data mining, the interface is useful
for standard statistical analyses as well. Its name stands for the R analytical
tool to learn easily. That name fits it well, as it is very easy to learn. Its
point-and-click interface writes and executes R programs for you.

Before you install the rattle package, you must install some other tools.
See the web site for directions http://rattle.togaware.com. Once it is in-
stalled, you load it from your library in the usual way.

> library("rattle")

Rattle, Graphical interface for data mining
using R, Version 2.2.64.

Copyright (C) 2007 Graham.Williams@togaware.com, GPL

Type "rattle()" to shake, rattle, and roll your data.

As the instructions tell you, simply enter the call to the rattle function
to bring up its interface.

> rattle()

The main Rattle interface shown in Fig. 3.6 will then appear. It shows
the steps it uses to do an analysis on the tabs at the top of its window. You
move from left to right, clicking on each tab to do the following steps:

1. Data. Choose your data type from a Comma Separated Value (CSV) file,
Attribute Relation File Format (ARFF), Open DataBase Connectivity
(ODBC), .RData file, R data object already loaded or created before
starting Rattle, or even manual data entry.

2. Select. Choose your variables and the roles they play in the analysis. In
Fig. 3.6 we have chosen gender as the target variable (dependent variable)
and the other variables as inputs (independent variables or predictors).

3. Explore. Examine the variables using summary statistics, distributions,
interactive visualization via GGobi [47], correlation, hierarchical cluster
analysis of variables, and principal components. A very interesting feature
in distribution analysis is the application of Benford’s law, an examination
of the initial digits of data values that people use to detect fraudulent data
(e.g., faked expense account values)

http://cran.r-project.org
http://cran.r-project.org
http://rattle.togaware.com
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Fig. 3.6. Rattle GUI for data mining.

4. Transform. Replace missing values with reasonable estimates (imputa-
tion), convert variables to factors, or look for outliers.

5. Model. Apply models from tree, boost, forest, SVM, regression, or all.
6. Evaluate. Assess model quality and compare different models using con-

fusion tables, lift charts, ROC curves, and so forth.
7. Log. See the R program that Rattle wrote for you to do all of the steps.

Figure 3.7 shows an R program that Rattle wrote when asked for box plots
of my data (box plots not shown).

3.6.3 JGR Java GUI for R

The Java GUI for R, JGR [20] (pronounced “jaguar”), is very similar to R’s
own simple interface, making it very easy to learn. Written by Markus Helbig,
Simon Urbanek, and Martin Theus, JGR provides some very helpful additions
to R, like syntax checking in its program editor. It also provides the help files
in a way that lets you execute any part of an example you select. That is very
helpful when trying to understand a complicated example.

JGR is installed differently than most R packages. On Microsoft Windows
or Apple Macintosh, you download two programs: an installer and a launcher.
Running the installer installs JGR and double-clicking the launcher starts it
up. The JGR web site that contains both programs is http://rosuda.org/
JGR/.

Linux users follow slightly different steps that are described at the site.

http://rosuda.org/JGR/
http://rosuda.org/JGR/
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Fig. 3.7. An R program written by Rattle to do a box plot.

We started JGR by double-clicking on its launcher and opened an R pro-
gram using File>Open Document. You can see the program in Fig. 3.8. Note
that the JGR program editor has automatically color-coded my comments,
function names, and arguments, making it much easier to spot errors. In the
printed version of this book those colors are displayed as shades of gray.

Fig. 3.8. Color-coded editor in JGR helps prevent typing errors.
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In the next example, we typed "cor(" into the bottom of the console area
shown in Fig. 3.9. JGR then displayed a box showing the various arguments
that control the cor function for doing correlations. That is very helpful when
you are learning!

Fig. 3.9. JGR showing arguments that you might choose for the cor function.

JGR’s Package Manager makes it easier to control which packages you are
using (Fig. 3.10). Simply checking the boxes under “loaded” will load those
packages from your library. If you also check it under “default,” JGR will load
them every time you start JGR. Without JGR’s help, automatically loading
packages would require editing your .Rprofile.

JGR’s Object Browser makes it easy to manage your workspace; see
Fig. 3.11. Selecting different tabs across the top enable you to see the different
types of objects in your workspace. We right-clicked on gender, which brought
up the box listing the number of males, females, and missing values (NAs). If
you have a list of models, you can sort them easily by various measures, like
their R-squared values.
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Fig. 3.10. JGR’s Package Manager, which allows you to load packages from the
library on demand or at startup.

Double-clicking on a data frame in the Object Browser starts the Data
Table editor (Fig. 3.12), which is much nicer than the one built into R. It lets
you rename variables, search for values, sort by clicking on variable names,
cut and paste values, and add or delete rows or columns.

There are many more useful features in JGR that are described on its web
site.
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Fig. 3.11. JGR’s Object Browser shows information about each object in your
workspace.
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Fig. 3.12. JGR’s Data Table editor, an improvement over R’s primitive one.





4

Help and Documentation

4.1 Introduction

The full Stata package comes with 17 volumes of reference manuals. Both these
manuals and the Stata help files are well written and authoritative and their
style is consistent. They are of great help to beginners through advanced users.

R has an extensive array of help files and documentation. However, they
can be somewhat intimidating at first, since many of them assume you already
know a lot about R.

4.2 Help Files

To see how R’s help files differ in style from those of Stata, let us examine the
help file for the print function, which is similar to Stata’s list command. The
help file in R says you can use the print function to “Print Values,” which is
clear enough. However, it then goes on to say that “print prints its argument
and returns it invisibly (via invisible(x)). It is a generic function which
means that new printing methods can be easily added for new classes.” That
requires a much higher level of knowledge than does the Stata description of
its similar command: “LIST displays case values for variables in the active
data set.” However, when you are done with this book, you should have no
problem understanding most help files.

4.3 Starting Help

You can start the help system by choosing Help>HTML Help on Windows
or Help>R Help on Macintosh. On any operating system you can submit the
help.start function in the R Console. That is the way Linux/UNIX users
start it since they lack menus.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 37
and Computing, DOI 10.1007/978-1-4419-1318-0 4,
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help.start()

Regardless of how you start it, you will get a help window that looks something
like Fig. 4.1

Fig. 4.1. R’s main help window.

Similar to using Stata’s command, to get help for a certain function such
as summary, use the form

help(summary)

or prefix the topic with a question mark:

?summary

To get help on an operator, enclose it in quotes. For example, to get help
on the assignment operator (equivalent to the equal sign in Stata), enter

help( "<-" )

If you do not know the name of a function or operator, use the help.search
function to search the help files. This is similar to Stata’s findit command.

help.search("your search string")

A shortcut to the help.search function is to prefix the term with two
question marks, “??.” For a single word search, use this form:
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??yourstring

For a string with more than one term in it, enclose it in quotes:

??"your multi-word string"

A particularly useful help file is the one on extracting and replacing parts
of an object. That help file is opened with the following function call. The
capital letter in Extract is necessary.

help(Extract)

It is best to read that one after you have read Chapter 9, “Selecting
Variables and Observations.”

4.4 Help Examples

Most of R’s help files include examples that will execute. You can cut and
paste them into a script window to submit in easily understood pieces. You
can also have R execute all of the examples at once with the example function.
Here are the examples for the mean function, but do not try to understand
them now. We will cover the mean function later.

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))

[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)

Murder Assault UrbanPop Rape
7.42 167.60 66.20 20.16

R changes the prompt of each example function call from “>” to “mean>”
to let you know that it is still submitting examples from the mean function’s
help files. Note that when an example is labeled “Not run,” it means that
while it is good to study, it will not run unless you adapt it to your needs.

A very nice feature of the JGR graphical user interface is that you can
execute most help file example programs by submitting them directly from
the help window. You simply select the part you wish to run, right-click on
the selection, and then choose “run line or selection.” See Section 3.6.3, “JGR
Java GUI for R,” for details.
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Like Stata user-authorized commands, in R you must first install a package
and then load it from your library before you can get help. So you cannot use
help to find things that you do not already know something about.

A popular addition to R is Frank Harrell’s Hmisc package [14]. It has
many useful functions that add SAS-like capabilities to R. One of these is
the contents function. Let us try to get help on it before loading the Hmisc
package.

> help("contents")

No documentation for ’contents’ in specified packages
and libraries: you could try ’??contents’

The help system does not find it, but it does remind you how you might
search the help files. However, that search would find the contents function
only if the Hmisc package were already installed. If you did not already know
that Hmisc had such a function, you might search the Internet (or read a good
book!) to find it. Let us now load the Hmisc package from our library (after
having installed it in the the meantime).

> library("Hmisc")

R responds with a warning. We will discuss what this means later, but it
does not cause a problem now.

Attaching package: ’Hmisc’

The following object(s) are masked from package:base :
format.pval,
round.POSIXt,
trunc.POSIXt,
units

Now that the Hmisc package is loaded, we can get help on the contents
function with the function call help(contents). We do not need to look at
the actual help file at the moment. We will cover that function much later.

Now that Hmisc is loaded from the library, the help.search function can
find the contents function (see Fig. 4.2)

> help.search("contents")

4.5 Help for Functions That Call Other Functions

R has functions that exist to call other functions. These are called generic
functions. In many cases, the help file for the generic function will refer you
to those other functions, providing all of the help you need. However, in some
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Fig. 4.2. Help search results on the string “contents.”

cases you need to dig for such help in other ways. We will discuss this topic
in Chapter 5 Programming Language Basics, section 5.6.3, Controlling Func-
tions with an Object’s Class. We will also examine an example of this in
Chapter 15, “Traditional Graphics,” section 15.9.9, “Scatter Plot Matrices.”

4.6 Help for Packages

Thus far we have examined ways to get help about a specific function. You can
also get help on an entire package by using the help argument in the library
function. For example, the foreign package [7] helps you import data from
other software. You can get help on the packages itself with

> library(help=foreign)

The window in Fig. 4.3 is only a partial view of the information R provides.
To get help on a package, you must first install it, but you need not load it.

Fig. 4.3. Help window for the foreign package.
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However, not all packages provide help for the whole package. Most do provide
help on the functions that the package contains.

4.7 Help for Data Sets

Unlike Stata, R has help files associated with data sets. If an R data set has
a help file associated with it, you can read it with the help function. For
example,

help(esoph)

will tell you that this is a data set is “Data from a case-control study of
(o)esophageal cancer in Ile-et-Vilaine, France.”

The rough equivalent to this in Stata is to place a label in a data set
using the label data command. This allows a short one-line description of
the data set.

4.8 Books and Manuals

Other books on R are available free at http://cran.r-project.org/ under
documentation. We will use a number of functions from the Hmisc package.
Its manual is An Introduction to S and the Hmisc and Design Libraries [1] by
Alzola and Harrell. It is available at http://biostat.mc.vanderbilt.edu/
twiki/pub/Main/RS/sintro.pdf. The most widely recommended advanced
statistics book on R is Modern Applied Statistics with S (abbreviated MASS)
by Venables and Ripley [51]. Note that R is almost identical to the S
language and books on S usually point out what the differences are. An ex-
cellent book on managing data in R is Phil Spector’s Data Manipulation
with R [44]. We will discuss books on graphics in the chapters on that
topic.

4.9 E-mail Lists

There are several different e-mail discussion lists regarding R that you can
read about and sign up for at http://www.r-project.org/ under mailing
lists. We recommend signing up for the one named R-help. There you can
learn a lot by reading answers to the myriad of questions people post there.

If you post your own questions on the list, you are likely to get an
answer in an hour or two. However, please read the posting guide, http://
www.R-project.org/posting-guide.html, before sending your first ques-
tion. Taking the time to write a clear and concise question and provid-
ing a descriptive subject line will encourage others to take the time to

http://cran.r-project.org/
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf
http://www.r-project.org/
http://www.R-project.org/posting-guide.html
http://www.R-project.org/posting-guide.html
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respond. Sending a small example that demonstrates your problem clearly
is particularly helpful. See Chapter 12, “Generating Data” for ways to make
up a small data set for that purpose. Also include the version of R you are
using and your operating system. You can generate all of the relevant details
using the sessionInfo function:

> sessionInfo()

R version 2.8.1 (2008-12-22)

i386-pc-mingw32

locale:

LC_COLLATE=English_United States.1252;LC_CTYPE=English_United...

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] tools_2.8.1

4.10 Searching the Web

Searching the Web for information on R using generic search engines such
as Google can be frustrating, since the letter R refers to many different
things. However, if you add the letter R to other keywords, it is surpris-
ingly effective. Adding the word “package” to your search will also narrow it
down.

An excellent site that searches just for R topics is Jonathon Barron’s
R Site Search at http://finzi.psych.upenn.edu/search.html. You can
search just the R site while in R itself by entering the RSiteSearch function

RSiteSearch("your search string")

or go to http://www.r-project.org/ and click search. If you use the Firefox
web browser, there is a free plug-in called RsiteSearch you can use. Download
it from http://addictedtor.free.fr/rsitesearch/.

4.11 Vignettes

Another kind of help is a vignette, a short description. People who write
packages can put anything into its vignette. The function call

vignette(all=TRUE)

http://finzi.psych.upenn.edu/search.html
http://www.r-project.org/
http://addictedtor.free.fr/rsitesearch/
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will show you vignettes for all of the packages you have installed. To see the
vignette for a particular package, enter it in the vignette function with its
name in quotes:

vignette("mypackage")

Unfortunately, many packages do not have vignettes.
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Programming Language Basics

5.1 Introduction

R is an object-oriented language. Everything that exists in it — variables,
data sets, functions (commands) — are all objects.

Stata has limitations on command and variable name lengths, based on
the version of the software being used. The limits are large, though, and rarely
result in a problem for Stata users. In Stata, leading periods in names are not
allowed and data set names cannot have periods at all.

Object names in R can be any length consisting of letters, numbers, un-
derscores “ ,” or the period “.” and should begin with a letter.

However, in R if you always put quotes around a variable or data set name
(actually any object name), it can then contain any characters, including
spaces.

Case matters in both R and Stata, so you can have two variables—one
named myvar and another named MyVar—in the same data set, although
that is not a good idea! Some add-on packages tweak function names like
the capitalized “Save” to represent a compatible, but enhanced, version of a
built-in function like the lowercased “save.”

As in any statistics package, it is best to avoid names that match function
names like “mean” or that match logical conditions like “TRUE.”

Commands can begin and end anywhere on a line and R will ignore any
additional spaces. R will try to execute a function when it reaches the end of a
line. Therefore, to continue a function call on a new line, you must ensure that
the fragment you leave behind is not already a complete function call by itself.
Continuing a function call on a new line after a comma is usually a safe bet.
As you will see, R functions frequently use commas, making them a convenient
stopping point. The R console will tell you that it is continuing a line when
it changes the prompt from “>” to “+.” If you see “+” unexpectedly, you
may have simply forgotten to add the final close parenthesis, “).” Submitting
only that character will then finish your function call. If you are getting the
“+” and cannot figure out why, you can cancel the pending function call

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 45
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with the Escape key on Windows or CTRL-C on Macintosh or Linux/UNIX.
For CTRL-C, hold the CTRL key down (Linux/UNIX) or the control key
(Macintosh) while pressing the letter C. You may end any R function call
with a semicolon. That is not required though, except when entering multiple
function calls on a single line.

5.2 Simple Calculations

As with Stata’s display command, you can use R as a calculator. You simply
enter commands like

> 2+3

[1] 5

The “[1]” tells you the resulting value is the first result. It is only useful
when your results run across several lines. We can tell R to generate some
data for us to see how the numbering depends on the width of the output.
The form 1:50 will generate the integers from 1 to 50.

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Now, it is obvious that the numbers in square brackets are counting or
indexing the values. We have set our line width to 64 characters to help things
fit in this book. We can use the options function to change the width to 40
and see how the bracketed numbers change.

> options(width=40)

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48
[49] 49 50

> options(width=64) #Set it wider again.

In Stata, this setting is replicated by “list, linesize(64).”
You can assign the values to symbolic variables like x and y using the

assignment operator, a two-character sequence “<-.” You can use the equal
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sign as Stata does, but there are some rather esoteric advantages to using
“<-.” Here we use it to assign values to x and y and then do some simple
math.

> x <- 2

> y <- 3

> x+y
[1] 5

> x*y
[1] 6

We have added extra spaces in the above commands and extra lines in the
output for legibility. Additional spaces do not affect the commands.

5.3 Data Structures

R has several different data structures, including vectors, factors, data frames,
matrices, arrays, and lists. The data frame is most like a data set in Stata.
Stata and R also have data structures specifically for time series, but those
are beyond the scope of this book. Mata, the imbedded matrix language
in Stata, supports matrices, arrays, vectors, and other similar R-like
functions.

5.3.1 Vectors

A vector is an object that contains a set of values called elements. You can
think of it as a Stata variable but that would imply that it is a column in a
data set. It is not. It exists by itself and is neither a column nor a row. In
Stata, a column is normally stored as a column. For R, it is usually one of two
things: a variable or a set of parameter settings called arguments that you use
to control a function.

Creating Vectors

To keep things simple, all of our examples will use the same data set, a pre-
tend survey about how people liked various training workshops on statistics
packages. Let us enter the responses to the first question, “Which workshop
did you take?”

workshop <- c( 1,2,1,2,1,2,1,2 )
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All of the values of workshop are numeric, so the vector’s mode is numeric.
Stata refers to that as a variable’s type. As in Stata, if even if one value were
alphabetic (character or string), then the mode would be coerced, or forced,
to be character. R does all its work with functions, which are similar to Stata
commands and functions.

Functions have a name followed by its parameters, called arguments, in
parentheses. The c function’s job is to combine multiple values into a sin-
gle vector. Remember it as c=combine. Its arguments are just the values to
combine—in this case 1,2,1,2. . . .

To print our vector, we can use the print function. This is R’s equivalent
to the Stata list command. However, this function is used so often; it is the
default function used when you type the name of any object! So when working
interactively, these two function calls do exactly the same thing:

> print(workshop)

[1] 1 2 1 2 1 2 1 2

> workshop

[1] 1 2 1 2 1 2 1 2

We run all of the examples in this book interactively ; that is, we submit
function calls and see the results immediately. You can also run R in batch
mode, where you would put all your function calls into a file and tell R to
run them at once, routing the results to a file. In batch mode you must write
out the print function. We will point out a few other instances when you
must write out the print function name in later chapters. Although typing
out the print function for most of our examples is not necessary, we will do
it occasionally when showing how the R code looks in a typical analysis.

Let us create a character variable. Using R jargon, we would say we are
going to create a character vector, or a vector whose mode is character. These
are the genders of our hypothetical students:

> gender <- c( "f","f","f",NA,"m","m","m","m" )

> gender

[1] "f" "f" "f" NA "m" "m" "m" "m"

NA stands for Not Available, which R uses to represent missing values. Later
we will read data from files whose values are separated by commas. In that
case, R would recognize two commas in a row as having a missing value in
between them. However, the values in the c function are its arguments. R does
not allow its functions to have missing arguments. Entering NA gets around
that limitation.
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Even when entering character values for gender, never enclose the NA in
quotes. If you did, it would be just those letters rather than a missing value.

Now let us enter the rest of our data:

q1 <- c( 1,2,2,3,4,5,5,4 )
q2 <- c( 1,1,2,1,5,4,3,5 )
q3 <- c( 5,4,4,NA,2,5,4,5 )
q4 <- c( 1,1,3,3,4,5,4,5 )

Analyzing Vectors

To get a simple table of frequencies, we can use the table function, which is
similar to Stata’s tabulate command.

> table(workshop)

workshop
1 2
4 4

> table(gender)

gender
f m
3 4

The first thing you will notice about the output is how plain it is. No
percents are calculated and no lines drawn to form a table. When you first see
a table like the one for workshop, its complete lack of labels may leave you
wondering what it means. There are four people who took workshop 1, and
four people who took workshop 2. It is not hard to understand—just a shock
when you come from a package that labels its output better.

This is a difference in perspective between R and Stata. R creates output
that other functions can use immediately. Other functions exist that provide
more output, like percents. Still others format output into publication-quality
form. Stata allows use of statistical output via saved return codes.

Let us get the mean of the responses to question 3:

> mean(q3)

[1] NA

The result is NA or Not Available! Many R functions handle missing values
differently from Stata. R will usually provide output that is NA when per-
forming an operation on data that contains any missing values. It will typically
provide the answer you seek only when you tell it to override that perspective.
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There are several ways to do this in R. For the mean function, you set the NA
remove argument, na.rm, equal to TRUE.

> mean(q3, na.rm=TRUE)

[1] 4.142857

Selecting Vector Elements

So far we have performed a few simple analyses on the entire vector. You
can easily select subsets using a method called indexing or subscripting. You
specify which of the vector’s elements you want in square brackets following
the vector’s name. For example, to see the fifth element of q1, you enter

> q1[5]

[1] 4

When you want to specify multiple elements, you must first combine them
into a vector using the c function. Therefore, to see elements 5 through 8, you
can use

> q1[ c(5,6,7,8) ]

[1] 4 5 5 4

The colon operator, “:,” can generate vectors directly, so an alternate way
of selecting elements 5 through 8 is

> q1[ 5:8 ]

[1] 4 5 5 4

You can also insert logical selections. They generate logical vectors to
perform your selection. Here we use “==” for logical equivalence, just as in
Stata:

> q1[ gender=="m" ]

[1] NA 4 5 5 4

Usually the goal of any of these selection methods is to perform some
analysis on a subset. For example, to get the mean response to item q1 for
the males, we can use

> mean( q1[ gender=="m"], na.rm=TRUE )

[1] 4.5
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R’s ability to select elements of vectors is very flexible. We will demon-
strate how to apply these techniques toward selecting parts of other data
structures in the sections that immediately follow. Later we will devote three
entire chapters showing how to apply these techniques to data sets in Chap-
ter 7, “Selecting Variables” through Chapter 9, “Selecting Variables and
Observations.”

5.3.2 Factors

Two of the variables we entered above, workshop and gender, are clearly cat-
egorical. R has a special data structure called a factor for such variables.
Regardless of whether the original data is numeric or character, when it be-
comes a factor, its mode is numeric. This is also true for Stata.

Creating Factors from Numeric Vectors

Before we create a factor, let us enter workshop again as a numeric vector and
display its values.

> workshop <- c(1,2,1,2,1,2,1,2)

> workshop

[1] 1 2 1 2 1 2 1 2

Now let us perform two simple analyses.

> table(workshop)

workshop

1 2
4 4

> mean(workshop)

[1] 1.5

We see that four people took each workshop. We also see that the
mean function happily provided the mean of the workshops, which is a
fairly nonsensical measure for a categorical variable. R usually tries to do
correct things statistically, but we have not yet told it that workshop is
categorical.

You can select elements of factors the same way you select elements of
vectors. For example, to choose the third element of gender, you can use
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> gender[3]

[1] f

Levels: f m

To see the first two and the last two elements, you can put those index
values into a vector using the c function like this:

> gender[ c(1,2,7,8) ]

[1] f f m m

Levels: f m

Let us now see the genders of the people who took the Stata workshop,
which has a value of 2.

> gender[ workshop==2 ]

[1] "f" NA "m" "m"

Now let us enter the variable again, convert it to a factor using the factor
function, and display its values.

> workshop <- c(1,2,1,2,1,2,1,2)

> workshop <- factor( workshop )

> workshop

[1] 1 2 1 2 1 2 1 2

Levels: 1 2

After using the factor function, we see the display of workshop values has
an additional feature, the levels. Let us repeat our two analytic functions:

> table(workshop)

workshop

1 2
4 4

> mean(workshop)

[1] NA
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Warning message:
In argument is not numeric or logical: returning NA

The output from the table function is identical, but now the mean function
warns us that this is not a reasonable request and it results in, or returns, a
missing value of NA.

Now that workshop is a factor, we can check the genders of the people
who took the Stata workshop (workshop 2) in two ways:

> gender[ workshop==2 ]

[1] "f" NA "m" "m"

> gender[ workshop=="2" ]

[1] "f" NA "m" "m"

The second example uses quotes around the 2 and it still works. This is
due to the fact that the original numeric values are now also stored as value
labels.

Let us enter workshop again and use additional arguments in the call to
the factor function so we can assign more useful value labels.

workshop <- c(1,2,1,2,1,2,1,2)
workshop <- factor(
workshop,
levels=c(1,2,3,4),
labels=c("R","Stata","SPSS","SAS")

)

The factor function call above has three arguments:

1. The name of a vector to convert to a factor.
2. The levels or values that the data can have. This allows you to specify

values that are not yet in the data. In our case, workshop is limited to the
values 1 and 2, but we can include the values 3 and 4 for future expansion.
You cannot do that in Stata.

3. Optionally, the labels for the levels. The factor function will match the
labels to the levels in the order they both appear here. The order of
the values in the data set is irrelevant. If you do not provide the labels
argument, R will use the values themselves as the labels.

Now when we print the data, it shows us that the people in our practice
data set have only taken workshops in R and Stata. It also lists the levels so
you can see what labels are possible:
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> workshop

[1] R Stata R Stata R Stata R Stata

Levels: R Stata SPSS SAS

The table function now displays the workshop labels and how many people
took each.

> table(workshop)

workshop

R Stata SPSS SAS
4 4 0 0

The labels have now replaced the original values. So to check the genders of
the people who took the workshop on Stata, we can no longer use the value 2.

> gender[ workshop==2 ]

factor(0)

Levels: Male Female

When we select based on the value label, it works.

> gender[ workshop=="Stata" ]

[1] Female <NA> Male Male

Levels: Male Female

Creating Factors from Character Vectors

You can convert character vectors to factors in a similar manner. Let us again
enter gender as a character vector and print its values.

> gender <- c( "f","f","f",NA,"m","m","m","m" )

> gender

[1] "f" "f" "f" NA "m" "m" "m" "m"

Notice that the missing value, NA, does not have quotes around it. R
leaves out the quotes to let you know that it is not a valid character string
that might stand for something like North America.
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If we are happy with those labels, we can convert gender to a factor by
using the simplest form of the factor function:

> gender <- factor(gender)

> gender

[1] f f f NA m m m m

Levels: f m

If, instead, we want nicer labels, we can use the longer form. It uses the
same approach we used for workshop, but the values on the levels argument
need to be in quotes:

> gender <- factor(
+ gender,
+ levels=c("m","f"),
+ labels=c("Male","Female")
+ )

> gender

[1] Female Female Female NA Male Male Male Male

Levels: Male Female

> table(gender)

gender

Male Female
4 3

You now need to use the new labels when performing selections on gender.
For example, to see which workshops the males took, this returns a value of
NA because gender never has a value of “m” at this point.

> workshop[ gender=="m" ]

[1] <NA>

Levels: R SAS SPSS STATA

Instead, specifying the new label of “Male” find the workshops they took:

> workshop[ gender=="Male" ]
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[1] <NA> R Stata R Stata

Levels: R Stata SPSS SAS

Note that the last line of output conveniently tells you all of the levels of the
factor even though the males did not take all of the workshops.

We will examine factors in more detail, and compare them to Stata value
labels in Section 11.1, “Value Labels or Formats (and Measurement Level).”

For the remainder of the book we will use the shorter gender value labels,
“m” and “f.”

5.3.3 Data Frames

The data structure in R that is most like a Stata data set is the data frame.
Stata data sets are always rectangular, with variables in the columns and
observations in the rows. A data frame is also rectangular. In R terminology,
the columns are called vectors, variables, or just columns. R calls the rows
observations, cases, or just rows.

A data frame is a generalized matrix, one that can contain both character
and numeric columns. A data frame is also a special type of list, one which
requires each component to have the same length. We will discuss matrices
and lists in the next two sections.

We have already seen that R can store variables in vectors and factors.
Why does it need another data structure? R can generate almost any type of
analysis or graph from data stored in vectors or factors. For example, getting
a scatter plot of the responses to q1 versus q4 is easy. R will pair the first
number from each vector as the first (x,y) pair to plot and so on down the line.
However, it is up to you to make sure that this pairing makes sense. If you
sort one vector independent of the others, or remove the missing values from
vectors independently, the critical information of how the pairs should form is
lost. A plot will still appear, but it will contain a completely misleading view
of the data. Sorting almost any two variables in ascending order independently
will create the appearance of a very strong relationship. The data frame helps
maintain this critical pairing information.

Creating a Data Frame

The most common way to create a data frame is to read it from another source
such as a text file, spreadsheet, or database. You can usually do that with a
single function call. We will do that later in Chapter 6, “Data Acquisition”.
For the moment, we will create one by combining our vectors and factors. The
following is our program so far:

workshop <- c(1,2,1,2,1,2,1,2)
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workshop <- factor(workshop,
levels = c(1,2,3,4),
labels = c("R","Stata","SPSS","SAS") )

gender <- c("f","f","f",NA,"m","m","m","m")

gender <- factor(gender)

q1 <- c(1,2,2,3,4,5,5,4)
q2 <- c(1,1,2,1,5,4,3,5)
q3 <- c(5,4,4,NA,2,5,4,5)
q4 <- c(1,1,3,3,4,5,4,5)

Now we will use the data.frame function to combine our variables (vectors
and factors) into a data frame. Its arguments are simply the names of the
objects we wish to combine.

> mydata <- data.frame(workshop,gender,q1,q2,q3,q4)

> mydata

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3
5 R m 4 5 2 4
6 Stata m 5 4 5 5
7 R m 5 3 4 4
8 Stata m 4 5 5 5

Notice that the missing value for gender is now shown as “<NA>.” When R
prints data frames, it drops the quotes around character values and so must
differentiate missing value NAs from valid character strings that happen to
be the letters “NA.” If we wanted to rename the vectors as we created the
data frame, we could do so with the following form. Here the vector “gender”
will be stored in mydata with the name “sex” and the others will keep their
original names. Of course, we could have renamed every variable using this
approach.

mydata <- data.frame(workshop, sex=gender, q1, q2, q3, q4)

Although we had already made gender into a factor, the data.frame func-
tion will coerce all character variables to become factors when the data frame
is created. You do not always want that to happen (for example when you
have vectors that store people’s names and addresses.) To prevent that from
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occurring, you can add the stringsAsFactors=FALSE argument in the call to
the data.frame function.

R data frames have a formal place for an ID variable it calls row names.
These can be informative text labels like subject names, but, by default, they
are sequential numbers stored as character values. The row.names function
will display them:

> row.names(mydata)

[1] "1" "2" "3" "4" "5" "6" "7" "8"

Stata displays sequential numbers like this in its data editor. However,
those numbers are reassigned to new observations when you sort your data.
Row names in R are more useful since sorting never changes their values. You
can always use them to return your data to its original state by sorting on
the row names. See Section 10.16, “Sorting Data Frames,” for details.

Stata users typically enter an ID variable based on the built-in Stata con-
stant “ n,” which contains the observation/case number of data stored in
memory. However, this variable is like any other unless you manually supply
it to a procedure that identifies observations. In R, procedures that identify
observations will do so automatically using row names. If you set an ID vari-
able to be row names while reading a text file, the variable’s original name
(id, subject, SSN,. . . ) vanishes. Since functions that do things—like iden-
tify outliers—will use the information automatically, you usually do not need
the name. We will discuss row names further when we read text files and in
Section 10.6, “Renaming Variables (. . . and Observations).”

Selecting Components of Data Frames

There are several ways to select the components of a data frame. For now,
we will focus on just two: selecting by index numbers and by a method called
$ notation. We will save the other methods for later chapters.

Selecting Data Frame Components by Index Numbers

While vectors and factors have only one-dimensional index values with which
to select their elements, data frames have two. These are in the form

mydataframe[rows,columns]

For example, can choose the eighth observation’s value of the sixth
variable, q4, using

> mydata[ 8, 6 ]

[1] 5
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If we leave out a row or column specification, R will assume we want them
all. So to select all of the observations for the sixth variable, we can use

> mydata[ , 6 ]

[1] 1 1 3 3 4 5 4 5

It so happens that the above example is selecting a vector. We saw before
that we could add index values to the end of a vector to select a subset of it.
So for variable q4, we could choose its fifth through eighth elements using

> q4[ 5:8 ]

[1] 4 5 4 5

In our data frame, mydata[ ,6] is the same vector as variable q4. There-
fore, we can make this same selection by appending the [5:8] to it to make
the same selection:

> mydata[ , 6 ][ 5:8 ]

[1] 4 5 4 5

Selecting Data Frame Components Using $ Notation

Since the components of our data frame have names, we can also select them
by those names using the form

myDataFrameName$myComponentName

Therefore, to select q1 from mydata, we can use

> mydata$q1

[1] 1 2 2 3 4 5 5 4

The variable q1 is still a vector, so we can append index values to it to make
further selections. To select the fifth through eighth value (the males), we
can use

> mydata$q1[ 5:8 ]

[1] 4 5 5 4

As we will soon see, there are many other ways to select subsets of data
frames. We will save the other methods for Chapter 7, “Selecting Variables”
through Chapter 9, “Selecting Variables and Observations.”
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5.3.4 Matrices

A matrix is a two-dimensional data object that looks like a Stata data set,
but it is actually one long vector wrapped into rows and columns. Because
of this, its values must be of the same mode, [i.e., all numeric, all character,
or all logical (more on logical vectors later)]. This constraint makes matrices
more efficient than data frames for some types of analyses.

Creating a Matrix

The cbind function takes columns and binds them together into a matrix:

> mymatrix <- cbind(q1, q2, q3, q4)

> mymatrix

q1 q2 q3 q4
[1,] 1 1 5 1
[2,] 2 1 4 1
[3,] 2 2 4 3
[4,] 3 1 NA 3
[5,] 4 5 2 4
[6,] 5 4 5 5
[7,] 5 3 4 4
[8,] 4 5 5 5

As you can see, a matrix is a two-dimensional array of values. The numbers
to the left side in brackets are the row numbers. The form [1, ] means that it
is row number one and the lack of a number following the comma means that
R has displayed all of the columns.

We can get the dimensions of the matrix with the dim function.

> dim(mymatrix)

[1] 8 4

The first dimension is the number of rows, 8, and the second is the number
of columns, 4.

To create a matrix, you do not need to start with separate vectors as
we did. You can create one directly with the matrix function. The matrix
function call below has four arguments. The first argument is data, which you
must enter enclosed in the c function. The next three specify the number of
rows, columns, and whether or not you are entering the data by rows. If you
leave the byrow=TRUE argument off, you would enter the data turned on its
side. We prefer to enter it by rows since it looks more like the format used
with Stata data sets.
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> mymatrix <- matrix(
+ c(1, 1, 5, 1,
+ 2, 1, 4, 1,
+ 2, 2, 4, 3,
+ 3, 1, NA,3,
+ 4, 5, 2, 4,
+ 5, 4, 5, 5,
+ 5, 3, 4, 4,
+ 4, 5, 5, 5),
+ nrow=8, ncol=4, byrow=TRUE)

> mymatrix

[,1] [,2] [,3] [,4]
[1,] 1 1 5 1
[2,] 2 1 4 1
[3,] 2 2 4 3
[4,] 3 1 NA 3
[5,] 4 5 2 4
[6,] 5 4 5 5
[7,] 5 3 4 4
[8,] 4 5 5 5

We see that the result is the same as before, except that the columns are
no longer named q1, q2, q3, q4. Now let us see what the table, mean and cor
functions do with matrices. We will use the earlier version of our matrix, so
we will see the variable names.

> table(mymatrix)

mymatrix

1 2 3 4 5
6 4 4 8 9

> mean( mymatrix, na.rm=TRUE )

[1] 3.266667

> cor( mymatrix, use="pairwise" )

q1 q2 q3 q4
q1 1.0000000 0.7395179 -0.1250000 0.9013878
q2 0.7395179 1.0000000 -0.2700309 0.8090398
q3 -0.1250000 -0.2700309 1.0000000 -0.2182179
q4 0.9013878 0.8090398 -0.2182179 1.0000000
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The table function counts the responses across all survey questions at
once! That is not something Stata would usually do. It is odd, but not useless.
We can see that 9 times people strongly agreed (a value of 5) with any of the
questions on our survey.

The mean function gets the mean response of them all. Again, it is not of
much interest in our situation, but you might find cases where it would be of
value.

The cor function correlates each item with the others, which is a very
common statistical procedure. The fact that the names q1, q1,. . . appear shows
that we are using the version of the matrix we created by combining the vectors
with those names.

If you put a matrix into a data frame, its columns will become individual
vectors. For example, now that we have mymatrix, we can create our practice
data frame in two ways. Both have an identical result:

mydata <- data.frame( workshop, gender, q1, q2, q3, q4 )

or

mydata <- data.frame( workshop, gender, mymatrix )

In our case, there is not much difference between the two approaches. However,
If you had 100 variables already in a matrix, the latter would be much easier
to do.

Selecting Subsets of Matrices

Like data frames, matrices have two dimensions. You can select a subset of a
matrix by specifying the two index values in the form

mymatrix[rows,columns]

For example, we can choose the eighth row and the fourth column using

> mymatrix[ 8, 4 ]

q4
5

We can chose the males, rows five through eight, and variables q3 and q4
using:

> mymatrix[ 5:8, 3:4]

[,1] [,2]
[1,] 2 4
[2,] 5 5
[3,] 4 4
[4,] 5 5
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When discussing vectors, we learned that we could select parts of a vector
using only one-dimensional indexes. For example, q4[1:4] selects the first
four elements of the vector q4. When we leave out one of the two index values
for a matrix, we are selecting a vector. Therefore, we can do this very same
example by appending [1:4] to mymatrix[ ,4] as in

> mymatrix[ ,4][1:4]

[1] 1 1 3 3

Most of the other methods we have used for selecting elements of vectors
or factors work in a similar manner with matrices.

5.3.5 Arrays

An array is a multidimensional extension of the matrix structure. You can
think of it as a set of matrices. The use of arrays is beyond our scope.

5.3.6 Lists

A list is a very flexible data structure. You can use it to store combinations of
any other objects, even other lists. The objects stored in a list are called its
components. That is a broader term than variables, or elements of a vector,
reflecting the wider range of objects possible.

You can use a list to store related sets of data stored in different formats
like vectors and matrices (see the example below). R often uses lists to store
different bits of output from the same analysis. For example, results from a
linear regression would have equation parameters, residuals and so on. See
Chapter 17, “Statistics” for details.

You can also use lists to store sets of arguments to control functions. We
will do that later when reading multiple lines of data per case from a text file.
Since each record we read will contain a different set of variables—each with
a different set of column widths we would need to describe—a list is a perfect
way to store them. For an example, see Section 6.5, “Reading Fixed-Width
Text Files, Two or More Records per Case.”

We will also store arguments when aggregating data by workshop and
gender in Section 10.11, “Creating Collapsed or Aggregated Data Sets.”

Creating a List

For now, we will focus on storing data in a list. We can combine our variables
(vectors) and our matrix into a list using the list function.

> mylist <- list(workshop, gender, q1, q2, q3, q4, mymatrix)

Now let us print it.
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> mylist

[[1]]
[1] R Stata R Stata R Stata R Stata
Levels: R Stata SPSS SAS

[[2]]
[1] f f f <NA> m m m m
Levels: f m

[[3]]
[1] 1 2 2 3 4 5 5 4

[[4]]
[1] 1 1 2 1 5 4 3 5

[[5]]
[1] 5 4 4 NA 2 5 4 5

[[6]]
[1] 1 1 3 3 4 5 4 5

[[7]]
q1 q2 q3 q4

[1,] 1 1 5 1
[2,] 2 1 4 1
[3,] 2 2 4 3
[4,] 3 1 NA 3
[5,] 4 5 2 4
[6,] 5 4 5 5
[7,] 5 3 4 4
[8,] 4 5 5 5

Notice how the vector components of the list print sideways now. That
allows each variable to have a different length, or even to have a totally dif-
ferent structure, like a matrix. Also notice that it counts the components of
the list with an additional index value in double brackets [[1]], [[2]]. . . . Then
each component has its usual index values in single brackets.

Recall that when we added our matrix to a data frame, the structure
of the matrix vanished and the matrix columns became variables in the data
frame. Here though, the matrix is able to maintain its separate identity within
the list.

Let us create the list again, this time naming each component.
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> mylist <- list(
+ workshop=workshop,
+ gender=gender,
+ q1=q1,
+ q2=q2,
+ q3=q3,
+ q4=q4,
+ mymatrix=mymatrix)

Now when we print it, the names [[1]], [[2]],. . . are replaced by the names we
supplied.

> mylist

$workshop
[1] R Stata R Stata R Stata R Stata
Levels: R Stata

$gender
[1] f f f <NA> m m m m
Levels: f m

$q1
[1] 1 2 2 3 4 5 5 4

$q2
[1] 1 1 2 1 5 4 3 5

$q3
[1] 5 4 4 NA 2 5 4 5

$q4
[1] 1 1 3 3 4 5 4 5

$mymatrix
q1 q2 q3 q4

[1,] 1 1 5 1
[2,] 2 1 4 1
[3,] 2 2 4 3
[4,] 3 1 NA 3
[5,] 4 5 2 4
[6,] 5 4 5 5
[7,] 5 3 4 4
[8,] 4 5 5 5
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Selecting Components of a List

Since a data frame is a specific type of list, any method of selecting components
that we discussed for data frames will also apply here. However, since the types
of objects a list can store is broader, so too are the techniques for selecting
its components.

Selecting Components of a List by Index Numbers

To select the components from a list, we can always use the double-bracketed
index values. For example, to select the vector containing gender, we can use

> mylist[[2]]

[1] "f" "f" "f" NA "m" "m" "m" "m"

To select the matrix, we can use

> mylist[[7]]

[,1] [,2] [,3] [,4]
[1,] 1 1 5 1
[2,] 2 1 4 1
[3,] 2 2 4 3
[4,] 3 1 NA 3
[5,] 4 5 2 4
[6,] 5 4 5 5
[7,] 5 3 4 4
[8,] 4 5 5 5

When selecting components from a list, we can continue to add index
values to select subsets of that component. Recall that earlier we selected
the fifth through eighth rows and third through fourth columns of mymatrix
by appending [5:8,3:4] to its name, mymatrix[5:8,3:4]. Now that we can
select this matrix by referring to mylist[[7]], we can also append [5:8,3:4]
to that:

> mylist[[7]][ 5:8, 3:4 ]

[,1] [,2]
[1,] 2 4
[2,] 5 5
[3,] 4 4
[4,] 5 5

R’s indexing approach starts looking pretty confusing at this point, but do
not worry. In future chapters we will see that selections usually look far more
natural with variable names used to select columns and with logical selections
choosing rows.
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Selecting Components of a List Using $ Notation

Since we have named our list’s components, we can make the same selections
by using the form

myListName$myComponentName

Therefore, to select the component named q1, we can use

> mylist$q1

[1] 1 2 2 3 4 5 5 4

We can also append index values in square brackets to our selections to
choose subsets. Here we select my matrix, then choose the fifth through eighth
rows and third and fourth columns:

> mylist$mymatrix[ 5:8, 3:4 ]

q3 q4
[1,] 2 4
[2,] 5 5
[3,] 4 4
[4,] 5 5

5.4 Saving Your Work

When learning any new computer program, always do a small amount of work,
save it, and get completely out of the software. Then go back in and verify
that you really did know how to save your work.

This is a good point at which to stop, clean things up, and save your
work. Until you save your work, everything resides in the computer’s main
random access memory. You never know when a power outage might erase it.
R calls this temporary work area its workspace. We want to transfer everything
we have created from this temporary workspace to a permanent file on our
computer’s hard drive.

You can use the ls function to see all of the data objects you have created.
If you put no arguments between the ls function’s parentheses, you will get
a list of all your objects. Another more descriptive name for this function is
objects. I use ls below instead of objects because it is more popular. That
may be due to the fact that Linux and UNIX have an “ls” command that
performs a similar function by listing your files.

If you have done the examples from the beginning of this chapter, here are
the objects you will see in your workspace.
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> ls()

[1] "gender" "mydata" "mylist" "mymatrix" "q1"
[6] "q2" "q3" "q4" "workshop" "x"
[11] "y"

We want to save some of these objects to our computer’s hard drive, but
where will they go? The directory or folder that R will store files in is called
its working directory. Unless you tell it otherwise, R will put any file you save
into that directory. On Windows XP or earlier, that is:
C:\Documents and Settings\username\My Documents. On Windows Vista or
later, that is: C:\Users\Yourname\My Documents. On Macintosh, the default
working directory is /Users/username.

The setwd function sets your working d irectory, telling R where you would
like your files to go. The getwd function gets your working d irectory for you
to see.

> getwd()

[1] "C:/Documents and Settings/username/My Documents"

> setwd("/myRfolder")

> getwd()

[1] "/myRfolder"

Notice that we use a forward slash in “/myRfolder.” R can use forward slashes
in filenames even on computers running Windows! The usual backslashes used
in Windows file specifications have a different meaning in R, and in this con-
text will generate an error message:

> setwd("\myRfolder") #backslashes are bad in filenames!

Error in setwd("myRfolder") : cannot change working directory

In addition: Warning messages:
1: ’\m’ is an unrecognized escape in a character string
2: unrecognized escape removed from "\myRfolder"

The message warns you that R is trying to figure out what “\m” means. We
will discuss why later.

So now we know what is in our workspace and where our working directory
resides. We are ready to save our work. However, which objects should we
save? Once we have combined our vectors into a data frame, we do not need
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the individual vectors any more. We will save just our data frame, mydata,
and the matrix of survey questions, mymatrix.

The save function saves the objects you tell it, to the file you list as its
last argument.

save(mydata, mymatrix, file="mydata.RData")

While Stata users typically only save one data set to a file, R users often
save multiple objects to a single file using this approach.

Rather than tell R what you do want to save, you could remove the objects
that you do not want to save and then save everything that remains. We can
remove the ones we do not want by listing them as arguments separated by
commas on the remove function. It also has a more popular shorter name, rm.

> rm( x,y,workshop,gender,q1,q2,q3,q4,mylist )

> ls()

[1] "mydata" "mymatrix"

The save.image function will save all objects in your workspace to the file
you specify:

save.image(file="myWorkspace.RData")

When you exit R, it will ask if you want to save your workspace. Since we are
saving it to a file we have named, you can tell it no. The next time you start
R, you can load your work with the load function.

> load("mydata.RData")

If you want to see what you have loaded, use the ls function:

> ls()

[1] "mydata" "mymatrix"

For more details, see Chapter 13, Managing Your Files and Workspace.

5.5 Comments to Document Your Programs

No matter how simple you may think a program is when you write it, it is
good to sprinkle in comments liberally to remind yourself later what you did
and why you did it. As we have discussed briefly, R uses the # operator to
begin a comment. R comments continue until the end of the line. You can put
comments in the middle of statements, but only if they are at the end of the
line:
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# This comment is on its own line, between functions.

workshop <- c(1,2,1,2, #This comment is within the arguments.
1,2,1,2) #And this is at the end.

Unlike Stata /*. . . */ style comments, there is no way to comment out
a whole block of code that you want to ignore. R users get around that by
pretending to define a function whose only goal is to have R ignore the code.
For example:

BigComment <- function(x)
{

# Here is code I do not want to run,
# but I might need to run it later.

mean(x, na.rm=TRUE)
sd(x, na.rm=TRUE)
}

While Stata allows errors to exist in the code that has been commented out,
R does not. R is actually creating the function, so the code within it must be
correct.

A better way to comment out a large block of text is to use a text editor
that can easily add (and later remove) the # character to the front of each
line in a selected block of code.

5.6 Controlling Functions (Commands)

Stata controls its procedures though commands like glm and related options
such as # to specify which variables are factors (categorical). Stata commands
and functions have options controlling exactly what appears in the output.
Modeling statements have a formula syntax. R has analogs to these methods,
plus a few unique ones.

5.6.1 Controlling Functions with Arguments

Stata uses options to control what commands calculate and display. R does
too, using slightly different terminology. R uses arguments to control func-
tions. Let us look at the help file for the mean function. The following function
call will display its help file:

> help(mean)

In Fig. 5.1, in the section labeled Usage, the help file tells us that the over-
all form of the function is mean(x, ...). That means you have to provide an
R object represented by x, followed by arguments represented by “....” The
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Fig. 5.1. Help file for the mean function.

Default S3 Method section tells us the arguments used by the mean function
itself as well as their initial, or default, settings. So if you do not tell it oth-
erwise, it will not trim any data (trim=0) and will not remove missing values
(na.rm=FALSE). That means the presence of any missing values will result in
the mean being missing or NA too. The “...” means that more arguments
are possible, but the mean function will pass those along to other functions
that it calls. We will see examples of that later.

The Arguments section gets into the details. It tells you that x can be a
numeric data frame, numeric vector, or date vector. It also has a comment
about complex vectors, which are beyond our scope. The trim argument tells
R the percent of the extreme values to exclude before calculating the mean.
It goes on to define what na.rm and “...” do.

We can run the mean function on our q3 variable by naming each argument.
We deleted it previously with the rm function, but imagine that we had not
done that. Here we call the function, naming its arguments in the order they
appear in the help file and setting their values.

mean(x=q3, trim=.25, na.rm=TRUE)

If you name all of the arguments, you can use them in any order.

mean(na.rm=TRUE, x=q3, trim=.25)

We can also run it by listing every argument in their proper positions but
without the argument names:

mean(q3, .25, TRUE)
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All of these approaches work equally well. However, people usually run R
functions by listing the object to analyze first without its name, followed by
the names and values of only those arguments they want to change:

mean(q3, trim=.25, na.rm=TRUE)

You can also abbreviate some argument names, but it is a bit tricky. As
in Stata, the abbreviation you choose must have enough letters to be unique.
However, some functions pass arguments they do not recognize to other func-
tions they control. As mentioned earlier in this section, this is indicated by
“...” as the function’s last argument in the help file. Once a function has
started passing arguments to other functions, R will pass them all unless it
sees the full name of an argument it uses!

People sometimes abbreviate the values TRUE or FALSE as T or F. This
is a bad idea, as you can define T or F to be anything you like, leading to
undesired results. You may avoid that trap yourself, but if you write a function
that others will use, they may use those variable names. So the function below
will also run, but I do not recommend running it this way.

mean(q3, t=.25 na=T)

It is a good idea to avoid abbreviations when naming R arguments.

5.6.2 Controlling Functions with Formulas

An important type of argument is the formula. It is the first parameter in
functions that do modeling. For example, we can do linear regression, predict-
ing q4 from the others with the following call to the lm function for l inear
models.

lm( q4 ~ q1+q2+q3, data=mydata )

Some modeling functions accept arguments in the form of both formulas
and vectors. For example, both of these function calls will compare the genders
on the mean of variable q1.

t.test( q1 ~ gender, data=mydata )

t.test( q1[ which(gender=="Female") ],
q1[ which(gender=="Male") ],
data=mydata) #Data ignored!

However, there is one very important difference. When using a formula, the
data argument can supply the name of a data frame that R will search before
looking elsewhere for variables. When not using a formula, as in the second
example, the data argument is ignored! We deleted the variables outside the
data frame, so R no longer knows where q1 is. The variable q1 still exists in
mydata, but even though we use the data argument to point to it, R will find
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it only for formulas. This approach maintains R’s extreme flexibility while
helping to keep formulas short. We will clarify this in Section 17.5, “Linear
Regression.”

The symbols that R uses for formulas are somewhat different from those
used by Stata. Table 5.1 shows some common examples using a, b, and c as
categorical factors and y, x1, and x2 as continuous numeric variables.

Table 5.1. Example formulas in Stata and R.

Model Stata R

Simple regression MODEL reg y x y~x

Multiple regression
with interaction

MODEL reg y i.x1#i.x2 y~x1+x2+x1:x2

Regression without
intercept

MODEL reg y x1, nocons y~-1+x

One-way analysis
of variance

MODEL oneway y a y~a

Two-way analysis
of variance
with interaction

MODEL anova y a b a*b y~a+b+a:b y~a*b

Analysis of
covariance

MODEL anova y a, cont(x) y~a x

Analysis of variance
with b nested
within a

MODEL anova y b|a y~b \%in\% a y~a/b

5.6.3 Controlling Functions with an Object’s Class

In R, each data structure stores its class as an attribute, or stored setting,
that functions use to determine how to process the object. For objects whose
mode is numeric, character, or logical, an object’s class is its mode. However,
for matrices, arrays, factors, lists, or data frames, other values are possible
(see Table 5.2).

You can display an object’s class with the class function:

> workshop <- c( 1,2,1,2,1,2,1,2 )

> class(workshop)

[1] "numeric"

> summary(workshop)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 1.0 1.5 1.5 2.0 2.0
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Table 5.2. Modes and classes of various R objects.

Object Mode Class

Numeric vector numeric numeric
Character vector character character
Factor numeric factor
Data frame list data.frame
List list list
Numeric matrix numeric matrix
Character matrix character matrix
Model list lm. . .
Table numeric table

The class “numeric” indicates that this version of workshop is a numeric
vector, not yet a factor. The summary function provided us with inappropriate
information because we failed to tell it that workshop is a factor. Note that
when we convert workshop into a factor, we are changing its class to factor
and then summary gives us the more appropriate counts instead:

> workshop <- factor(workshop,
+ levels=c(1,2,3,4),
+ labels=c("R","Stata","SPSS","SAS") )

> class(workshop)
[1] "factor"

> summary(workshop)

R Stata SPSS SAS
4 4 0 0

When we first created gender, it was a character vector so its class was
character. Later we made its class factor. Numeric vectors like q1 have a class
of numeric. The names of some other classes are obvious: factor, data.frame,
matrix, list, and array. Objects created by functions have many other classes.
For example, the linear model function, lm, stores its output in objects with
a class of lm.

R has some special functions called generic functions. They accept multiple
classes of objects and change their processing accordingly. These functions are
tiny. Their task is simply to determine the class of the object and then pass it
off to another that will do the actual work. The methods function will tell you
what other functions a generic function will call. Let us look at the methods
that the summary function uses.

> methods(summary)

[1] summary.aov summary.aovlist
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[3] summary.connection summary.data.frame
[5] summary.Date summary.default
[7] summary.ecdf* summary.factor
[9] summary.glm summary.infl
[11] summary.lm summary.loess*
[13] summary.manova summary.matrix
[15] summary.mlm summary.nls*
[17] summary.packageStatus* summary.POSIXct
[19] summary.POSIXlt summary.ppr*
[21] summary.prcomp* summary.princomp*
[23] summary.stepfun summary.stl*
[25] summary.table summary.tukeysmooth*
Non-visible functions are asterisked

So when we enter summary(mydata), the summary function sees that my-
data is a data frame and then passes it to the function summary.data.frame.
The functions marked with asterisks above are “non-visible.” Visible functions
you can be seen by typing their name (without any parentheses). That makes
it easy to copy and change them, although only an advanced user would want
to do that.

When we discussed the help files, we saw that the mean function ended with
an argument of “....” That indicates that the function will pass arguments on
to other functions. While it is very helpful that generic functions automatically
do the “right thing” when you give it various objects to analyze, it complicates
the process of using help files.

When written well, the help file for a generic function will refer you to
other functions, providing a clear path to all you need to know. However,
it does not always go so smoothly. We will see a good example of this in
Chapter 15, “Traditional Graphics”. The plot function is generic. When we
call it with our data frame, it will give us a scatter plot matrix. However,
to find out all of the arguments we might use to improve the plot, we have
to use methods(plot) to find that plot.data.frame exists. We could then
use help(plot.data.frame) to find that plot.data.frame calls the pairs
function, then finally help(pairs) to find the arguments we seek. This is
a worst-case scenario, but it is important to realize that this situation does
occasionally arise. As you work with R, you may occasionally forget the mode
or class of an object you created. This can result in unexpected output. You
can always use the mode or class functions to remind yourself. Table 5.2
shows several R objects and their modes and classes.

5.6.4 Controlling Functions with Extractor Functions

Commands in Stata typically display all their output at once. Ancillary post-
estimation commands, however, are commonly used in Stata and add to the
scope of statistical output available for a given primary command.



76 5 Programming Language Basics

R has simple functions, like the mean function, that show all of their results
at once. However, R functions that model relationships among variables tend
to show you very little output initially. You save the output to a model
object and then use extractor functions to get more information when you
need it.

This section is poorly named from an R expert’s perspective. Extractor
functions do not actually control other functions the way options control Stata
output. Instead they show us what the other function has already done. In
essence, most modeling in R is done through its equivalent to the Stata postes-
timation commands.

Let us look at an example of predicting q4 from q1 with linear regression
using the lm function.

> lm( q4~q1+q2+q3, data=mydata)

Call:
lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Coefficients:
(Intercept) q1 q2 q3

-1.3243 0.4297 0.6310 0.3150

The output is extremely sparse, lacking the usual tests of significance. Now,
instead, we will store the results in a model object called myModel and we
will check its class with the class function.

> myModel <- lm( q4 ~ q1+q2+q3, data=mydata )

> class(myModel)

[1] "lm"

The class function tells us that myModel has a class of “lm” for l inear model.
We have seen that R functions offer different results (methods) for different
types (classes) of objects. So let us see what the summary function does with
this class of object:

> summary(mymodel)

Call:
lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Residuals:
1 2 3 5 6 7

-0.31139 -0.42616 0.94283 -0.17975 0.07658 0.02257
8

-0.12468
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3243 1.2877 -1.028 0.379
q1 0.4297 0.2623 1.638 0.200
q2 0.6310 0.2503 2.521 0.086
q3 0.3150 0.2557 1.232 0.306
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 0.6382 on 3 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.9299, Adjusted R-squared: 0.8598

F-statistic: 13.27 on 3 and 3 DF, p-value: 0.03084

This is the type of output that Stata shows immediately. There are many
other extractor functions that we might use, including anova to extract an
analysis of variance table, plot for diagnostic plots, predict to get predicted
values, resid to get residuals, and so on. We will discuss those in Chapter 17,
“Statistics.”

What are the advantages of the extractor approach?

• You get only what you need, when you need it.
• The output is in a form that is very easy to use in further analysis.
• You use methods that are consistent across functions in a similar manner

to Stata. For example, requests for regression residuals are uniform across
R functions and Stata commands.

5.7 How Much Output is There?

In the previous section we discussed saving output and using extractor func-
tions to get more results. However, how do we know what an output object
contains? Previously, the print function showed us what was in our objects,
so let us give that a try. We can do that by simply typing an object’s name
or by explicitly using the print function. To make it perfectly clear that we
are using the print function, let us actually type out its name.

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Coefficients:

(Intercept) q1 q2 q3
-1.3243 0.4297 0.6310 0.3150
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We see that the object contains the original function call complete with its
arguments and the linear model coefficients. Now let us check the mode, class,
and names of myModel.

> mode(myModel)
[1] "list"

> class(myModel)
[1] "lm"

> names(myModel)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "na.action" "xlevels" "call" "terms"
[13] "model"

So we see that myModel is a list, or collection of objects. More specifically,
it is a list with a class of “lm.” The names function shows us the names of
all of the objects in it. Why did the print function not show them to us?
Because the print function has a predetermined method for displaying lm
class objects. That method says, basically, “If an object’s class is lm, then
print only the original formula that created the model and its coefficients.”

When we put our own variables together into a list, it had a class of simply
“list” (its mode was list also). The print function’s method for that class tells
it to print all of the list’s components. We can strip away the class attribute
of any object with the unclass function. In this case, it resets its class to
“list.” If we do that, then the print function will indeed print all of the list’s
components.

> print( unclass(mymodel) )

$coefficients
(Intercept) q1 q2 q3
-1.3242616 0.4297468 0.6310127 0.3149789

$residuals
1 2 3 5 6

-0.31139241 -0.42616034 0.94282700 -0.17974684 0.07658228
7 8

0.02257384 -0.12468354

$effects
(Intercept) q1 q2 q3
-8.6931829 3.6733345 -1.4475844 0.7861009 0.2801541

0.7929917 -0.7172223



5.7 How Much Output is There? 79

$rank
[1] 4

$fitted.values
1 2 3 5 6 7

1.311392 1.426160 2.057173 4.179747 4.923418 3.977426
8

5.124684

$assign
[1] 0 1 2 3

$qr
$qr
(Intercept) q1 q2 q3

1 -2.6457513 -8.6931829 -7.9372539 -10.9609697
2 0.3779645 3.9279220 3.3096380 -0.3273268
3 0.3779645 0.1677124 -2.6544861 0.7220481
5 0.3779645 -0.3414626 0.4356232 2.4957256
6 0.3779645 -0.5960502 -0.3321400 -0.1051645
7 0.3779645 -0.5960502 -0.7088608 0.4471879
8 0.3779645 -0.3414626 0.4356232 -0.4186885
attr(,"assign")
[1] 0 1 2 3

$qraux
[1] 1.377964 1.167712 1.087546 1.783367

$pivot
[1] 1 2 3 4

$tol
[1] 1e-07

$rank
[1] 4

attr(,"class")
[1] "qr"

$df.residual
[1] 3

$na.action
4
4
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attr(,"class")
[1] "omit"

$xlevels
list()

$call
lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

$terms
q4 ~ q1 + q2 + q3
attr(,"variables")
list(q4, q1, q2, q3)
attr(,"factors")

q1 q2 q3
q4 0 0 0
q1 1 0 0
q2 0 1 0
q3 0 0 1
attr(,"term.labels")
[1] "q1" "q2" "q3"
attr(,"order")
[1] 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(q4, q1, q2, q3)
attr(,"dataClasses")

q4 q1 q2 q3
"numeric" "numeric" "numeric" "numeric"

$model
q4 q1 q2 q3

1 1 1 1 5
2 1 2 1 4
3 3 2 2 4
5 4 4 5 2
6 5 5 4 5
7 4 5 3 4
8 5 4 5 5
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It looks like the print function was doing us a big favor by not printing
everything! When you explore the contents of any object, you can take this
approach or, just given the names, explore things one at a time. For example,
we saw that myModel contained the object named “$coefficients.” One way
to print one component of a list is to refer to it as mylist$mycomponent. So in
this case we can see just the component that contains the model coefficients
by entering

> myModel$coefficients

(Intercept) q1 q2 q3
-1.3242616 0.4297468 0.6310127 0.3149789

That looks like a vector. Let us use the class function to check.

> class( myModel$coefficients )

[1] "numeric"

Yes, it is a numeric vector. So we can use it with anything that accepts such
data. For example, we might get a bar plot of the coefficients with the following
(plot not shown). We will discuss bar plots more in Chapter 15, “Traditional
Graphics.”

> barplot( myModel$coefficients )

For many modeling functions, it is very informative to perform a similar
exploration on the objects created by them.

5.8 Writing Your Own Functions (Macros)

In a similar manner as in Stata, R users may write functions using the same
language used for anything else. The resulting function is used in exactly the
same way as a function that came with R.

Let us write some variations of a simple function, one that calculates the
mean and standard deviation at the same time. For this example, we will
apply it to just the numbers 1, 2, 3, 4, and 5.

> myvar <- c( 1,2,3,4,5 )

We will begin the function called mystats and tell it that it is a function of x.
What follows in curly brackets is the function itself. We will create this with
an error to see what happens.
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# A bad function.
mystats <- function(x)
{
mean(x, na.rm=TRUE)
sd(x, na.rm=TRUE)

}

Now let us apply it like any other function.

> mystats(myvar)

[1] 1.5811

We got the standard deviation, but what happened to the mean? When we
introduced the print function, we said that usually you could type an object’s
name rather than say print(myobject). Well, this is one of the cases where
we need to explicitly tell R to print the result. Let us add that to the function.

# A good function that just prints.
mystats <- function(x)
{
print( mean(x, na.rm=TRUE) )
print( sd(x, na.rm=TRUE) )

}

Now let us run it.

> mystats(myvar)
[1] 3
[1] 1.5811

That looks better. Let us create our function in a slightly different way, so
that it will write our results to a vector for further use. We will use the c
function to combine the results into a vector.

# A function with vector output.
mystats <- function(x)
{
mymean <- mean(x, na.rm=TRUE)
mysd <- sd(x, na.rm=TRUE)
c( mean=mymean, sd=mysd )

}

Now when we run it, we get the results in vector form.

> mystats(myvar)

mean sd
3.0000 1.5811
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As with any R function that creates a vector, we can assign the result to
a variable to use in any way we like.

> myVector <- mystats(myvar)

> myVector

mean sd
3.0000 1.5811

Many R functions return their results in the form of a list. Recall that
each member of a list can be any data structure. Let us use a list to save the
original data, as well as the mean and standard deviation. We will use the
list function as we did when we combined all our variables into one list.

# A function with list output.
mystats <- function(x)
{
myinput <- x
mymean <- mean(x, na.rm=TRUE)
mysd <- sd(x, na.rm=TRUE)
list(data=myinput, mean=mymean, sd=mysd)

}

Now let us run it to see how the results look.

mystats(myvar)

$data
[1] 1 2 3 4 5

$mean
[1] 3

$sd
[1] 1.5811

We can save the result to mylist and then print just the data.

> myStatlist <- mystats(myvar)

> myStatlist$data
[1] 1 2 3 4 5

If you want to see the function itself, simply type the name of the function
without any parentheses following.
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> mystats

function(x)
{
myinput <- x
mymean <- mean(x, na.rm=TRUE)
mysd <- sd(x, na.rm=TRUE)
list(data=myinput,mean=mymean,sd=mysd)

}

You could easily copy this function into a script editor window and change it.
You can see and change many R functions this way.

5.9 R Program Demonstrating Programming Basics

Most of the chapters in this book end with equivalent example programs in
both Stata and R. This chapter focuses so much on R that we end only with
the program for R.

# Programming Basics.

# ---Simple Calculations---
2+3

x <- 2
y <- 3
x+y
x*y

# ---Data Structures---

# Vectors
workshop <- c(1,2,1,2,1,2,1,2)
print(workshop)
workshop

gender <- c("f","f","f",NA,"m","m","m","m")
q1 <- c(1,2,2,3,4,5,5,4)
q2 <- c(1,1,2,1,5,4,3,5)
q3 <- c(5,4,4,NA,2,5,4,5)
q4 <- c(1,1,3,3,4,5,4,5)

# Selecting Elements of Vectors
q1[5]
q1[ c(5,6,7,8) ]
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q1[ 5:8 ]
q1[ gender=="m" ]
mean( q1[ gender=="m"], na.rm=TRUE)

# ---Factors---

# Numeric Factors

# First, as a vector
workshop <- c(1,2,1,2,1,2,1,2)
workshop
table(workshop)
mean(workshop)
gender[ workshop==2 ]

# Now as a factor
workshop <- c(1,2,1,2,1,2,1,2)
workshop <- factor( workshop )
workshop
table(workshop)
mean(workshop) #generates error now.
gender[ workshop==2 ]
gender[ workshop=="2" ]

# Recreate workshop, making it a factor
# including levels that don’t yet exist.
workshop <- c(1,2,1,2,1,2,1,2)
workshop <- factor(
workshop,
levels=c(1,2,3,4),
labels=c("R","Stata","SPSS","SAS")

)

# Recreate it with just the levels it
# curently has.
workshop <- c(1,2,1,2,1,2,1,2)
workshop <- factor(
workshop,
levels=c(1,2),
labels=c("R","Stata")

)

workshop
table(workshop)
gender[ workshop==2 ]
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gender[ workshop=="2" ]
gender[ workshop=="Stata" ]

# Character factors

gender <- c("f","f","f",NA,"m","m","m","m")
gender <- factor(
gender,
levels=c("m","f"),
labels=c("Male","Female")

)

gender
table(gender)
workshop[ gender=="m" ]
workshop[ gender=="Male" ]

# Recreate gender and make it a factor,
# keeping simpler m and f as labels.
gender <- c("f","f","f",NA,"m","m","m","m")
gender <- factor(gender)
gender

# Data Frames
mydata <- data.frame(workshop,gender,q1,q2,q3,q4)
mydata

# Selecting components by index numbers
mydata[ 8, 6 ] #8th obs, 6th var
mydata[ , 6 ] #All obs, 6th var
mydata[ , 6 ][ 5:8 ] #6th var, obs 5:8

# Selecting components by name
mydata$q1
mydata$q1[ 5:8 ]

# Example renaming gender to sex while
# creating a data frame (left as a comment)
#
# mydata <- data.frame(workshop, sex=gender,
# q1, q2, q3, q4)

# Matrices
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# Creating from vectors
mymatrix <- cbind(q1, q2, q3, q4)
mymatrix
dim(mymatrix)

# Creating from matrix function
# left as a comment so we keep
# version with names q1, q2...
#
# mymatrix <- matrix(
# c(1, 1, 5, 1,
# 2, 1, 4, 1,
# 2, 2, 4, 3,
# 3, 1, NA,3,
# 4, 5, 2, 4,
# 5, 4, 5, 5,
# 5, 3, 4, 4,
# 4, 5, 5, 5),
# nrow=8, ncol=4, byrow=TRUE)
# mymatrix

table(mymatrix)
mean(mymatrix, na.rm=TRUE)
cor(mymatrix, use="pairwise")

# Selecting Subsets of Matrices

mymatrix[ 8, 4]
mymatrix[ 5:8, 3:4]
mymatrix[ ,4][1:4]

# Lists
mylist <- list(workshop, gender,
q1, q2, q3, q4, mymatrix)

mylist

# List, this time adding names
mylist <- list(
workshop=workshop,
gender=gender,
q1=q1,
q2=q2,
q3=q3,
q4=q4,
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mymatrix=mymatrix)
mylist

# Selecting components by index numbers.
mylist[[2]]
mylist[[7]]
mylist[[7]][ 5:8, 3:4 ]

# Selecting components by name.
mylist$q1
mylist$mymatrix[ 5:8, 3:4 ]

# ---Saving Your Work---

ls()
objects() #same as ls()

save.image("myall.RData")
save(mydata, file="mydata.RData")

# The 2nd approach is commented to keep
# the q variables for following examples.
# rm(x,y,workshop,gender,q1,q2,q3,q4,
# mymatrix,mylist)
# ls()
# save.image(file="mydata.RData")

# ---Comments to Document Your Programs---

# This comment is on its own line, between functions.

workshop <- c(1,2,1,2, #This comment is within the arguments.
1,2,1,2) #And this is at the end.

# ---Controlling Functions---

# Controlling Functions with Arguments

help(mean)

mean(x=q3, trim=.25, na.rm=TRUE)

mean(na.rm=TRUE, x=q3, trim=.25)
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mean(q3, .25, TRUE)

mean(q3, t=.25, na.rm=TRUE)

# Controlling Functions With Formulas

lm( q4 ~ q1+q2+q3, data=mydata )

t.test(q1 ~ gender, data=mydata)

t.test( q1[ which(gender=="Female") ],
q1[ which(gender=="Male") ],
data=mydata) #Data ignored!

# Controlling Functions with Extractor Functions

lm( q4 ~ q1+q2+q3, data=mydata )

myModel <- lm( q4 ~ q1+q2+q3, data=mydata )
class(myModel)
summary(myModel)

# How Much Output Is There?

print(mymodel)

mode(myModel)
class(myModel)
names(myModel)
print( unclass(myModeel) )

myModel$coefficients
class( myModel$coefficients )
barplot( myModel$coefficients )

# ---Writing Your Own Functions (Macros)---

myvar <- c(1,2,3,4,5)

# A bad function.
mystats <- function(x)
{
mean(x, na.rm=TRUE)
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sd(x, na.rm=TRUE)
}

mystats(myvar)

# A good function that just prints.
mystats <- function(x)
{
print( mean(x, na.rm=TRUE) )
print( sd(x, na.rm=TRUE) )

}
mystats(myvar)

# A function with vector output.
mystats <- function(x)
{
mymean <- mean(x, na.rm=TRUE)
mysd <- sd(x, na.rm=TRUE)
c( mean=mymean, sd=mysd )

}
mystats(myvar)
myVector <- mystats(myvar)
myVector

# A function with list output.
mystats <- function(x)
{
myinput <- x
mymean <- mean(x, na.rm=TRUE)
mysd <- sd(x, na.rm=TRUE)
list(data=myinput, mean=mymean, sd=mysd)

}
mystats(myvar)
myStatlist <- mystats(myvar)
myStatlist
mystats

save(mydata,mymatrix,mylist,mystats,
file="myAll.RData")
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Data Acquisition

R can read or import data from a wide range of sources. It includes a data
editor for manual input, and it can access files in text as well as Stata format.
For other topics, such as reading importing data from relational databases,
see the R Data Import/Export manual [39].

6.1 The R Data Editor

R has a simple spreadsheet-style data editor. Unlike Stata, you cannot use it
to create a new data frame. You can only edit an existing one. However, it
is easy to create an empty data frame, which you can then fill in using the
editor:

mydata <- edit( data.frame() )

The window in Fig. 6.1 will appear. Initially the variables are named var1,
var2, and so on. You can easily change these names by clicking on them.
Clicking on the variable name var1 brought up the Variable editor window
shown in the center of Fig. 6.1. We will change it to “id” and leave the
“numeric” button selected so that it will be a numeric variable. We then
close the variable editor window by clicking the usual X in the upper right
corner.

Follow the steps above until you have created the data frame shown in
Fig. 6.2. Make sure to click “character” when defining a character variable.
When you come to the NA values for observation 4, leave them blank. You
could enter the two-character string “NA” for numeric variables, but R will
not recognize that as a missing value for character variables here. Exit the
editor and save changes by choosing File>Close or by clicking the Windows
X button. There is no File>Save option, which feels quite scary the first time
you use it, but R does indeed save the data.

Notice that the variable in our ID variable matches the row names on
the leftmost edge of Fig. 6.2. R went ahead and created row names of “1,”

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 91
and Computing, DOI 10.1007/978-1-4419-1318-0 6,
© Springer Science+Business Media, LLC 2010
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Fig. 6.1. Adding a new variable in the data editor.

Fig. 6.2. The data editor with our practice data entered.

“2,”. . . so why did we bother to enter them into the variable id? Because while
the data editor allows us to easily change variable names, it does not allow
us to change row names. If you are happy with its default names, you do not
need to create your own id variable. However, if you wanted to enter your own
row names using the data editor, you can enter them instead into a variable
like id and then later set that variable to be row names with the following
function call:

row.names(mydata) <- mydata$id

This function call selects id from mydata using the form,

dataframe$variable

which we will discuss further in Section 7.7, “Selecting Variables Using $
Notation.”
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Before using this data, you would also want to use the factor function to
make workshop and gender into factors.

mydata$workshop <- factor(mydata$workshop)
mydata$gender <- factor(mydata$gender)

To see how to do this with fancier value labels, see our discussion in
Section 11.1, “Value Labels or Formats (and Measurement Level).”

We now have a data frame that we can analyze, save as a perma-
nent R data file, or export in text format. R does not directly export to
Stata.

When we were initially creating the empty data frame, we could have
entered the variable names with the following function call

mydata <- data.frame(id=0., workshop=0.,
gender=" ", q1=0., q2=0., q3=0., q4=0.)

This is a major time saver when you have to create more than one copy of
the data or if you plan to create a similar data set in the future.

R has a fix function that actually calls the more aptly named edit func-
tion and then writes the data back to your original data frame. So

fix(mydata)

does the same thing as

mydata <- edit(mydata)

We recommend not using the edit function on existing data frames as we
find it all too easy to begin editing with just

edit(mydata) #Do NOT do this!

It will look identical on the screen, but this does not tell edit where to save
your work. When you exit, your work will appear to be lost. However, R
stores the last value you gave it in an object named .Last.value. So you
can retrieve the data with this function call.

mydata <- .Last.value

We will use the edit function later when renaming variables.

6.2 Reading Delimited Text Files

Delimited text files use special characters, such as spaces, tabs, or commas to
separate each data value. We will cover comma- and tab-delimited files in two
subsections below, followed by subsections that point out problems you can
have reading character (string) values and tabs.
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6.2.1 Reading Comma-Delimited Text Files

Let us first read a comma separated value (CSV) file like

workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2, ,3,1, ,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
7,1,m,5,3,4,4
8,2,m,4,5,5,5

There are several important things to notice about this data.

1. The top row contains variable names. This is called the file’s header line. If
you leave the names out, R will name the variables “V1,” “V2,”. . . similar
to Stata’s “var1,” “var2,”. . . default names.1

2. ID numbers are in the leftmost column, but the header line does not
contain a name like “ID” for it.

3. Values are separated by commas.
4. Spaces (blanks) represent missing values.
5. There are no blanks before or after the character values of “m” and “f.”
6. Each line of data is ended with a single stroke of the Enter key, not with

a final comma. Your operating system stores either a line feed character,
or a carriage return and a line feed. R will treat them the same.

You can read this file using the read.csv function call below. If you have
already set your working directory in your current R session, you do not need
to set it again.

> setwd("/myRfolder")

> mydata <- read.csv("mydata.csv")

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 3 1 NA 3
5 1 m 4 5 2 4

1 Note the inconsistency with R’s own data editor, which uses the default names,
“var1,” “var2,”. . . .
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6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

Notice that it read the id variable and stored it automatically in row names
position on the left side of the data frame. It did that because R found eight
columns of data but only seven names. Whenever R finds one fewer names
than columns, it assumes the first column must be an id variable.

So what does R do when the header line does contain a name for the first
column, like the following?

id,workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
...

If we read the file exactly as before, we would have an additional vari-
able named “id.” R would also create row names of “1,” “2,”. . . , but our
ID variable may have contained more useful information. Not getting your
ID variable into the row names attribute does not cause any major prob-
lems, but R will automatically identify observations by their row names,
so if you have an ID variable, it makes sense to get it into the row names
attribute.

To tell R which variable contains the row names, we add the row.names
argument.

> mydata <- read.csv("mydataID.csv",
+ row.names="id")

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...

When we let R figure out that there was an ID variable, it had to be the
first column. That is usually where ID variables reside, but if you ever have
one in another location, then you will have to use the row.names argument
to store it in the row names attribute.

6.2.2 Reading Tab-Delimited Text Files

Reading tab-delimited files in R is done very similarly to comma-delimited
files, but uses the read.delim function.

The following is the tab-delimited text file we will read.
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workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 3 1 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

There are several important things to notice about this data.

1. The top row contains variable names, each of which are separated by a
single tab. There is no tab before the first variable name, even though
adding one would make it line up with the workshop values better!

2. ID numbers are in the leftmost column, but that column is not named in
the header line with the other variable names.

3. The data values are separated by a single tab character.
4. Two tab characters in a row represent a missing value. There are no spaces

between the tabs. In other words, the space bar was never pressed when
this file was created.

As with comma separated values, the fact that R sees eight variables with
only seven names tells it that the first column is an ID variable to store in
the row names attribute.

> setwd("/myRfolder")

> mydata <- read.table("mydata.tab")

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

Now let us read a file that includes a name for our ID variable:

id workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...
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We can read this file format with exactly the same command that we used
earlier. However, the ID variable would not end up stored in the row names
attribute. So R would not know to use it in functions that identify observa-
tions. We can correct that by adding the row.names argument:

> mydata <- read.csv("mydataID.csv",
+ row.names="id")

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...

6.2.3 Missing Values for Character Variables

In the previous two subsections, we ignored a potential problem. The missing
value for variable q3 was always displayed as NA, Not Available. However,
the missing value for gender was displayed as a blank.

If we had entered R’s standard missing value, “NA,” where we had missing
values, then even the character data would have shown up as missing. However,
few other programs write out NA as missing.

Just as in Stata, you can read blanks as character values, and R will not
set them to missing unless you specifically tell it to do so. Often, it is not
very important to set those values to missing. A person’s address is a good
example. If we do not know it, there is little need to set it to be missing.

However, when you need to use a character variable in an analysis, setting
it to be missing is, of course, very important. Later in the book we will use
gender in analyses, so we must make sure that blank values are set to missing.

In our comma-delimited file, the missing value for gender was entered as
a single space. Therefore, the argument na.char=" " added to any of the
comma-delimited examples will set the value to missing. Note there is a single
space between the quotes in that argument.

In our tab-delimited file, the missing value for gender was entered as noth-
ing between two tabs (i.e., just two tabs in a row). Therefore, the argument
na.char="" added to any of the tab-delimited examples will set the value to
missing. Note that there is now no space between the quotes in that argument.

However, in both comma- and tab-delimited files, it is very easy to acci-
dentally have blanks where you think there are none or to enter more than
you meant. Then your na.char setting will be wrong for some cases.

It is best to use a solution that will get rid of all trailing blanks.
That is what the argument strip.white=TRUE does. When you use that,
na.char="" will work regardless of how many blanks may have been there
before.
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Let us try it with our comma-delimited file, since it contains a blank we
can get rid of

> mydata <- read.csv("mydataID.csv",
+ row.names="id",
+ strip.white=TRUE,
+ na.strings="" )

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

The only difference between this output and the last one we read for
mydataID.csv is that gender is shown as <NA> now instead of blank. R adds
angle brackets, “<>’,’ around the value so you can tell NA stands for Not
Available (missing) rather than something meaningful, such as North America.

The strip.white=TRUE argument also provides the benefit of getting rid
of trailing blanks that that would set some genders equal to "m" and others
to "m " or "m ". We do not want trailing blanks to accidentally split the
males into different groups!

Finally, getting rid of trailing blanks saves space. Since R, like Stata, stores
its data in your computer’s main memory, saving space is very important.

6.2.4 Trouble with Tabs

In many text editors, including R’s, tabs are invisible. That makes it easy to
enter an additional tab or two, throwing R off track.

If R complains of too many names in the header line, or not enough values
on data lines, or if it creates more variables than you expected, often you have
an inconsistent number of tabs somewhere.

Check the header line that contains your variable names and the first few
lines of data for extra tabs, especially at the beginning or end of a line. If you
have an ID variable in the first column and it is not named in your header
line, it is very tempting to put a tab before the first variable name. That will
get it to line up over the first column, but it will also tell R that your first
variable name is missing!

If you have a data file that has some short values and some very long values
in the same column, the person who entered it may have put two tabs after the
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short values to get the following column to line up again. In that case, you can
read it with the read.table function. That function has greater flexibility for
reading delimited files, and, in fact, the read.csv and read.delim functions
do their work by calling the read.table function with several arguments set.

When a file has varying number of tabs between values, read.table can
read it because its default delimiter is any number of tabs and/or spaces!
However, this also means that you cannot represent missing values by entering
two tabs in a row, or even by putting a space between two tabs. With our
practice tabbed data set, it would generate the error message “line 4 did
not have 7 elements.” In that case, you must enter some code to represent
missing. The value “NA” is the one that R understands automatically, for
both numeric and character values. If you use any other codes, such as “.” or
“999,” see Section 10.5, “Missing Values” to learn how to handle them.

With read.table, if you specify the argument, delim="\t", then it uses
one single tab as a delimiter.

6.2.5 Skipping Variables in Delimited Files

As with Stata, R must hold all its data in your computer’s main memory.
This makes skipping columns while reading data particularly important.

The following is the R function call to read the data while skipping the
fourth and fifth columns. If you have already set your working directory in
your current R session, you do not need to set it again.

> setwd("/myRfolder")

> myCols <- read.delim("mydata.tab",
+ strip.white=TRUE,
+ na.strings="",
+ colClasses=c("integer", "integer", "character",
+ "NULL", "NULL", "integer", "integer") )

> myCols
workshop gender q3 q4

1 1 f 5 1
2 2 f 4 1
3 1 f 4 3
4 2 <NA> NA 3
5 1 m 2 4
6 2 m 5 5
7 1 m 4 4
8 2 m 5 5
>
> # Clean up and save workspace.
> rm(myCols)
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We used the name myCols to avoid overwriting mydata. You use the
colClasses argument to specify the class of each column. The classes include
logical (TRUE/FALSE), integer (whole numbers), numeric (can include dec-
imals), character (alphanumeric string values), and factor (categorical values
like gender). See the help file for other classes like dates. The class we need
for this example is NULL. We use it to drop variables.

However, colClasses requires you to specify the classes of all columns,
including any initial ID or row names variable. The classes must be included
within quotes since they are character strings. The colClasses argument is
also helpful for reading other variable types such as dates.

6.2.6 Example Programs for Reading Delimited Text Files

Stata Program for Reading Delimited Text Files

Stata can read comma-delimited files having variable names on the first line,
or it can read a file having no imbedded variable names. Use of the “names”
option tells Stata that the first line consists of variable names, otherwise it
assumes that all observations are to be read as data. For this example, we
specify names for the columns of data in a comma-delimited text file called
mydataID.txt. The infile command is used for this purpose. Following read-
ing in the data, we use the list command to display the data in the RESULTS
window. Note that Stata has a number of alternative data reading capabilities.

In the files we read below, mydataID.csv and mydataID.tab, the id variable
is named, along with the other variables, in the first line of the file. That is
the style best read by Stata and most other statistics programs.

* Filename: ReadDelimited.do

*---comma-delimited File---
clear
insheet using "C:\myRfolder\mydataID.csv", comma names
list

*---tab-delimited File---
clear
insheet using "C:\myRfolder\mydataID.tab", tab names
list
save "C:\myRfolder\mydata.dta", replace

R Program for Reading Delimited Text Files

In these examples, the files mydata.csv and mydata.tab both contain an ID
variable in column 1. However, the first line of the files, which containing
variable names (the header line), does not name the ID variable. That is the
style that R prefers. The versions named, mydataID.csv and mydataID.tab,
include the name of the ID variable.
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# Filename: ReadDelimited.R

setwd("/myRfolder")

#---comma-delimited File---

# Read comma-delimited file.
# With id variable not named.

mydata <- read.csv("mydata.csv")
mydata

# Read a similar comma-delimited file.
# This time the id variable is named.

mydata <- read.csv("mydataID.csv",
row.names="id")

mydata

#---tab-delimited File---

# Read a tab-delimited file with un-named ID column.
mydata <- read.delim("mydata.tab")
mydata

# Read a similar tab-delimited file.
# This time the id variable is named.

mydata <- read.delim("mydataID.tab",
row.names="id")

mydata

#---Stripping Out White Space---

mydata <- read.csv("mydataID.csv",
row.names="id",
strip.white=TRUE,
na.strings="" )

mydata

#---Using colClasses to skip q1 and q2 with NULL---

myCols <- read.delim("mydata.tab",
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strip.white=TRUE,
na.strings="",
colClasses=c("integer", "integer", "character",
"NULL", "NULL", "integer", "integer") )

myCols

# Clean up and save workspace.
rm(myCols)

save.image(file="mydata.RData")

6.3 Reading Text Data Within a Program

It is often useful to have a small data set entered inside a program. This
approach is popular when teaching or for an example when you post a question
on Internet discussion lists. You only have one file and anyone can copy it and
run it without changing it to locate a data file. Stata does this using the input
command.

Although beginners are often drawn to this approach due to its simplicity,
it is not a good idea to use this for more than a few dozen observations. To
see the top and bottom of your program requires scrolling past all of the data,
which is needlessly time-consuming. As we will soon see, R also displays the
data in the console, scrolling potential error messages off the screen if there
is more than a screen’s worth of data.

We will discuss two ways to read data within an R program: one that is
easy and one that is more generally applicable.

6.3.1 The Easy Approach

The easy approach is to nest the stdin function within any other R function
that reads data. It tells R that the data is coming from the the same place
the program is, which is called the standard input.

In our next example, we will use comma separated value (CSV) format,
so we will nest a call to the stdin function within a call to the read.csv
function.

mydata <- read.csv( stdin() )
workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2,NA,3,1,NA,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
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7,1,m,5,3,4,4
8,2,m,4,5,5,5

# Blank line above ends input.
mydata

Note that we actually typed “NA” in for missing values, and we were careful
to never add any spaces before or after the gender values of “m” or “f.” That
let us dispense with any additional arguments for the read.csv function. Of
course, you could instead enter the data as any example in this chapter, in
which case you would need to include the arguments to match the data.

Let us run this example and see what the output looks like.

> mydata <- read.csv( stdin() )
0: workshop,gender,q1,q2,q3,q4
1: 1,1,f,1,1,5,1
2: 2,2,f,2,1,4,1
3: 3,1,f,2,2,4,3
4: 4,2,NA,3,1,NA,3
5: 5,1,m,4,5,2,4
6: 6,2,m,5,4,5,5
7: 7,1,m,5,3,4,4
8: 8,2,m,4,5,5,5
9:
> # Blank line above ends input.
> mydata
workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

We often add blank lines between sections of output to make it easier to
read, but given that a blank line is actually used to end the data, we do not
do so with this output.

You can see that R displays the data itself, and it prefixes each line with
“0:”, “1:”, “2:”. . . . With all of the data displayed, this is obviously not some-
thing you would want to do with hundreds of observations! When we read
data from files, we saw that R did not display it in the console.

The ninth line shows that it is blank and the numeric prefixing stops as R
returns to its usual “>” prompt. It is the blank line that tells R that there is
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no more data. If you forget it, R will read your next program lines as data,
continuing until it finds a blank line!

Printing the data by entering mydata shows us that the row names were
correctly assigned and the two missing values are also correct.

6.3.2 The More General Approach

The previous subsection showed how to read data in the middle of an R
program, and it required only a minor change. It had one important limitation
however: you cannot use stdin to read data in programs that are sourced
(included) from files.

Since putting data in the middle of a file is often done for interactive
demonstrations, that is not often a serious limitation. However, there are
times when you want to put the whole program, including data, in a separate
file like “myprog.R” and bring it into R with the command

source("myprog.R")

To do this, we can place the whole data set into a character vector with a
single value named “mystring”:

mystring <-
"workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2,NA,3,1,NA,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
7,1,m,5,3,4,4
8,2,m,4,5,5,5"
mydata <- read.csv( textConnection(mystring) )
mydata

Note that the c function is not used to combine all of those values into
a vector. At the moment, the whole data set is one single character value!
The textConnection function converts mystring into the equivalent of a file,
which R then processes the same way as it would a file.

mydata <- read.csv( textConnection(mystring) )

6.3.3 Example Programs for Reading Text Data Within a Program

Stata Program for Reading Text Data Within a Program

* Filename: ReadWithin.do
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clear all
input id workshop str1 gender q1-q4, automatic
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 . 3 1 . 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5
end
list

R Program for Reading Text Data Within a Program

# Filename: ReadWithin.R

# The stdin approach.
mydata <- read.csv( stdin() )
workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2,NA,3,1,NA,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
7,1,m,5,3,4,4
8,2,m,4,5,5,5

# Blank line above ends input.
mydata

# The textConnection approach
# that works when sourcing files.

mystring <-
"workshop,gender,q1,q2,q3,q4
1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2,NA,3,1,NA,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
7,1,m,5,3,4,4
8,2,m,4,5,5,5"
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mydata <- read.csv( textConnection(mystring) )
mydata

# Set working directory & save workspace.
setwd("/myRfolder")

save.image(file="mydata.RData")

6.4 Reading Fixed-Width Text Files, One Record
per Case

Files that separate data values with delimiters such as spaces or commas are
convenient for people to work with, but they make a file larger. So many text
files dispense with such conveniences and instead keep variable values locked
into the exact same column(s) of every record.

If you have a nondelimited text file with one record per case, you can read
it using the following approach. R has nowhere near the flexibility in reading
fixed-width text files that Stata has. As you will soon see, making an error
specifying the width of one variable will result in reading the wrong columns
for all those that follow. While Stata offer approaches that would do that too,
we do not recommend their use.

Other languages such as Perl or Python are extremely good at reading
text files and converting them to a form that R can easily read.

Below is the same data that we used in other examples, but now it is in
fixed-width format.

011f1151
022f2141
031f2243
042 31 3
051m4524
062m5455
071m5344
082m4555

The important things to notice about this file are the following:

1. No names appear on first line.
2. Nothing separates values.
3. The first value of each record is two columns wide; the remainder take

only one column each.
4. Blanks represent missing values, but we could use any other character that

would fit into the fixed number of columns allocated to each variable.
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5. The last line of the file contains data. That is what Stata expects, but
R generates a warning that there is an “incomplete final line found.” It
works fine though. If the warning in R bothers you, simply edit the file
and press Enter once at the end of the last line.

The R function that reads fixed-width files is read.fwf. The following is
an example of it reading the above file:

> setwd("/myRfolder")

> mydata <- read.fwf(
+ file="mydataFWF.txt",
+ width=c(2,-1,1,1,1,1,1),
+ col.names=c("id", "gender", "q1", "q2", "q3", "q4"),
+ row.names="id",
+ na.strings="",
+ fill=TRUE,
+ strip.white=TRUE)

Warning message:

In readLines(file, n = thisblock) :
incomplete final line found on ’mydataFWF.txt’

> mydata

gender q1 q2 q3 q4
1 f 1 1 5 1
2 f 2 1 4 1
3 f 2 2 4 3
4 <NA> 3 1 NA 3
5 m 3 5 2 4
6 m 5 4 5 5
7 m 5 3 4 4
8 m 4 5 5 5

The read.fwf function call above uses seven arguments:

1. The file argument lists the name of the file. It will read it from
your current working directory. You can set the working directory with
setwd("path") or you can specify a path as part of the file specification.
We have been using the file argument in most of our previous examples,
but we never bothered to name it. Since the file argument is the first
one for this function, people typically just list it first. However, we list it
here to remind you that all arguments do have names.

2. The width argument provides the width, or number of columns, required
by each variable in order. The widths we supplied as a numeric vector are
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created using the c function. The first number, 2, tells R to read ID from
columns 1 and 2. The next number, −1, tells R to skip one column. In
our next example, we will not need to read the workshop variable, so we
will put in a −1 to skip it now. The remaining pattern of 1, 1, 1, 1, 1 tells
R that each for of the remaining five variables will require one column
each. Be very careful at this step! If you made an error and told R that ID
was 1 column wide, then read.fwf would read all of the other variables
from the wrong columns. When you are reading many variables, specifying
their length by listing them all like this is tedious. You can make this task
much easier by using R’s ability to generate vectors of repetitive patterns.
For details, see Chapter 12, “Generating Data.”

3. The col.names argument provides the column or variable names. Those,
too, we provide in a character vector. We create it using the c function,
c("id","gender","q1","q2","q3","q4"). Since the names are charac-
ter (string) data, we must enclose them in quotes. Names can also be
tedious to enter. R’s ability to generate vectors of repetitive patterns com-
bined with the paste function can generate long sets of variable names.
For details, see Chapter 12, “Generating Data.”

4. The row.names argument tells R that we have a variable that stores a
name or identifier for each row. It also tells it which of the variable names
from the col.names argument that is: “id.”

5. The na.strings="" argument tells R that an empty field is a missing
value. It already is for numeric data, but, as in Stata, a blank is a valid
character value. Note that there is no blank between the quotes! That is
because we set the strip.white option to strip out extra blanks from
the end of strings. As you see, R displays missing data for character data
within angle brackets as <NA>.

6. The fill argument tells R to fill in blank spaces if the file contains lines
that are not of the full length (like the Stata fillin command). Now is a
good time to stop and enter help(read.fwf). Note that there is no fill
argument offered. It does, however, list its last argument as “. . . .” This
means that it will pass any additional arguments on to another function
that read.fwf might call. In this case, it is the read.table function.
Clicking the link to that function will reveal the fill argument and what
it does.

7. The strip.white argument tells R to remove any additional blanks it
finds in character data values. Therefore, if we were reading a long text
string like "Bob ", it will delete the additional spaces and store just
"Bob". That saves space and makes logical comparisons easier. It is all too
easy to count the number of blanks incorrectly when making a comparison
like name=="Bob ".

The file was read just fine. The warning message about an “incomplete
final line” is caused by the lack of a blank line at the end of the file. Stata
would not display a warning message about such a condition.
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The read.fwf function calls the read.table function to do its work, so
you can use any of those arguments here as well. For example, you could use
stringsAsFactors to prevent R from converting string variables to factors,
as it would do here by default.

6.4.1 Macro Substitution

The above example is a good one to use to begin to learn what Stata would
call macro substitution. This approach makes your programs much easier to
write and maintain. The most interesting aspect to macro substitution in R
is that R has no macro language! R is powerful enough to do this using its
standard features.

Since file paths often get quite long, we will store it in a character vector
named myfile. This approach also lets you put all of the file references you use
at the top of your programs, so you can change them easily. We do this with
the assignment

myfile <- "mydataFWF.txt"

Next, we will store our variable names in another character vector,
myVariableNames. This makes it much easier to manage when you have a
more realistic data set that may contain hundreds of variables:

myVariableNames <- c("id", "gender", "q1", "q2", "q3", "q4")

Now we will do the same with our variable widths. This makes our next
example, which reads multiple records per case, much easier.

myVariableWidths <- c(2, -1, 1, 1, 1, 1, 1)

Finally we will put it all together in a call to the read.fwf function.

> mydata <- read.fwf(
+ file=myfile,
+ width=myVariableWidths,
+ col.names=myVariableNames,
+ row.names="id",
+ na.strings="",
+ fill=TRUE,
+ strip.white=TRUE)

Warning message:

In readLines(file, n = thisblock) :
incomplete final line found on ’mydataFWF.txt’
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6.4.2 Example Programs for Reading Fixed-Width Text Files,
One Record Per Case

These programs do not save the data, since they skip the workshop variable
for demonstration purposes.

Stata Program for Fixed-Width Text Files, One Record per Case

* Filename: ReadFWF1.do

infix id 1-2 workshop 3 gender 4 q1 5 q2 6 q3 7 q4 8 ///
using c:\myRfolder\mydataFWF.txt, clear
list

R Program for Fixed-Width Text Files, One Record per Case

# Filename: ReadFWF1.R

setwd("/myRfolder")
mydata <- read.fwf(

file="mydataFWF.txt",
width=c(2,-1,1,1,1,1,1),
col.names=c("id","gender","q1","q2","q3","q4"),
row.names="id",
na.strings="",
fill=TRUE,
strip.white=TRUE)

mydata

# Now we’ll use "macro" substitution to do the same thing.

myfile <- "mydataFWF.txt"
myVariableNames <- c("id","gender","q1","q2","q3","q4")
myVariableWidths <- c(2,-1,1,1,1,1,1)

mydata <- read.fwf(
file=myfile,
width=myVariableWidths,
col.names=myVariableNames,
row.names="id",
na.strings="",
fill=TRUE,
strip.white=TRUE)

mydata
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6.5 Reading Fixed-Width Text Files, Two or More
Records per Case

It is common to have to read several records per case. In this section we will
read two records per case, but it is easy to generalize from that to any number
of records. This section builds on Section 6.4, so if you have not just finished
reading it, you will want to do so now. We will only use the macro substitution
form in this example.

First, we will store the filename in the character vector named myfile:

myfile <- "mydataFWF.txt"

Next, we will store the variable names in another character vector. We will
pretend that our same file now has two records per case with q1 to q4 on the
first record and q5 to q8 in the same columns on the second. Even though id,
group, and gender appear on every line, we will not read them again from the
second line. Here are our variable names:

myVariableNames <- c("id", "group", "gender",
"q1", "q2", "q3", "q4",
"q5", "q6", "q7", "q8" )

Now we need to specify the columns to read. We must store the column
widths for each line of data (per case) in its own vector. Note that on record 2
we begin with −2, −1, −1 to skip the values for id, group, and gender.

myRecord1Widths <- c( 2, 1, 1, 1, 1, 1, 1)
myRecord2Widths <- c(-2,-1,-1, 1, 1, 1, 1)

Next, we need to store both of the above variables in a list. The following
call to the list function combines the two record width vectors into one list
named myVariableWidths:

myVariableWidths <- list( myRecord1Widths, myRecord2Widths )

Let us look at the new list:

> myVariableWidths
[[1]]
[1] 2 1 1 1 1 1 1

[[2]]
[1] -2 -1 -1 1 1 1 1

You can see that the component labeled [[1]] is the first numeric vector
and the one labeled [[2]] is the second. The fact that the list contains two
components tells the width argument that we have two records per case. Now
we are ready to use the read.fwf function to read the data file:
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> mydata <- read.fwf(
+ file=myfile,
+ width=myVariableWidths,
+ col.names=myVariableNames,
+ row.names="id",
+ na.strings="",
+ fill=TRUE,
+ strip.white=TRUE)

Warning message:

incomplete final line found by readLines on ’mydataFWF.txt’
in: readLines(file, n = thisblock)

> mydata

group gender q1 q2 q3 q4 q5 q6 q7 q8
1 1 f 1 1 5 1 2 1 4 1
3 1 f 2 2 4 3 3 1 NA 3
5 1 m 3 5 2 4 5 4 5 5
7 1 m 5 3 4 4 4 5 5 5

You can see we now have only four records and eight q variables, so it has
worked well. It is also finally obvious that the row names do not always come
out as simple sequential numbers. It just so happened that is what we have
had until now. Because we are setting our row names from our id variable and
we are reading two records per case, we end up with only the odd-numbered
values. However, if we had let R create its own row names, they would have
ended up, “1,” “2,” “3,” and “4.”

As earlier, the warning message is caused by the lack of a blank line at the
end of the file. That does not cause problems.

6.5.1 Example Programs to Read Fixed-Width Text Files
with Two Records per Case

Stata Program to Read Two Records per Case

* Filename: ReadFWF2.do

clear
#delimit ;
infix 2 lines 1: id 1-2 workshop 3 gender 4 //
q1 5 q2 6 q3 7 q4 8
2: q5 5 q6 6 q7 7 q8 8 using c:\myRfolder\mydataFWF.txt;
#delimit cr
list
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R Program to Read Two Records per Case

# Filename: ReadFWF2.R

setwd("/myRfolder")

# Set all of the values to use.
myfile <- "mydataFWF.txt"
myVariableNames <- c("id","group", "gender",
"q1","q2","q3","q4",
"q5","q6","q7","q8")

myRecord1Widths <- c( 2, 1, 1, 1, 1, 1, 1)
myRecord2Widths <- c(-2,-1,-1, 1, 1, 1, 1)
myVariableWidths <- list(myRecord1Widths,myRecord2Widths)

#Now plug them in and read the data:
mydata <- read.fwf(

file=myfile,
width=myVariableWidths,
col.names=myVariableNames,
row.names="id",
na.strings="",
fill=TRUE,
strip.white=TRUE )

mydata

6.6 Importing Data from Stata into R

R can read a Stata data set in a standard “dta” file using R’s built-in foreign
package. That is the most widely-documented approach. However, when we
wrote this, that approach read only the older version 8 or 9 format. If the
data file is saved as a version 10 file or later, you must save it again using the
command saveold.

A better way to import data into R from Stata is to use the stata.get
function from Frank Harrell’s Hmisc package. It can easily bring in files from
any version of Stata, including the latest. It also has the ability to read for-
matted values, dates, variable labels, and lengths. The Hmisc package does
not come with R, but it is easy to install. For instructions, see Section 2.1,
“Installing Add-on Packages.”

Since the Hmisc package uses the foreign package, we load them both
from the library:

> library("foreign")

> library("Hmisc")
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Next, we import the file with a simple call to the stata.get function, and
print the data:

> mydata <- stata.get("c:/myRfolder/mydata.dta")

> mydata

id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
2 2 2 f 2 1 4 1
3 3 1 f 2 2 4 3
4 4 2 3 1 NA 3
5 5 1 m 4 5 2 4
6 6 2 m 5 4 5 5
7 7 1 m 5 3 4 4
8 8 2 m 4 5 5 5

For more information on using Stata files, see Data Analysis Using Stata
[25], the Base Reference Manual [45], or the Data-Management Reference
Manual [46]. The latter is a large volume detailing every aspect of managing
data in Stata, including the importing and exporting of data.

6.6.1 R Program to Import Data from Stata

# Filename: ImportFromStata.R

library("foreign")
library("Hmisc")
mydata <- stata.get("c:/myRfolder/mydata.dta")
mydata

6.7 Writing Data to a Comma-Delimited Text File

If you need to export data from R to another package, the comma separated
value file is a good way to do it. R can write data to a standard CSV file,
and it can write one formatted specifically for Stata, along with a do file to
read it.

You can write a comma-delimited CSV file from R using the write.csv
function. It writes CSV files the same way the read.csv function reads them,
using many of the same arguments.

write.csv(mydata,
file="mydataExported.csv", na="")
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The argument, na="" tells R to write out nothing for missing values. If you
leave that out, it will write out “NA” instead.

When you are exporting data from R, it is helpful to be able to open the
file(s) under program control. That way you can adjust the arguments until
you get what you need.

To look at the contents of any text file in R, you can use the file.show
function. Let us use it to see the file we just created.

> file.show("mydataExported.txt")

"","gender","q1","q2","q3","q4"
"1","f",1,1,5,1
"2","f",2,1,4,1
"3","f",2,2,4,3
"4",NA,3,1,NA,3
"5","m",3,5,2,4
"6","m",5,4,5,5
"7","m",5,3,4,4
"8","m",4,5,5,5

The write.csv function actually uses the write.table function with
some convenient options set, such as commas as delimiters. If you need to
write the file out in a different format, write.table offers a very fine level of
control. See help(write.table) for details.

6.7.1 Example Programs for Writing a Comma-Delimited File

Stata Program for Writing a CSV File

* Filename: WriteToText.do

use c:\myRfolder\mydata,clear
outfile using c:\myRfolder\mydata.csv, comma
type mydata.csv

R Program for Writing a CSV File

# Filename: WriteToText.R

write.csv(mydata,
file="mydataExported.csv", na="")
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6.8 Exporting Data from R to Stata

The foreign package contains a function specifically aimed at exporting data
to other packages, including Stata. Its write.foreign function writes out
a comma-delimited text file along with a matching Stata program file. To
complete the importation into Stata, you must edit the program file in Stata,
then execute it to read the text file, and, finally, create a data set.

To begin the process, you must load the foreign package.

library("foreign")

Then you call the write.foreign function:

write.foreign(mydata,
datafile="mydataExported.csv",
codefile="mydataExported.do",
package="Stata")

This function call uses four arguments:

1. The name of the R data frame you wish to export.
2. The datafile argument tells R the name of text data file. R will write

it to the current working directory unless you specify the full path in the
filename.

3. The codefile argument tells R the filename of a program that Stata can
use to read the text data file. You will have to use this file in Stata to
read the data file and create a Stata-formatted file.

4. The package argument takes the value "Stata" to determine which type
of program R writes to the codefile location.

We can use the file.show function to pop up windows and examine
the files.

file.show("mydataExported.csv")
file.show("mydataExported.do")

The file mydataExported.csv is very similar to the one we wrote out using
write.csv. Notice that it uses periods as missing values, which Stata will
interpret properly.

1,1,f,1,1,5,1
2,2,f,2,1,4,1
3,1,f,2,2,4,3
4,2,,3,1,.,3
5,1,m,4,5,2,4
6,2,m,5,4,5,5
7,1,m,5,3,4,4
8,2,m,4,5,5,5
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The following is the Stata program that R created:

infile gender:gender_fmt q1 q2 q3 q4 ///
using mydataExported.csv , automatic

R wrote it as one line; we split it so that it would fit on the page.

Example Program for Exporting Data from R to Stata

This program first writes out a comma-delimited file from R. Then it does it
again, along with a matching Stata do file to read it.

# Filename: ExportToStata.R

setwd("/myRfolder")

# A standard CSV file.
write.csv(mydata,
file="mydataExported.csv", na="")

file.show("mydataExported.csv")

# A CSV for Stata with matching do file.

library("foreign")

write.foreign(mydata,
datafile="mydataExported.csv",
codefile="mydataExported.do",
package="Stata")

# Look at the contents of our new files.
file.show("mydataExported.csv")
file.show("mydataExported.do")
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Selecting Variables

In Stata, selecting variables for an analysis is simple, while selecting
observations is often a bit more complicated. In R, these two processes can
be almost identical. As a result, variable selection in R can at times be some-
what more complex. However, since you need to learn that complexity to
select observations, it is not much added effort.

Selecting observations in Stata requires you to use logical conditions with
commands like if or in. You do not usually use that logic to select vari-
ables. It is possible to do so, through the use of macros. If you have used
Stata for long, you probably know dozens of ways to select observations, but
you did not see them all in the first introductory guide you read. With R,
it is best to dive in and see all of the methods of selecting variables because
understanding them is the key to understanding other documentation, espe-
cially the help files and discussions on the R-Help mailing list. Even though
you select variables and observations in R using almost identical methods, we
will discuss them in two different chapters, with different example programs.
This chapter focuses only on selecting variables. The next chapter will use al-
most identical descriptions with examples for selecting observations. We view
that as helpful reinforcement, but no doubt some will view it as rather dull
repetition!

7.1 Selecting Variables in Stata

Selecting variables in Stata is rather simple. It is worth reviewing them now
before discussing R’s approach. Our example data set contains the following
variables: workshop, gender, q1, q2, q3, and q4. Stata lets you refer to them
by individual names or in contiguous order separated by a dash, “-,” as in

summarize workshop-q4

You can select any variable beginning with the letter “q” using the star
operator.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 119
and Computing, DOI 10.1007/978-1-4419-1318-0 7,
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summarize q*

or

list q1-q4

Finally, if you do not tell it which variable to use, Stata uses them all. For
example, if you want Stata to summarize all variables in the data set, type
“summarize,” or abbreviate it to simply “su.”

Now let us turn our attention to how R selects variables.

7.2 Selecting All Variables

In R, if you perform some analyses without selecting any variables, the func-
tions will use all of the variables if they can. For example, to get summary
statistics on all variables (and across all observations or rows), use

summary(mydata)

The variable selection process applies to any R functions that act on vari-
ables, not all do. We will use the summary function so you will see it in the
context of an analysis.

7.3 Selecting Variables Using Index Numbers

Coming from Stata, you would think a discussion of selecting variables in R
would begin with various ways to select variables using their names. R can
use variable names, of course, but column indexes, also called subscripts, are
more fundamental to the way R works. That is because objects in R need not
name the elements or components they contain, but you can always refer to
them by their index numbers.

Our data frame has two dimensions: rows and columns. We reference the
rows and columns using square brackets as

mydata[rows,columns]

If you leave out the row or column indexes, R will process all rows and all
columns. Therefore, the following three statements have the same result:

summary( mydata )
summary( mydata[ ] )
summary( mydata[ , ] )

This chapter focuses on the second parameter, the columns (variables).
Our data frame has six variables or columns, which are automatically given
index numbers, or indexes of 1, 2, 3, 4, 5, and 6. You can select variables by
supplying one index number or a vector of indexes. For example,
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summary( mydata[ ,3] )

selects all rows of the third variable or column, q1. If you leave out an index,
it will assume you want them all. If you leave the comma out completely, R
assumes you want a column, so

summary( mydata[3] )

is almost the same as

summary( mydata[ ,3] )

Both refer to our third variable, q1. While the summary function treats the
presence or absence of the comma the same, some functions will have prob-
lems. That is because with the comma, the variable selection passes a vector
and without the comma, it passes a data frame containing only one vector.
See Section 10.17, “Converting Data Structures” for details.

To select more than one variable using indexes, you combine the indexes
into a vector using the c function. Therefore, this will analyze variables 3
through 6.

summary( mydata[ c(3,4,5,6) ] )

You will see the c function used in many ways in R. Whenever R re-
quires one object and you need to supply it several, it combines the several
into one. In this case, the several index numbers become a single numeric
vector.

The colon operator “:” can generate a numeric vector directly, so

summary( mydata[3:6] )

will use the same variables.
The colon operator is not just shorthand. We saw in an earlier chap-

ter that entering 1:N causes R to generate the sequence, 1, 2, 3,. . . N. If
you use a negative sign on an index, you will exclude those columns. For
example:

summary( mydata[ -c(3,4,5,6) ] )

will analyze all variables except for variables 3, 4, 5, and 6. Your index values
must be either all positive or all negative. Otherwise, the result would be
illogical. You cannot say, “include only these” and “include all but these” at
the same time. Index values of zero are accepted but ignored.

The colon operator can abbreviate sequences of numbers, but you need
to be careful with negative numbers. If you want to exclude columns 3:6, the
following approach will not work:

> -3:6
[1] -3 -2 -1 0 1 2 3 4 5 6
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This would, of course, generate an error since you cannot exclude 3 and include
3 at the same time. Adding parentheses will clarify the situation, showing R
that you want the minus sign to apply to just the set of numbers from +3
through +6 rather than -3 through +6:

> -(3:6)
[1] -3 -4 -5 -6

Therefore, we can exclude variables 3 through 6 with

summary( mydata[ -(3:6) ] )

If you find yourself working with a set of variables repeatedly, you can
easily save a vector of indexes so you will not have to keep looking up index
numbers:

myQindexes <- c(3,4,5,6)
summary( mydata[myQindexes] )

You can list indexes individually or, for contiguous variables, use the colon
operator. For a large data set, you could use variables 1, 3, 5 through 20, 25,
and 30 through 100 as follows:

myindexes <- c(1,3,5:20,25,30:100)

This is an important advantage of this method of selecting variables. Most
of the other variable selection methods do not easily allow you to select mixed
sets of contiguous and noncontiguous variables as you are used to doing in
Stata. For another way to do this, see “Selecting Variables Using the Subset
Function”, Section 7.9.

If your variables follow patterns such as every other variable or every 10th,
see Chapter 12, “Generating Data” for ways to generate other sequences of
index numbers.

The names function will extract a vector of variable names from a data
frame. The data.frame function, as we have seen, combines one or more
vectors into a data frame and creates default row names of “1,” “2,” “3,”. . . .
Combining these two functions is one way to quickly generate a numbered list
of variable names that you can use to look up index values:

> data.frame( names(mydata) )

names.mydata.
1 workshop
2 gender
3 q1
4 q2
5 q3
6 q4
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It is easy to rearrange the variables to put the four q variables in the be-
ginning of the data frame. In that way, you will easily remember, for example,
that q3 has an index value of 3 and so on.

Storing them in a separate data frame is another way to make indexes
easy to remember for sequentially numbered variables like these. However,
that approach runs into problems if you sort one data frame, as the rows then
no longer match up in a sensible way. Correlations between the two sets would
be meaningless.

The ncol function will tell you the number of columns in a data frame.
Therefore, another way to analyze all your variables is

summary( mydata[ 1:ncol(mydata) ] )

If you remember that q1 is the third variable and you want to analyze all
of the variables from there to the end, you can use

summary( mydata[ 3:ncol(mydata) ] )

7.4 Selecting Variables Using Column Names

Variables in Stata are required to have names, and those names must be
unique. In R, you do not need them since you can refer to variables by index
numbers as described in the previous section. Amazingly enough, the names
do not have to be unique, although having two variables with the same name
would be a terrible idea! R data frames usually include variable names, as
does our example data: workshop, gender, q1, q2, q3, q4.

Stata stores its variable names within the respective data sets. However,
you do not know exactly where they reside within the data set. Their location
is irrelevant. They are in there somewhere, and that is all you need to know.
However, in R, they are stored within a data frame in a place called the
names attribute. The names function accesses that attribute, and you can
display them by entering

> names(mydata)

[1] "workshop" "gender" "q1" "q2" "q3" "q4"

To select a column by name, you put it in quotes, as in

summary( mydata["q1"] )

R is still using the form

mydata[row,column]

However, when you supply only one index value, it assumes it is the column.
So
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summary( mydata[ ,"q1"] )

works as well. Note that the addition of the comma before the variable name
is the only difference between the two examples above. While the summary
function treats the presence or absence of the comma the same, some functions
will have problems. That is because with the comma, the selection results in a
vector, and without the comma, the selection is a data frame containing only
that vector. See Section 10.17 for details.

If you have more than one name, combine them into a single character
vector using the c function. For example,

summary( mydata[ c("q1","q2","q3","q4") ] )

Unfortunately, the colon operator does not work directly with character
prefixes as it does with indexes. So the form q1:q4 does not work in this
context. However, you can paste the letter “q” onto the numbers you generate
using the paste function.

myQnames <- paste( "q", 1:4, sep="")

summary( mydata[myQnames] )

The paste function call above has three arguments:

1. The string to paste, which for this example is just the letter “q.”
2. The object to paste it to, which is the numeric vector 1, 2, 3, 4 generated

by the colon operator 1:4.
3. The separator character to paste between the two. Since this is set to

"", the function will put nothing between “q” and “1,” then “q” and
“2,” and so on. R will store the resulting names “q1,” “q2,” “q3,” “q4”
in the character vector myQnames. You can use this approach to gen-
erate variable names to use in a variety of circumstances. Note that
merely changing the 1:4 above to 1:400 would generate the sequence
from q1 to q400. R can easily generate other patterns of repeating values
that you can use to create variable names. For details, see Chapter 12,
“Generating Data.” For another way to select variables by name using
the colon operator, see “Selecting Variables Using the Subset Function,”
Section 7.9.

7.5 Selecting Variables Using Logic

You can select a column by using a logical vector of TRUE/FALSE values.
You can enter one manually or create one by specifying a logical condition.
Let us begin by entering one manually. For example,

summary( mydata[ c(FALSE,FALSE,TRUE,FALSE,FALSE,FALSE) ] )
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will select the third column, q1, because the third value is TRUE and the third
column is q1. In Stata, the digits 1 and 0 can represent TRUE and FALSE,
respectively. They can do this in R, but they first require processing by the
as.logical function. Therefore, we could also select the third variable with

summary( mydata[ as.logical( c(0,0,1,0,0,0) ) ] )

If we had not converted the 0/1 values to logical FALSE/TRUE, the above
function call would have asked for two variables with index values of zero. Zero
is a valid value, but it is is ignored. It would have then asked for the variable
in column 1, which is workshop. Finally, it would have asked for three more
variables in column zero. The result would have been an analysis only for the
first variable, workshop. It would have been a perfectly valid, if odd, request!

Luckily, you do not have to actually enter logical vectors like the ones
above. Instead, you will generate a vector by entering a logical statement
such as

names(mydata)=="q1"

That logical comparison will generate the following logical vector for you:

FALSE, FALSE, TRUE, FALSE, FALSE, FALSE

Therefore, another way of analyzing q1 is

summary( mydata[ names(mydata)=="q1" ] )

While that example is good for educational purposes, in actual use you
would prefer one of the shorter approach using variable names:

summary( mydata["q1"] )

Once you have mastered the various approaches of variable selection, you
will find yourself alternating among the methods, as each has its advantages
in different circumstances.

The “==” operator compares every element of a vector to a value and
returns a logical vector of TRUE/FALSE values. The vector length will match
the number of variables, not the number of observations, so we cannot store
it in our data frame. So if we have assigned it to an object name, it would
just exist as a vector in our R workspace.

As in Stata, the “!” sign represents NOT, so you can also use that vector
to get all of the variables except for q1 using the form

summary( mydata[ !names(mydata)=="q1" ] )

To use logic to select multiple variable names, we can use the OR operator,
“—”. For example, select q1 through q4 with the following approach. Complex
selections like this are much easier when you do it in two steps. First, create
the logical vector and store it; then use that vector to do your selection. In
the name myQtf below, I am using the “tf” part to represent TRUE/FALSE.
That will help us remind that this is a logical vector.
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myQtf <- names(mydata)=="q1" |
names(mydata)=="q2" |
names(mydata)=="q3" |
names(mydata)=="q4"

Then we can get summary statistics on those variables using

summary( mydata[myQtf] )

Whenever you are making comparisons to many values, you can use the
%in% operator. This will generate exactly the same logical vector as the OR
example above.

myQtf <- names(mydata) %in% c("q1","q2","q3","q4")

summary( mydata[myQtf] )

You can easily convert a logical vector into an index vector that will
select the same variables. For details, see “Converting Data Structures,”
Section 10.17.

7.6 Selecting Variables Using String Search

You can select variables by searching all of the variable names for strings of
text. This approach uses the methods of selection by index numbers, names,
and logic as discussed above, so make sure you have mastered them before
trying this.

Stata uses the form

keep q*

to select all of the variables that begin with the letter q.
R searches variable names for patterns using the grep function. The name

grep itself stands for G lobal Regular Expression Print. It is just a fancy name
for a type of search.

The grep function creates a vector containing variable selection criteria
we need in the form of indexes, names, or TRUE/FALSE logical values. The
grep function and the rules that it follows, called regular expressions, appear
in many different software packages and operating systems.

Below we will use the grep function to find the index numbers for names
for those that begin with the letter q:

myQindexes <- grep("^q", names(mydata), value=FALSE)

The grep function call above uses three arguments:
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1. The first is the command string, or regular expression, “^p”, which means,
“find strings that begin with lowercase p.” The symbol “^” represents
“begins with.” You can use any regular expression here, allowing you to
search for a wide range of patterns in variable names. We will discuss
using wildcard patterns later.

2. The second argument is the character vector that you wish to search,
which, in our case, is our variable names. Substituting names(mydata)
here will extract those names.

3. The value argument tells it what to return when it finds a match. The goal
of grep in any computer language or operating system is to find patterns.
A value of TRUE here will tell it to return the variable names that match
the pattern we seek. However, in R, indexes are more important than
names, so the default setting is FALSE to return indexes instead. We
could leave it off in this particular case, but we will use it the other way
in the next example so we will list it here for educational purposes.

The contents of myQindexes will be 3, 4, 5, 6. In all our examples that use
that name, it will have those same values.

To analyze those variables, we can then use

summary( mydata[myQindexes] )

Now let us do the same thing but have the grep function save the actual
variable names. All we have to do is set value=TRUE.

myQnames <- grep("^q", names(mydata), value=TRUE)

The character vector myQnames now contains the variable names “q1,” “q2,”
“q3,” and “q4” and we can analyze those variables with

summary( mydata[myQnames] )

This approach gets what we expected: variable names. Since it uses names,
it makes much more sense to a Stata user. So, why we did not do this first?
Because in R, indexes are more flexible than variable names.

Finally, let us see how we would use this search method to select variables
using logic. The %in% function works just like the in operator in Stata.

It finds things that occur in a list. We will use it to find when a member of
all our variable names appears in the list of names beginning with “q” (stored
in myQnames). The result will be a logical set of TRUE/FALSE values that
indicate that the q variables are the last four:

FALSE, FALSE, TRUE, TRUE, TRUE, TRUE

We will store those values in the logical vector myQtf:

myQtf <- names(mydata) %in% myQnames

Now we can use the myQtf vector in any analysis we like:
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summary( mydata[myQtf] )

It is important to note that since we were searching for variables that
begin with the letter “q,” our program would have also found variables qA
and qB if they had existed. We can narrow our search with a more complex
search expression that says the letter “q” precedes at least one digit. This
would give us the ability to simulate Stata’s ability to refer to variables that
have a numeric suffix, such as “var1-var100.”

This is actually quite easy, although the regular expression is a bit cryptic.
It requires changing the myQnames line in the example above to the following:

myQnames <- grep("^q[1-9]", names(mydata), value=TRUE)

This regular expression means “any string that begins with “q,” and is fol-
lowed by one or more numerical digits.” Therefore, if they existed, this would
select q1, q27, q1old but not qA or qB. You can use it in your programs by
simply changing the letter “q” to the root of the variable name you are using.

You may be more familiar with the search patterns using wildcards in
Microsoft Windows. That system uses “*” to represent any number of charac-
ters and “?” to represent any single character. So the wildcard version of any
variable name beginning with the letter q is “q*.” Computer programmers
call this type of symbol a “glob,” short for global. R lets you convert globs
to regular expressions with the glob2rx function. Therefore, we could do our
first grep again in the form

myQindexes <- grep(glob2rx("q*"), names(mydata), value=FALSE)

Unfortunately, wildcards or globs are limited to simple searches and cannot
do our example of q ending with any number of digits.

7.7 Selecting Variables Using $ Notation

You can select a column using $ notation, which combines the name of the
data frame and the name of the variable within it, as in

summary( mydata$q1 )

This is referred to several ways in R, including “$ prefixing,” “prefixing by
dataframe$,” or “$ notation.” When you use this method to select multiple
variables, you need to combine them into a single object like a data frame, as
in

summary( data.frame( mydata$q1, mydata$q2 ) )

Having seen the c function, your natural inclination might be to use it for
multiple variables as in

summary( c( mydata$q1, mydata$q2 ) ) #Not good!



7.8 Selecting Variables Using Component Names 129

This would indeed make a single object, but certainly not the one a Stata
user expects. The c function would combine them both into a single variable
with twice as many observations! The summary function would then happily
analyze the new variable. When the data.frame function combines vectors
into a single data frame, they remain separate vectors within that data frame.
That is what we want here.

7.8 Selecting Variables Using Component Names

This section introduces using simple component names for variables stored in
a data frame, like gender instead of mydata$gender. The technical details we
will cover in Chapter 13, “Managing Your Files and Workspace.”

In Stata, you refer to variables by simple names like gender or q1. You
might have many data sets that contain a variable named gender, but there
is no confusion since you have to specify the data set in advance.

In Stata you clarify which data set you want to use by opening it with
use mydata.dta

In R, the potential for confusing variable names is greater because it is
much more flexible. For example, you can actually correlate a variable stored
in one data frame with a variable stored in a different data frame! all of the
variable selection methods discussed above made it perfectly clear which data
frame to use, but they required extra typing. You can avoid this extra typing
in several ways.

7.8.1 The attach Function

One approach R offers to simplify the selection of variables is the attach
function. You attach a data frame using the following function call:

attach(mydata)

Once you have done that, you can refer to just q1, and R will know which
one you mean. With this approach, getting summary statistics might look
like

summary(q1)

or

summary( data.frame(q1, q2, q3, q4) )

If you finish with that data set and wish to use another, you can detach it
with

detach( mydata )
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Objects will detach automatically when you quit R, so using detach
is not that important unless you need to use those variable names stored
in a different data frame. In that case, detach one file before attaching
the next.

The attach function works well when selecting existing variables, but it is
best avoided when creating them. An attached data frame can be thought of as
a temporary copy, so changes to existing variables will be lost. Therefore, when
adding new variables to a data frame, you need to use any of the other above
methods that make it absolutely clear where to store the variable. Afterward,
you can detach the data and attach it again to gain access to the modified
or new variables. We will look at the attach function more thoroughly in
Chapter 13, “Managing Your Files and Workspace.”

7.8.2 The with Function

The with function is another way to use short variable names. It is similar
to using the attach function, followed by any other single function, and then
followed by a detach function. The following is an example:

with( mydata, summary( data.frame(q1, q2, q3, q4) ) )

It lets you use simple component names and even lets you create variables
safely. The downside is that you must repeat it with every function, whereas
you might need the attach function only once at the beginning of your pro-
gram. The added set of parentheses also increases your odds of making a
mistake. To help avoid errors, you can type this as

with( mydata,
summary( data.frame(q1, q2, q3, q4) )

)

7.8.3 Using Component Names in Formulas

A third way to use short variable (component) names works only with model-
ing functions. Modeling functions use formulas to perform analyses like linear
regression or analysis of variance. They also have a data argument that spec-
ifies which data frame to use. This keeps formulas much shorter.

Here are two ways to perform a linear regression. First, using dollar
notation,

lm( mydata$q4 ~ mydata$q1 + mydata$q2 + mydata$q3 )

The following is the same regression, using the data argument to tell the
function which data frame to use:

lm( q4 ~ q1+q2+q3, data=mydata)
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As formulas get longer, this second approach becomes much easier. For
functions that accept formulas, this is the approach we recommend. It is easier
to use than either the attach or with functions. It also offers other benefits
when making predictions from the model. We will defer that discussion to
Chapter 17, “Statistics.”

To use this approach, all of the data must reside in the same data frame,
making it less flexible. However, it is usually a good idea to have all of the
variables in the same data frame anyway.

It is important to know that the data=mydata applies only to the variables
specified in the formula argument. Some modeling functions can specify which
variables to use without specifying a formula. In that case, you must use an
alternate approach (attach or with) if you wish to use shorter variable names.
We will see an example of this when doing t-tests in Chapter 17.

7.9 Selecting Variables with the subset Function

R has a subset function that you can use to select variables (and observa-
tions). It is the easiest way to select contiguous sets of variables by name,
such as in this Stata example:

sum q1-q4

It follows the form

subset(mydata, select=q1:q4)

For example, when used with the summary function, it would appear as

summary( subset(mydata, select=q1:q4 ) )

or

summary( subset(mydata, select=c(workshop, q1:q4) ) )

The second example above contains three sets of parentheses. It is very
easy to make mistakes with so many nested functions. A syntax-checking
editor like JGR’s or Emacs will help. Another thing that helps is to split
them across multiple lines:

summary(
subset(mydata, select=c(workshop, q1:q4) )

)

It is interesting to note that when using the c function within the subset
function’s select argument, it is combining the variable names, not the
vectors themselves. So the following example will analyze the two variables
separately:
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summary(
subset(mydata, select=c(q1,q2) ) # Good.

)

That is very different from

summary( c(mydata$q1,mydata$q2) ) # Not good.

which combines the two vectors into one long one before analysis. The subset
function’s unique syntax irritates some R users. We find that its usefulness
outweighs its quirks.

7.10 Selecting Variables Using List Index

Our data frame is also a list. The components of the list are vectors that form
the columns of the data frame. You can address these components of the list
using an index value enclosed in two square brackets. For example, to select
our third variable, we can use

summary( mydata[[3]] )

With this approach, the colon operator will not extract variables 3 through 6:

mydata[[3:6]] # Will NOT get variables 3 through 6.

7.11 Generating Indexes A to Z from Two Variable
Names

We have seen how the colon operator can help us analyze variables 3 through
6 using the form

summary( mydata[3:6] )

With that method, you have to know the index numbers, and digging through
lists of variables can be tedious work. However, we can have R do that work
for us, finding the index value for any variable name we like. This call to the
names function

names(mydata)== "q1"

will generate the logical vector

FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE

because q1 is the third variable. The which function will tell us the index
values of any TRUE values in a logical vector, so
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which( names(mydata)== "q1" )

will yield a value of 3. Putting these ideas together, we can find the index
number of the first variable we want, store it in myqA, then find the last
variable, store it in myqZ and then use them with the colon operator to
analyze our data from A to Z:

myqA <- which( names(mydata)=="q1" )
myqZ <- which( names(mydata)=="q4" )

summary( mydata[ ,myqA:myqZ ] )

7.12 Saving Selected Variables to a New Dataset

You can use any variable selection method to create a new data frame that
contains only those variables. If we wanted to create a new data frame that
contained only the q variables, we could do so using any method described
ealier. Here are a few variations:

myqs <- mydata[3:6]

myqs <- mydata[ c("q1","q2","q3","q4") ]

This next example will work, but R will name the variables “mydata.q1,”
“mydata.q2”. . . showing the data frame from which they came.

myqs <- data.frame(mydata$q1, mydata$q2,
mydata$q3, mydata$q4)

You can add variable name indicators to give them any name you like. With
this next one, we are manually specifying original names.

myqs <- data.frame(q1=mydata$q1, q2=mydata$q2,
q3=mydata$q3, q4=mydata$q4)

Using the attach function, the data.frame function leaves the variable names
in their original form.

attach(mydata)
myqs <- data.frame(q1, q2, q3, q4)
detach(mydata)

Finally, we have the subset function with its unique and convenient use of
the colon operator directly on variable names.

myqs <- subset(mydata, select=q1:q4)
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7.13 Example Programs for Variable Selection

In the examples throughout this chapter, we used the summary function to
demonstrate how a complete analysis request would look. However, here we
will use the print function to make it easier to see the result of each selection
when you run these programs. Even though

mydata["q1"]

is equivalent to

print( mydata["q1"] )

because print is the default function, we will use the longer form because it
is more representative of its look with most functions. As you learn R, you
will quickly opt for the shorter approach when printing.

For most of the programming examples in this book, the Stata programs
are shorter because the R programs demonstrate R’s somewhat greater flex-
ibility, at least in some instances. However, in the case of variable selection,
Stata has a significant advantage in ease of use. These programs demonstrate
roughly equivalent features.

7.13.1 Stata Program to Select Variables

* Filename: SelectingVars.do

use c:\myRfolder\mydata, clear
list workshop gender q1 q2 q3 q4
list workshop-q4
list workshop gender q*

* Creating a data set from selected variables;
keep q*
save c:\myRfolder\myqs

7.13.2 R Program to Select Variables

# Filename: SelectingVars.R

# Uses many of the same methods as selecting observations.

setwd("/myRfolder")
load(file="mydata.RData")

# This refers to no particular variables,
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# so all are printed.
print(mydata)

#---Selecting Variables by Index Numbers---

# These also select all variables by default.
print( mydata[ ] )
print( mydata[ , ] )

# Select just the 3rd variable, q1.
print( mydata[ ,3] ) #Passes q3 as a vector.
print( mydata[3] ) #Passes q3 as a data frame.

# These all select the variables q1,q2,q3 and q4 by indexes.
print( mydata[ c(3, 4, 5, 6) ] )
print( mydata[ 3:6 ] )

# These exclude variables q1,q2,q3,q4 by indexes.
print( mydata[ -c(3, 4, 5, 6) ] )
print( mydata[ -(3:6) ] )

# Using indexes in a numeric vector.
myQindexes <- c(3, 4, 5, 6)
myQindexes
print( mydata[myQindexes] )
print( mydata[-myQindexes] )

# This displays the indexes for all variables.
print( data.frame( names(mydata) ) )

# Using ncol to find the last index.
print( mydata[ 1:ncol(mydata) ] )
print( mydata[ 3:ncol(mydata) ] )

#---Selecting Variables by Column Names---

# Display all variable names.
names(mydata)

# Select one variable.
print( mydata["q1"] ) #Passes q1 as a data frame.
print( mydata[ ,"q1"] ) #Passes q1 as a vector.

# Selecting several.
print( mydata[ c("q1","q2","q3","q4") ] )
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# Save a list of variable names to use.
myQnames <- c("q1","q2","q3","q4")
print(myQnames)
print( mydata[myQnames] )

# Generate a list of variable names.
myQnames <- paste( "q", 1:4, sep="")
print(myQnames)
print( mydata[myQnames] )

#---Selecting Variables Using Logic---

# Select q1 by entering TRUE/FALSE values.
print( mydata[ c(FALSE,FALSE,TRUE,FALSE,FALSE,FALSE) ] )

# Manually create a vector to get just q1.
print( mydata[ as.logical( c(0,0,1,0,0,0) ) ] )

# Automatically create a logical vector to get just q1.
print( mydata[ names(mydata)=="q1" ] )

# Exclude q1 using NOT operator "!".
print( mydata[ !names(mydata)=="q1" ] )

# Use the OR operator, "|" to select q1 through q4,
# and store the resulting logical vector in myqs.
myQtf <- names(mydata)=="q1" |

names(mydata)=="q2" |
names(mydata)=="q3" |
names(mydata)=="q4"

print(myQtf)
print( mydata[myQtf] )

# Use the %in% operator to select q1 through q4.
myQtf <- names(mydata) %in% c("q1","q2","q3","q4")
print(myQtf)
print( mydata[myQtf] )

#---Selecting Variables by String Search---

# Use grep to save the q variable indexes.
myQindexes <- grep("^q", names(mydata), value=FALSE)
print(myQindexes)
print( mydata[myQindexes] )
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# Use grep to save the q variable names (value=TRUE now).
myQnames <- grep("^q", names(mydata), value=TRUE)
print(myQnames)
print( mydata[myQnames] )

# Use %in% to create a logical vector
# to select q variables.
myQtf <- names(mydata) %in% myQnames
print(myQtf)
print( mydata[myQtf] )

# Repeat example above but searching for any
# variable name that begins with q, followed
# by one digit, followed by anything.
myQnames <- grep("^q[[:digit:]]\{1\}",

names(mydata), value=TRUE)
print(myQnames)
myQtf <- names(mydata) %in% myQnames
print(myQtf)
print( mydata[myQtf] )

# Example of how glob2rx converts q* to ^q.
glob2rx("q*")

#---Selecting Variables Using $ Notation---

print( mydata$q1 )
print( data.frame(mydata$q1, mydata$q2) )

#---Selecting Variables by Component Names---

# Using the "attach" function.
attach(mydata)
print(q1)
print( data.frame(q1, q2, q3, q4) )
detach(mydata)

# Using the "with" function.
with( mydata,
summary( data.frame(q1, q2, q3, q4) )

)

#---Selecting Variables Using subset Function---
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print( subset(mydata, select=q1:q4) )
print( subset(mydata,
select=c(workshop, q1:q4)

) )

#---Selecting Variables by List Index---

print( mydata[[3]] )

#---Generating Indexes A to Z from Two Variables---

myqA <- which( names(mydata)=="q1" )
print(myqA)
myqZ <- which( names(mydata)=="q4" )
print(myqZ)
print( mydata[myqA:myqZ] )

#---Creating a New Data Frame---

# Equivalent ways to create a data frame
# of just the q vars.

myqs <- mydata[3:6]
print(myqs)
myqs <- mydata[ c("q1","q2","q3","q4") ]
print(myqs)
myqs <- data.frame(mydata$q1, mydata$q2,

mydata$q3, mydata$q4)
print(myqs)
myqs <- data.frame(q1=mydata$q1, q2=mydata$q2,

q3=mydata$q3, q4=mydata$q4)
print(myqs)

attach(mydata)
myqs <- data.frame(q1,q2,q3,q4)
print(myqs)
detach(mydata)

myqs <- subset(mydata, select=q1:q4)
print(myqs)
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Selecting Observations

It bears repeating that the approaches that R uses to select observations are,
for the most part, the same as those discussed in the previous chapter for
selecting variables. This chapter focuses only on selecting observations, and
it does so in the same order as the chapter on selecting variables. The next
chapter will cover the selection of variables and observations at the same time
but will do so in much less detail.

8.1 Selecting Observations in Stata

There are many ways to select observations in Stata, and it is outside our
scope to discuss them all here. However, we will look at some approaches for
comparison purposes. For Stata, if you do not select observations, it assumes
you want to analyze all of the data. So in Stata

describe workshop-q4;

will analyze all of the observations.
To select a subset of observations (e.g., the males), Stata uses the “if”

option.

describe workshop-q4 if gender=="m"

It is also common to create a logical 0/1 value in the form

gen female=gender=="f"

which you could then apply with,

describe workshop=q4 if female

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 139
and Computing, DOI 10.1007/978-1-4419-1318-0 8,
© Springer Science+Business Media, LLC 2010
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8.2 Selecting All Observations

In R, if you perform an analysis without selecting any observations, the
function will use all of the observations it can. For all descriptive analyses,
Stata works in the same manner.

For example, to get summary statistics on all observations (and all vari-
ables), we could use

summary(mydata)

which is similar to Stata’s version:

summary mydata

The methods to select observations apply to all R functions that accept
variables (vectors and so forth) as input. We will use the summary function so
you will see the selection in the context of an analysis.

8.3 Selecting Observations Using Index Numbers

Although it is as easy to select observations by index numbers, you need to
be careful doing it. This is because sorting a data frame is something you
do often, and sorting changes the index number of each row (if you save the
sorted version of course). Variables rarely change order, so this approach is
much more widely used to select them. That said, let us dive in and see how
R does it.

Our data frame has two dimensions: rows and columns. R refers to these
in the form

mydata[rows,columns]

If you leave out the row or column indexes, R will process all rows and all
columns. Therefore, the following three statements have the same
result:

summary( mydata )
summary( mydata[ ] )
summary( mydata[ , ] )

Since this section focuses on selecting observations, we will now discuss
just the first index, the rows. Our data frame has eight observations or rows,
which are automatically given index numbers, or indexes of 1, 2, 3, 4, 5, 6, 7,
and 8. You can select observations by supplying one index number or a vector
of indexes. For example,

summary( mydata[5 , ] )
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selects all of the variables for only row 5. There is not much worth analyzing
with that selection! Note that the comma is very important, even though we
request no columns in the example above. If you leave the comma out, R will
assume that any index values it sees are column indexes, and you will end up
selecting variables instead of observations!

As long as you include the comma, this selection goes across columns of
a data frame, so it must return a one-row data frame. A data frame can
contain variables that are numeric, character, or factor. Only a data frame
could store such a mixture. That is the opposite of selecting the fifth variable
with mydata[ ,5] because that would select a vector. In many cases, this
distinction would not matter, but it might.

To select more than one observation using indexes, you must combine them
into a numeric vector using the c function. Therefore, this will select rows 5
through 8, which happen to be the males:

summary( mydata[ c(5,6,7,8) , ] )

You will see the c function used in many ways in R. Whenever R requires
one object and you need to supply it several, it combines the several into
one. In this case, the several index numbers become a single numeric vector.
Again, take note of the comma that precedes the right square bracket. If we
left that comma out, R would try to analyze variables 5 through 8 instead of
observations 5 through 8! Since we have only six variables, that would generate
an error message. However, if we had more variables, the analysis would run,
giving us the wrong result with no error message. We added extra spaces in
this example to help you notice the comma. You do not need additional spaces
in R, but you can have as many as you like to enhance readability.

The colon operator “:” can generate a numeric vector directly, so

summary( mydata[5:8, ] )

selects the same observations.
The colon operator is not just shorthand. Entering 1:N at the R console

will cause it to generate the sequence, 1,2,3,. . . ,N.
If you use a negative sign on an index, you will exclude those observations.

For example

summary( mydata[ -c(1,2,3,4) , ] )

will exclude the first four records, three females and one with a gender of NA.
R will then analyze the males.

Your index values must be either all positive or all negative. Otherwise,
the result would be illogical. You cannot say “include only these observations”
and “include all but these observations” at the same time.

The colon operator can abbreviate sequences of numbers, but you need to
be careful with negative numbers. If you want to exclude rows 1 through 4,
the following sequence will not work:
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> -1:4

[1] -1 0 1 2 3 4

This would, of course, generate an error because they must all have the same
sign. Adding parentheses will clarify the situation, showing R that you want
the minus sign to apply to just the set of numbers from +1 through +4 rather
than –1 through +4:

> -(1:4)

[1] -1 -2 -3 -4

> summary( mydata[ -(1:4) , ] )

If you find yourself working with a set of observations repeatedly, you
can easily save a vector of indexes so you will not have to keep looking up
index numbers. In this example, we are storing the indexes for the males
in myMindexes (M for male). If we were not trying to make a point about
indexes, we would choose a simpler name like just “males.”

myMindexes <- c(5,6,7,8)

From now on, we can use that variable to analyze the males:

summary( mydata[myMindexes, ] )

For a more realistic data set, typing all of the observation index numbers
you need would be absurdly tedious and error prone. We will use logic to
create that vector in “Observation Selection, Advanced Topics,” Section 8.8.
You can list indexes individually or, for contiguous observations, use the colon
operator. For a larger data set, you could use observations 1, 3, 5 through 20,
25, and 30 through 100 as follows

mySubset <- c(1,3,5:20,25,30:100)

See the Chapter 12, “Generating Data” for ways to generate other sequences
of index numbers.

It is easy to have R list the index for each observation in a data frame.
Simply create an index using the colon operator and append it to the front of
the data frame.

> data.frame(myindex=1:8, mydata)

myindex workshop gender q1 q2 q3 q4
1 1 R f 1 1 5 1
2 2 Stata f 2 1 4 1
3 3 R f 2 2 4 3
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4 4 Stata <NA> 3 1 NA 3
5 5 R m 4 5 2 4
6 6 Stata m 5 4 5 5
7 7 R m 5 3 4 4
8 8 Stata m 4 5 5 5

Note that the unlabeled column on the left contains the row names. In our
case, the row names look like indexes. However, the row names could have
been descriptive strings like “Bob,” so there is no guarantee of a relation-
ship between row names and indexes. Index values are dynamic, like the
case numbers displayed in the Stata data editor. When you sort or rearrange
the data, they change. Row names, on the other hand, are fixed when you
create the data frame. Sorting or rearranging the rows will not change row
names.

You can use the nrow function to find the number of rows in a data frame.
Therefore, another way to analyze all your observations is

summary( mydata[ 1:nrow(mydata) , ] )

If you remember that the first male is the fifth record and you want to
analyze all of the observations from there to the end, you can use

summary( mydata[ 5:nrow(mydata) , ] )

8.4 Selecting Observations Using Row Names

Stata data sets have variable names but not observation or case names. In
R, data frames always name the observations and store those names in the
row names attribute. When we read our data set from a text file, we told it
that the first column would be our row names. The row.names function will
display them:

row.names(mydata)

R will respond with

"1", "2", "3", "4", "5", "6", "7", "8"

The quotes around them show that R treats them as characters, not as num-
bers. If you do not provide an ID or name variable for R to use as row names,
it will always create them in this form. Therefore, if we had not had an ID
variable, we would have ended up in exactly the same state. I included an ID
variable because it emphasizes the need to be able to track your data back to
its most original source when checking for data entry errors. With such bor-
ing row names, there is little need to use them. Indexes are numerically more
useful. So let us change the names so we will have an example that makes
sense. We will create a new character vector of names:
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> mynames <- c("Ann","Cary","Sue","Carla",
"Bob","Scott","Mike","Rich")

Now we will write those names into the row names attribute of our data frame:

row.names(mydata) <- mynames

This is a very interesting assignment! It shows that the row.names function
does not just show you the names, it provides access to the names attribute
itself. Assigning mynames to that vector renames all of the rows! In Sec-
tion 10.6, “Renaming Variables (and Observations),” we will see this again
with several variations.

Let us see how this has changed our data frame.

> mydata

workshop gender q1 q2 q3 q4
Ann R f 1 1 5 1
Cary Stata f 2 1 4 1
Sue R f 2 2 4 3
Carla Stata <NA> 3 1 NA 3
Bob R m 4 5 2 4
Scott Stata m 5 4 5 5
Mike R m 5 3 4 4
Rich Stata m 4 5 5 5

Now that we have some interesting names to work with, let us see what we
can do with them. If we wanted to look at the data for “Ann,” we could use

mydata["Ann", ]

You might think that if we had several records per person, we could use
row names to select all of the rows for any person. R, however, requires that
row names be unique, which is a good idea. You could always use an id number
that is unique for row names, then have the subjects’ names on each record in
their set and a counter like time 1, 2, 3, 4. We will look at just that structure
in Section 10.15, “Reshaping Variables to Observations and Back.”

To select more than one row name, you must combine them into a single
character vector using the c function. For example, we could analyze the
females using

summary( mydata[ c("Ann","Cary","Sue","Carla"), ] )

With a more realistically sized data frame, we would probably want to save
the list of names to a character vector that we could use repeatedly. Here we
use F to represent females and names to remind us of what is in the vector:

myFnames <- c("Ann","Cary","Sue","Carla")
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Now we will analyze the females again using this vector:

summary( mydata[ myFnames, ] )

Note that, in Stata, observations are selected using the in operator such as:

summ age in 1/4

or

summ age if q1==1

8.5 Selecting Observations Using Logic

You can select observations by using a logical vector of TRUE/FALSE values.
You can enter one manually or create by specifying a logical condition. Let
us begin by entering one manually. For example, the following will print the
first four rows of our data set:

> myRows <- c(TRUE, TRUE, TRUE, TRUE,
+ FALSE, FALSE, FALSE, FALSE)

> print( mydata[myRows, ] )

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3

In Stata, the digits 1 and 0 can represent TRUE and FALSE. Let us see
what happens when we try this in R.

> myBinary <- c(1, 1, 1, 1, 0, 0, 0, 0)

> print( mydata[myBinary, ] )

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
1.1 R f 1 1 5 1
1.2 R f 1 1 5 1
1.3 R f 1 1 5 1

What happened? Remember that putting a 1 in for the row index asks for
row 1. So our request asked for row 1 four times in a row and then asked for
row 0 four times. Index values of zero are ignored. We can get around this
problem by using the as.logical function.
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> myRows <- as.logical(myBinary)

Now, myRows contains the same TRUE/FALSE values it had in the previous
example and would work fine. While the above examples make it clear how
R selects observations using logic, they are not very realistic. Hundreds of
records would require an absurd amount of typing. Rather than typing such
logical vectors, you can generate them with logical statement such as

> mydata$gender=="f"

[1] TRUE TRUE TRUE NA FALSE FALSE FALSE FALSE

The “==” operator compares every value of a vector, like gender, to a value,
like “f”, and returns a logical vector of TRUE/FALSE values. These logical
conditions can be as complex as you like, including all of the usual logical
conditions. See Table 10.2, “Logical operators,” for details.

The length of the resulting logical vector will match the number of obser-
vations in our data frame. Therefore, we could store it our data frame as a
new variable.

Unfortunately, we see that the fourth logical value is NA. That is because
the fourth observation has a missing value for gender. Up until this point, we
have been mirroring Chapter 7, “Selecting Variables.” Logical comparisons of
variable names did not have a problem with missing values. Now, however,
we must take a different approach. First, let us look at what would happen if
we continued down this track.

> print( mydata[ mydata$gender=="f", ] )

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
NA <NA> <NA> NA NA NA NA

What happened to the fourth observation? It had missing values only for
gender and q3. Now all of the values for that observation are missing. R
has noticed that we were selecting rows based on only gender. Not knowing
what we would do with the selection, it had to make all of the other val-
ues missing too. Why? Because we might have been wanting to correlate q1
and q4. Those two had no missing values in the original data frame. If we
want to correlate them only for the females, even their values must be set to
missing.

We could select observations using this logic and then count on R’s other
functions to remove the bad observations as they would any others with miss-
ing values. However, there is little point in storing them. Their presence could
also affect future counts of missing values for other analyses, perhaps when
females are recombined with males.
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Luckily, there is an easy way around this problem. The which function
gets the index values for the TRUE values of a logical vector. Let us see what
it does.

> which( mydata$gender=="f" )

[1] 1 2 3

It has ignored both the NA value and the FALSE values to show us that only
the first three values of our logical statement were TRUE. We can save these
index values in myFemales.

> myFemales <- which( mydata$gender=="f" )

> myFemales
[1] 1 2 3

We can then analyze just the females with the following:

summary( mydata[ myFemales , ] )

Negative index values exclude those rows, so we could analyze the non-females
(males and missing) with the following:

summary( mydata[-myFemales , ] )

We could, of course, get males and exclude missing the same way we got the
females.

We can select observations using logic that is more complicated. For exam-
ple, we can use the AND operator “&” to analyze subjects who are both male
and who “strongly agree” that the workshop they took was useful. Compound
selections like this are much easier when you do it in two steps. First, create
the logical vector and store it; then use that vector to do your selection.

> HappyMales <- which(mydata$gender=="m"
+ & mydata$q4==5)

> HappyMales
[1] 6 8

So we could analyze these observations with

summary( mydata[HappyMales , ] )

Whenever you are making comparisons to many values, you can use
the %in% operator. Let us select observations who have taken the R or
Stata workshop. With just two target workshops, you could use a simple
workshop="R" | workshop="Stata", but the longer the target list, the hap-
pier you will be to save all of the repetitive typing.
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> myRstata <-
+ which( mydata$workshop %in% c("R","Stata") )

> myRstata
[1] 1 3 5 7

Then we can get summary statistics on those observations using

summary( mydata[myRstata, ] )

The various methods we described in Chapter 7, “Selecting Variables”
make a big difference in how complicated the logical commands to select
observations appear. Here are several different ways to analyze just the
females:

myFemales <- which( mydata$gender=="f")

myFemales <- which( mydata[2] == "f")

myFemales <- which( mydata["gender"] == "f")

with(mydata,
myFemales <- which(gender=="f")

)

attach(mydata)
myFemales <- which(gender=="f")

detach(mydata)

You could then use any of these to analyze the data using

summary( mydata[ myFemales, ] )

You can easily convert a logical vector into index vector that will select
the same observations. For details, see “Converting Data Structures,” Sec-
tion 10.17.

8.6 Selecting Observations Using String Search

If you have character variables, or useful row names, you can select obser-
vations by searching their values for strings of text. This approach uses the
methods of selection by indexes, row names, and logic discussed ealier, so
make sure you have mastered them before trying these.

R searches variable names for patterns using the grep function. The name
grep itself stands for G lobal Regular Expression Print. It is just an acronym
for a type of search.

The grep function creates a vector containing variable selection criteria
that we need in the form of indexes, names, or TRUE/FALSE logical values.
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The grep function and the rules that it follows, called regular expressions,
appear in many different software packages and operating systems.

We previously replaced our original row names, “1,” “2,”. . . , with more
interesting ones, “Ann”, “Cary,”. . . . Now we will use the grep function to
search for row names that begin with the letter “C”:

myCindexes <- grep("^C", row.names(mydata), value=FALSE)

This grep function call uses three arguments:

1. The first is the command string, or regular expression, “^C,” which means
“find strings that begin with a capital letter C.” The symbol “^” represents
“begins with.” You can use any regular expression here, allowing you to
search for a wide range of patterns in variable names. We will discuss
using wildcard patterns later.

2. The second argument is the character vector that you wish to search.
In our case, we want to search the row names of mydata, so we use the
row.names function here.

3. The value argument tells it what to store when if finds a match. The
goal of grep in any computer language or operating system is to find
patterns. A value of TRUE here will tell it to save the row names that
match the pattern we seek. However, in R, indexes are more fundamental
than names, which are optional, so the default setting is FALSE to save
indexes instead. We could leave it off in this particular case, but we will use
it the other way in the next example, so we will list it here for educational
purposes. The contents of myCindexes will be 2 and 4 because Cary and
Carla are the second and fourth observations. If we wanted to save this
variable, it does not match the eight values of our other variables, so we
cannot store it in our data frame. We would instead just store it in the
workspace as a vector outside our data frame.

To analyze those observations, we can then use

summary( mydata[myCindexes , ] )

Now let us do the same thing but have grep save the actual variable names.
All we have to do is change to value=TRUE:

myCnames <- grep("^C", row.names(mydata), value=TRUE)

The character vector myCnames now contains the row names “Cary” and
“Carla” and we can analyze those observations with

summary( mydata[myCnames , ] )

Finally, let us do a similar search using the %in% function. In R, it works
just like the in option in Stata. It finds matches between two sets of values.
We will use it to find which of our row names appears in this set of target
names:
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myTargetNames <- ("Carla","Caroline",
"Cary","Cathy","Cynthia")

myMatches <- row.names(mydata) %in% myTargetNames

The result will be a logical set of TRUE/FALSE values that indicate that the
names that match are in the second and fourth positions:

FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE

Now we can use the myMatches vector in any analysis like summary:

summary( mydata[myMatches, ] )

You may be more familiar with the search patterns using wildcards in
Microsoft Windows. They use “*” to represent any number of characters and
“?” to represent any single character. So the wildcard version of any variable
name beginning with the letter “C” is “C*.” Computer programmers call this
type of symbol a “glob,” short for global. R lets you convert globs to regular
expressions with the glob2rx function. Therefore, we could do our first grep
again in the form

myCindexes <- grep( glob2rx("C*"),
row.names(mydata), value=FALSE )

8.7 Selecting Observations Using the subset Function

You can select observations using the subset function. You simply list your
logical condition under the subset argument, as in

subset(mydata, subset=gender=="f")

Note that an equal sign follows the subset argument because that is what R
uses to set argument values. The gender=="f" comparison is still done using
“==” because that is the symbol R uses for logical comparisons. You can use
subset to analyze your selection using the form

summary(
subset(mydata, subset=gender=="f")

)

The following is a slightly more complicated selection, in which we select
the males who were happy with their workshop. In R, the logic is a single
object, a logical vector, regardless of its complexity.

summary(
subset( mydata, subset=gender=="m" & q4==5 )

)
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Since the first argument to the subset function is the data frame to use,
you do not have to write out the longer forms of names like mydata$q1 or
mydata$gender. Also, its logical selections automatically exclude cases for
which the logic would be missing. So it acts like the which function that is
built into every selection. That is a very helpful function!

8.8 Generating Indexes A to Z from Two Row Names

We have discussed various observation selection techniques. Now we are ready
to examine combination methods that use a blend of row names, logic, and
index numbers. If you have not mastered the previous examples, now would
be a good time to review them!

We have seen how the colon operator can help us analyze the males, who
are observations 5 through 8, using the form

summary( mydata[5:8, ] )

However, you had to know the index numbers, and digging through lists of
observation numbers can be tedious work. However, we can use the row.names
function and the which function to get R to find the index values we need.
The function call

row.names(mydata)=="Bob"

will generate the logical vector

FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE

because Bob is the fifth observation. The which function will tell us the index
values of any TRUE values in a logical vector, so

which(FALSE, FALSE, FALSE, FALSE,
TRUE, FALSE, FALSE, FALSE)

will yield a value of 5. Putting these ideas together, we can find the index
number of the first observation we want, store it in myMaleA, then find the last
observation, store it in myMaleZ, and then use them with the colon operator
to analyze our data from A to Z:

myMaleA <- which( names(mydata)=="Bob" )
myMaleZ <- which( names(mydata)=="Rich" )
summary( mydata[ myMaleA:myMaleZ, ] )
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8.9 Variable Selection Methods with No Counterpart
for Selecting Observations

As we have seen, the methods that R uses to select variables and observa-
tions are almost identical. However, there are several techniques for selecting
variables that have no equivalent in selecting observations:

• The $ prefix form (e.g., mydata$gender).
• The attach function’s approach to short variable names.
• The with function’s approach to short variable names.
• The use of formulas.
• The list form (e.g., mydata[[2]]).

8.10 Saving Selected Observations to a New Data Frame

You can create a new data frame that is a subset of your original one by using
any of the methods for selecting observations. You simply assign the data to
a new data frame. The examples below all select the males and assign them
to the myMales data frame:

myMales <- mydata[5:8, ]

myMales <- mydata[ which(mydata$gender=="m") , ]

myMales <- subset( mydata, subset=gender=="m" )

8.11 Example Programs for Selecting Observations

The examples below demonstrate the many ways to select observations.
Throughout this chapter we used the summary function to demonstrate how
a complete analysis request would look. Here we will instead use the print
function to make it easier to see the result of each selection when you run the
programs. Even though

mydata[5:8, ]

is equivalent to

print( mydata[5:8, ] )

because print is the default function, we will use the longer form because
it is more representative of its look with most functions. As you learn R,
you will quickly opt for the shorter approach when you only want to print
data.
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8.11.1 Stata Program to Select Observations

* Filename: SelectingObs.do

use c:\myRfolder\mydata, clear
describe workshop-q4;
describe workshop-q4 if gender=="m"
gen female=gender=="f"
describe workshop=q4 if female
summ

8.11.2 R Program to Select Observations

# Filename: SelectingObs.R .

setwd("/myRfolder")
load(file="mydata.RData")
print(mydata)

#---Selecting Observations by Index---

# Print all rows.
print( mydata[ ] )
print( mydata[ , ] )
print( mydata[1:8, ] )

# Just observation 5.
print( mydata[5 , ] )

# Just the males:
print( mydata[ c(5,6,7,8) , ] )
print( mydata[ 5:8 , ] )

# Excluding the females with minus sign.
print( mydata[ -c(1,2,3,4), ] )
print( mydata[ -(1:4) , ] )

# Saving the Male (M) indexes for reuse.
myMindexes <- c(5,6,7,8)
summary( mydata[myMindexes, ] )

# Print a list of index numbers for each observation.
data.frame(myindex=1:8,mydata)

# Select data using length as the end.
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print( mydata[ 1:nrow(mydata), ] )
print( mydata[ 5:nrow(mydata), ] )

#---Selecting Observations by Row Name---

# Display row names.
row.names(mydata)

# Select rows by their row name.
print( mydata[ c("1","2","3","4"), ] )

# Assign more interesting names.
mynames <- c("Ann","Cary","Sue","Carla",

"Bob","Scott","Mike","Rich")
print(mynames)

# Store the new names in mydata.
row.names(mydata) <- mynames
print(mydata)

# Print Ann’s data.
print( mydata["Ann" , ] )
mydata["Ann" , ]

# Select the females by row name.
print( mydata[ c("Ann","Cary","Sue","Carla"), ] )

# Save names of females to a character vector.
myFnames <- c("Ann","Cary","Sue","Carla")
print(myFnames)

# Use character vector to select females.
print( mydata[ myFnames, ] )

#---Selecting Observations Using Logic---

#Selecting first four rows using TRUE/FALSE.
myRows <- c(TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, FALSE)

print( mydata[myRows, ] )

# Selecting first four rows using 1s and 0s.
myBinary <- c(1, 1, 1, 1, 0, 0, 0, 0)
print( mydata[myBinary, ] )
myRows <- as.logical(myBinary)
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print( mydata[ myRows, ] )

# Use a logical comparison to select the females.
mydata$gender=="f"
print( mydata[ mydata$gender=="f", ] )
which( mydata$gender=="f" )
print( mydata[ which(mydata$gender=="f") , ] )

# Select females again, this time using a saved vector.
myFemales <- which( mydata$gender=="f" )
print(myFemales)
print( mydata[ myFemales , ] )

# Excluding the females using the "!" NOT symbol.
print( mydata[-myFemales , ] )

# Select the happy males.
HappyMales <- which(mydata$gender=="m"
& mydata$q4==5)

print(HappyMales)
print( mydata[HappyMales , ] )

# Selecting observations using %in%.
myRstata <-
which( mydata$workshop %in% c("R","Stata") )

print(myRstata)
print( mydata[myRstata , ] )

# Equivalent selections using different
# ways to refer to the variables.

print( subset(mydata, gender==’f’) )

attach(mydata)
print( mydata[ gender=="f" , ] )

detach(mydata)

with(mydata,
print ( mydata[ gender=="f" , ] )

)

print( mydata[ mydata["gender"]=="f" , ] )

print( mydata[ mydata$gender=="f" , ] )
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#---Selecting Observations by String Search---

# Search for row names that begin with "C".
myCindexes <- grep("^C", row.names(mydata), value=FALSE)
print( mydata[myCindexes , ] )

# Again, using wildcards.
myCindexes <- grep( glob2rx("C*") ,
row.names(mydata), value=FALSE)

print( mydata[myCindexes , ] )

#---Selecting Observations Using subset Function---

subset(mydata,subset=gender=="f")

summary(
subset( mydata, subset=gender=="m" & q4==5 )

)

#---Generating Indexes A to Z From Two Row Names---

myMaleA <- which( row.names(mydata)=="Bob" )
print(myMaleA)
myMaleZ <- which( row.names(mydata)=="Rich" )
print(myMaleZ)
print( mydata[myMaleA:myMaleZ , ] )

#---Creating A New Data Frame---

# Creating a new data frame of only males (all equivalent).
myMales <- mydata[5:8, ]
print(myMales)
myMales <- mydata[ which( mydata$gender=="m" ) , ]
print(myMales)
myMales <- subset( mydata, subset=gender=="m" )
print(myMales)

# Creating a new data frame of only females (all equivalent).
myFemales <- mydata[1:3, ]
print(myFemales)
myFemales <- mydata[ which( mydata$gender=="f" ) , ]
print(myFemales)
myFemales <- subset( mydata, subset=gender=="f" )
print(myFemales)
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Selecting Variables and Observations

In the previous two chapters, we focused on selecting variables and
observations separately. You can combine those approaches to select both
variables and observations at the same time. As an example, we will use the
various methods to select the variables workshop and q1 to q4 for only the
males.

Previously we began with index numbers because they are so fundamental
to understanding how R works. This time we will discuss the more practical
approaches first.

The explanations in this chapter are much sparser. If you need clarification,
see the detailed discussions of each approach in the previous two chapters.

9.1 The subset Function

Although you can use any of the methods introduced in the previous two
chapters to select both variables and observations, you would usually choose
variables by name and choose observations by logic. The subset function lets
us use that combination easily.

When selecting variables, subset allows you to use the colon operator
on lists of contiguous variables, like gender:q4. Variable selections that are
more complex than a single variable or two contiguous variables separated by
a colon must be combined with the c function, as usual.

When selecting observations, you perform logic like gender=="m" without
having to use which(gender=="m") to get rid of the observations that have
missing values for gender. The logic can be as complex as you like, so we can
select the males who are happy with their workshop using gender=="m" &
q4==5. Note that the result of a logical condition is always a single logical
vector, so you never need the c function for logic. See Table 10.2, “Logical
operators,” for details.

We can perform our selection by nesting the subset function directly
within other functions:
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summary(
subset(mydata,
subset=gender=="m",
select=c(workshop, q1:q4) )

)

Since R allows you to skip the names of arguments as long as you have
them in proper order, you often see subset used in the form

summary(
subset(mydata, gender=="m",
c(workshop, q1:q4) )

)

If you plan to use a subset like this repeatedly, it would make more sense
to save the subset in a data frame. Here we will add the print function just
to make the point that selection is done once and then used repeatedly with
different functions. Here we are using the name myMalesWQ to represent the
males with workshop and the q variables.

myMalesWQ <- subset(mydata,
subset=gender=="m",
select=c(workshop, q1:q4)

)

print(myMalesWQ)
summary(myMalesWQ)

Performing the task in two steps like that often makes the code easier to
read and less error-prone.

9.2 Selecting Observations by Logic and Variables
by Name

Another very useful approach is to use logic to select observations and to use
names to select variables.

summary(
mydata[ which(gender=="m") ,

c("workshop","q1","q2","q3","q4") ]
)

This is very similar to what we did with the subset function, but with
character index values, we cannot use the form q1:q4 to choose contiguous
variables. So if you had many variables, you would want to use the shortcut
described in Section 7.11, “Generating Indexes A to Z from Two Variable
Names.”
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We could make our example more legible by defining the row and column
indexes in a separate step:

myMales <- which(gender=="m")
myVars <- c("workshop","q1","q2","q3","q4")

summary( mydata[ myMales, myVars] )

This has the added benefit of allowing us to analyze just the males, for all
variables (we are not selecting any specifically) with

summary( mydata[ myMales, ] )

We can also analyze males and females (by not choosing only males) for just
myVars:

summary( mydata[ , myVars] )

If we did not need that kind of flexibility and we planned to use this subset
repeatedly, we would save it to a data frame.

myMalesWQ <- mydata[ myMales, myVars]

summary(myMalesWQ)

9.3 Using Names to Select Both Observations
and Variables

The above two approaches usually make the most sense. You usually know
variable names and subset values to select. For completeness sake, we will
continue on with additional combinations, but if you feel you understood the
previous two chapters and the examples above, feel free to skip these examples
and go to Section 9.6, “Saving and Loading Subsets.”

Since the males have character row names of “5” through “8,” we could
use both row names and column with

summary( mydata[
c("5","6","7","8"),
c("workshop","q1","q2","q3","q4")

] )

This is an odd approach for selecting rows. We do not often bother to learn
such meaningless row names. If we had row names that made more sense, like
“Ann,” “Bob,” “Carla,”. . . , this approach would make more sense. However,
we can at least be assured that the row names will not be affected by the
addition of new observations or by sorting. Such manipulations do not change
row names as they do numeric index values.
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If you plan on using these character index vectors often or if you have
many values to specify, it is helpful to store them separately. This also helps
document your program, since a name like myMales will remind you, or your
colleagues, what you were selecting.

myMales <- c("5","6","7","8")

myVars <- c("workshop","q1","q2","q3","q4")

Now we can repeat the same examples that we used in the section imme-
diately above. Once you have a vector of index values, it does not matter if
they are character names, logical values, or numeric values.

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars] )

Here we analyze only the males, but include all variables:

summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars] )

9.4 Using Numeric Index Values to Select Both
Observations and Variables

The males have numeric index values of 5 through 8, and we want the first
variable and the last four, so we can use numeric index vectors to choose them
as in either of these two equivalent approaches:

summary( mydata[ c(5,6,7,8), c(1,3,4,5,6) ] )

summary( mydata[ 5:8, c(1,3:6) ] )

This selection is impossible to interpret without a thorough knowledge of
the data frame. When you are hard at work on an analysis, you may well recall
these values. However, such knowledge fades fast, so you would do well to add
comments to your programs reminding yourself what these values select.

Adding new variables or observations to the beginning of the data frame,
or sorting it, would change these index values. This is a risky approach!

As we discussed in the last section, we can save the numeric index vectors
for repeated use.

myMales <- c(5,6,7,8)

myVars <- c(1,3:6)
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Again, we can repeat the same examples that we used in the sections
above. Once you have a vector of index values, it does not matter if they are
character names or numeric indexes.

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars] )

Here we analyze only the males, but include all variables:

summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars] )

9.5 Using Logic to Select Both Observations
and Variables

Selecting observations with logic makes perfect sense, but selecting variables
using logic is rarely worth the effort. The following is how we would use this
combination for our example:

summary(
mydata[which(gender=="m"),
names(mydata) %in% c("workshop","q1","q2","q3","q4") ]

)

Let us reconsider using variable names directly. For this example, it is clearly
simpler:

summary(
mydata[ which(gender=="m") ,
c("workshop","q1","q2","q3","q4") ]

)

However, once we save these values, you use them with no more work than
earlier.

myMales <- which(gender=="m")

myVars <- names(mydata) %in%
c("workshop","q1","q2","q3","q4")

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars] )

Here we analyze only the males but include all variables:
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summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars] )

9.6 Saving and Loading Subsets

All of the methods we used to create subsets result in a temporary copy that
exists only in our workspace. To use it in future R sessions, we will need
to write it out to our computer’s hard drive using the save or save.image
functions. The more descriptive a name you give it, the better.

myMalesWQ <- subset(mydata,
subset=gender=="m",
select=c(workshop,q1:q4)

)

If your files are not too large, you can save your original data and your
subset with

save(mydata, myMalesWQ, file="mydata.RData")

The next time you start R, you can load both data frames with

load("mydata.RData")

If you are working with large files, you can save only the subset.

save(myMalesWQ, file="myMalesWQ.RData")

Now when you start R, you can load and work with just the subset to save
space.

load("myMalesWQ.RData")

summary(myMalesWQ)

9.7 Example Programs for Selecting Variables
and Observations

9.7.1 Stata Program for Selecting Variables and Observations

* Filename: SelectingVarsAndObs.do

use c:\myRfolder\mydata, clear
display
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* ---Equivalent to the Subset Function---
list workshop q* if gender=="m"
preserve
keep if gender=="m"
keep workshop q*
save c:\myRfolder\mymalesWQ
list
summ

* ---Logic for Obs, Names for Vars---
list
gen id = 0
replace id=_n+4
order id workshop q*
save c:\myRfolder\mymaleWQ, replace
list
restore
list
use c:\myRfolder\mymalesWQ, clear
list

* ---Names for Both---
list
gen id = 0
replace id=_n+4
order id workshop q*
list
restore
list workshop q*

* ---Numeric Indexes for Both---
di gender[1] // display value first observation of gender
di q1[1] + q1[4] // sum of 1st and 4th observations of q1
di q1[2] * q2[2] // product of 2nd obs of q1 and q2

* ---Saving and Loading Subsets---
use c:\myRfolder\mymalesWQ, clear
keep workshop q*
save, replace
list

9.7.2 R Program for Selecting Variables and Observations

# Filename: SelectingVarsAndObs.R
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setwd("/myRfolder")
load(file="mydata.RData")
attach(mydata)
print(mydata)

#---The subset Function---

print(
subset(mydata,
subset=gender=="m",
select=c(workshop, q1:q4) )

)

myMalesWQ <- subset(mydata,
subset=gender=="m",
select=c(workshop, q1:q4)

)

print(myMalesWQ)
summary(myMalesWQ)

#---Logic for Obs, Names for Vars---

print(
mydata[ which(gender=="m") ,

c("workshop","q1","q2","q3","q4") ]
)

myMales <- which(gender=="m")
myVars <- c("workshop","q1","q2","q3","q4")

print( mydata[ myMales, myVars] )
print( mydata[ myMales, ] )
print( mydata[ , myVars] )

#---Names for Both---

print( mydata[
c("5","6","7","8"),
c("workshop","q1","q2","q3","q4")

] )

myMales <- c("5","6","7","8")
myVars <- c("workshop","q1","q2","q3","q4")
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print( mydata[ myMales, myVars] )
print( mydata[ myMales, ] )
print( mydata[ , myVars] )

#---Numeric Indexes for Both---

print( mydata[ c(5,6,7,8), c(1,3,4,5,6) ] )
print( mydata[ 5:8, c(1,3:6) ] )

myMales <- c(5,6,7,8)
myVars <- c(1,3:6)

print( mydata[ myMales, myVars] )
print( mydata[ myMales, ] )
print( mydata[ , myVars] )

#---Logic for Both---

summary(
mydata[ which(gender=="m"),

names(mydata) %in%
c("workshop","q1","q2","q3","q4") ]

)

# Switching to names for vars for comparison
summary(
mydata[ which(gender=="m") ,

c("workshop","q1","q2","q3","q4") ]
)

myMales <- which(gender=="m")

myVars <- names(mydata) %in%
c("workshop","q1","q2","q3","q4")

print( mydata[ myMales, myVars] )

print( mydata[ myMales, ] )

print( mydata[ , myVars] )
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#---Saving and Loading Subsets---

myMalesWQ <- subset(mydata,
subset=gender=="m",
select=c(workshop,q1:q4)

)

save(mydata, myMalesWQ, file="myBoth.RData")
load("myBoth.RData")

save(myMalesWQ, file="myMalesWQ.RData")
load("myMalesWQ.RData")

print(myMalesWQ)
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Data Management

There is an old rule of thumb that says 80% of your data analysis time is
spent transforming, reshaping, merging, and otherwise managing your data.
Stata has a reputation of being more flexible than R for data management.
However, as you will see in this chapter, R can do everything that Stata can
do on these important tasks.

10.1 Transforming Variables

Unlike Stata, R has no separation of phases for data modification and analysis.
Like Stata, anything that you have read into or created in your R workspace
you can modify at any time.

R performs transformations such as adding or subtracting variables on the
whole variable at once, as does Stata. It calls that vector arithmetic. R has
loops, but you do not need them for this type of manipulation. R can nest one
function call within another within any other. This applies to transformations
as well. For example, taking the logarithm of our q4 variable and then getting
summary statistics on it, you have a choice of a two-step process like

mydata$q4Log <- log(mydata$q4)
summary( mydata$q4Log )

or you could simply nest the log function within the summary function:

summary( log(mydata$q4) )

If you planned to do several things with the transformed variable, saving it
under a new name would lead to less typing and quicker execution. Table 10.1
shows basic transformations in both packages. In Chapter 7, “Selecting Vari-
ables,” we chose variables using various methods: by index, by column name,
by logical vector, using the style mydata$myvar, by using simply the variable
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Table 10.1. Mathematical operators in Stata and R.

R Stata

Addition x+y x+y

Antilog, base 10 10^x 10^x

Antilog, natural exp(x) exp(x)

Division x/y x/y

Exponentiation x^2 x^2

Logarithm, base 10 log10(x) log10(x)

Logarithm, natural log(x) log(x)

or ln(x)

Multiplication x*y x*y

Round off round(x) round(x)

Square root sqrt(x) sqrt(x)

Subtraction x-y x-y

name after you have attached a data frame, and using the subset or with
functions.

Here are several examples that perform the same transformation using
different variable selection approaches. The within function is a variation of
the with function that has some advantages for variable creation that are
beyond our scope. We have seen that R has a mean function, but we will
calculate the mean the long way just for demonstration purposes.

mydata$meanQ <- (mydata$q1 + mydata$q2
+ mydata$q3 + mydata$q4)/4

mydata[,"meanQ"] <- (mydata[ ,"q1"] + mydata[ ,"q2"]
+ mydata[ ,"q3"] + mydata[ ,"q4"] )/4

within( mydata,
meanQ <- (q1 + q2 + q3 + q4)/4

)

Another way to use the shorter names is with the transform function. It
is similar to attaching a data frame, performing as many transformations as
you like using short variable names, and then detaching the data (we do that
example next). It looks like

mydata <- transform(mydata, meanQ=(q1+q2+q3+q4)/4 )

It may seem strange to use the “=” now in an equation instead of “<-,”
but in this form, meanQ is a named argument, and those are always specified
using “=.” If you have many transformations, it is easier to read them on
separate lines:

mydata <- transform( mydata,
score1=(q1+q2)/2,
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score2=(q3+q4)/2
)

The transform function reads the data before it begins, so if you want to
continue to transform variables you just created, you must do it in a second
call to that function. For example, to get the means of score1 and score2, you
cannot do the following:

mydata <- transform( mydata,
score1=(q1+q2)/2,
score2=(q3+q4)/2,
meanscore=score1+score2/2 #does not work!

)

It will not know what score1 and score2 are for the creation of meanscore.
You can could do that in two steps:

mydata <- transform( mydata,
score1=(q1+q2)/2,
score2=(q3+q4)/2

)
mydata <- transform( mydata,
meanscore=score1+score2/2 #this works.

)

You can create a new variable using the index method too, but it requires
a bit of extra work. Let us load the data set again since we already have a
variable named meanQ in the current one.

load(file="mydata.RData")

Now we will add a variable at index position 7 (we currently have six
variables). Using the index approach, it is easier to initialize a new variable
by binding a new variable to mydata. Otherwise, R will automatically give
it a column name of V7 that we would want to rename later. We used the
column bind function, cbind, to create mymatrix earlier. Here we will use it
to name the new variable, meanQ, initialize it to zero, and then bind it to
mydata.

mydata <- data.frame( cbind( mydata, meanQ=0.) )

Now we can add the values to column 7.

mydata[7] <- (mydata$q1 + mydata$q2 +
mydata$q3 + mydata$q4)/4

Let us examine what happens when you create variables using the attach
function. WARNING! The attach function is hazardous for variable cre-
ation! You can think of the attach function as creating a temporary copy
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of the data frame, so changing that is worthless. You can use the attach
method to simplify naming variables only on the right side of the equa-
tion. This is a safe example, because the variable being created uses the long
dataframe$varname style:

attach(mydata)

mydata$meanQ <- (q1+q2+q3+q4)/4

detach(mydata)

If you were to modify a variable in your data frame, you would have to re-
attach it before you would see it. In the following example, we attach mydata
and look at q1:

> attach(mydata)

> q1

[1] 1 2 2 3 4 5 5 4

So we see what q1 looks like. Next, we will see what it looks like squared and
then write it to mydata$q1 (choosing a new name would be wiser but would
not make this point clear). By specifying the full name mydata$q1, we know
R will write it to the original data frame, not the temporary working copy:

> mydata$q1^2

[1] 1 4 4 9 16 25 25 16

> mydata$q1 <- q1^2

However, what does the simple name of q1 show us? The unmodified tem-
porary version!

> q1
[1] 1 2 2 3 4 5 5 4

If we attach the file again, it will essentially make a new temporary copy and
q1 finally shows that we did indeed square it:

> attach(mydata)

The following object(s) are masked from mydata (position 3):
gender q1 q2 q3 q4 workshop

> q1

[1] 1 4 4 9 16 25 25 16
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The message warning about masked objects is telling you that there were
other objects with those names that are now not accessible. Those are just the
ones we attached earlier, so that is fine. We could have avoided this message
by detaching mydata before attaching it a second time. The only problem
that presents us now is a bit of wasted workspace.

Just like Stata, R does all its of calculations in the computer’s main mem-
ory. You can use them immediately, but they will exist only in your current
session unless you save your workspace. We recommend using either the save
or the save.image function to write your work to a file:

setwd("/myRfolder")
save.image("myWorkspace.RData")

See Chapter 13, “Managing Your Files and Workspace” for more ways to
save new variables.

10.1.1 Example Programs for Transforming Variables

Stata Program for Transforming Variables

* Filename: Transform.do

use c:\myRfolder\mydata, clear
gen totalq = q1+q2+q3+q4
gen logtotalq = log10(totalq)
gen mean1 = totalq/4
egen mean2 = mean(q1-q4)
save c:\myRfolder\mydataT

R Program for Transforming Variables

# Filename: Transform.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata

#Transformation in the middle of another function.
summary( log(mydata$q4) )

#Creating meanQ with dollar notation.
mydata$meanQ <- (mydata$q1 + mydata$q2

+ mydata$q3 + mydata$q4)/4
mydata
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# Creating meanQ using attach.
attach(mydata)
mydata$meanQ <- (q1+q2+q3+q4)/4
detach(mydata)
mydata

# Creating meanQ using transform.
mydata <- transform(mydata,
meanQ=(q1+q2+q3+q4)/4 )

mydata

# Creating two variables using transform.
mydata <- transform( mydata,
score1=(q1+q2)/2,
score2=(q3+q4)/2 )

mydata

# Creating meanQ using index notation on the left.
load(file="mydata.RData")
mydata <- data.frame( cbind( mydata, meanQ=0.) )
mydata[7] <- (mydata$q1 + mydata$q2 +

mydata$q3 + mydata$q4)/4
mydata

save.image(file="mydataT.RData")

10.2 Functions or Commands? The apply

Function Decides

The last section described data transformations but said little about statistical
functions. Stata has two independent ways to calculate statistics: functions
and commands. Statistics may also be calculated using Mata, Stata’s matrix
language facility. In general, Stata functions and commands work as follows:
Statistical functions work within each observation to calculate a statistic like
the mean of our q variables for each observation. Statistical commands work
within a variable to calculate statistics like the mean of our q4 variable across
all observations.

R, on the other hand, has only one way to calculate: functions. What
determines if the function is working on variables or observations is how you
apply it!

In the previous subsection, we created a mean variable using

mydata$meanQ <- (mydata$q1 + mydata$q2
mydata$q3 + mydata$q4) / 4
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This approach gets tedious with long lists of variables. It also has a problem
with missing values. The meanQ variable will be missing if any of the variables
has a missing value. The mean function solves that problem.

10.2.1 Applying the mean Function

We have previously seen that R has both a mean function and a summary
function. For numeric objects, the mean function returns a single value, where-
ase the summary function returns the minimum, first quartile, median, mean,
third quartile, and maximum. We could use either of these functions to create
a meanQ variable. However, the mean function returns only the value we need,
so it is better for this purpose.

Let us start examining our options by first putting our q variables into a
matrix. Simply selecting the variables with the command below will not work,
because even though variables 3 through 6 are all numeric, it will maintain
its form as a data frame.

myQmatrix <- mydata[ ,3:6] #Not a matrix!

The proper way to convert the data is with the as.matrix function:

> myQmatrix <- as.matrix( mydata[ ,3:6] )

> myQmatrix

q1 q2 q3 q4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

Let us review what happens if we use the mean function on myQmatrix:

> mean( myQmatrix )
[1] NA

The result is NA, or missing, because the matrix contains an NA value. The
default method of dealing with missing values in R is to set the resulting value
to missing. To remove missing values, most basic statistical functions have the
na.rm argument. The value is FALSE by default, so we will set it to TRUE
to get our grand mean:

> mean( myQmatrix, na.rm=TRUE )
[1] 3.322581
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This is an interesting ability, but it is not that useful in our case. What
is of much more interest is the mean of each variable, as a Stata command
would do, or the mean of each observation, as a Stata function would do. We
can do either by using the apply function. Let us start by getting the means
of the variables:

> apply(myQmatrix, 2, mean, na.rm=TRUE)

q1 q2 q3 q4
3.250000 2.750000 4.142857 3.250000

The apply function call above has three arguments and passes a fourth to
the mean function.

1. The name of the matrix (or array) you wish to analyze.
2. The margin you want to apply the function over, with 1 representing rows

and 2 representing columns. This is easy to remember since R uses the
index order of [rows,columns], so the margins values are [1,2] respectively.

3. The function you want to apply to each row or column. In our case, this
is the mean function.

4. The apply function passes any other arguments on to the function you are
applying. In our case, na.rm=TRUE is an argument for the mean function,
not the apply function. If you look at the help file for the apply function,
you will see its form is apply(X, MARGIN, FUN, ...). That means it
only has three arguments but will pass other arguments, indicated by the
ellipses “. . . ,” to the function “FUN” ( mean in our case). So na.rm=TRUE
means nothing to the apply function other than something to pass to the
function it is applying.

Applying the mean function to rows is as easy as changing the value 2,
representing columns, to 1, representing rows:

> apply(myQmatrix, 1, mean, na.rm=TRUE)

1 2 3 4 5
2.000000 2.000000 2.750000 2.333333 3.750000

6 7 8
4.750000 4.000000 4.750000

Since means and sums are such popular calculations, there are special-
ized functions to get them: rowMeans, colMeans, rowSums, and colSums. For
example, to get the row means of myQmatrix, we can do

> rowMeans(myQmatrix, na.rm=TRUE)

1 2 3 4 5
2.000000 2.000000 2.750000 2.333333 3.750000



10.2 Functions or Commands? The apply Function Decides 175

6 7 8
4.750000 4.000000 4.750000

To add a new variable to our data frame that is the mean of the q variables,
we could any one of the following forms:

> mydata$meanQ <- apply(myQmatrix, 1, mean, na.rm=TRUE)

> mydata$meanQ <- rowMeans(myQmatrix, na.rm=TRUE)

> mydata <- transform(mydata,
+ meanQ=rowMeans(myQmatrix, na.rm=TRUE)
+ )

> mydata

workshop gender q1 q2 q3 q4 meanQ
1 R f 1 1 5 1 2.000000
2 Stata f 2 1 4 1 2.000000
3 R f 2 2 4 3 2.750000
4 Stata <NA> 3 1 NA 3 2.333333
5 R m 4 5 2 4 3.750000
6 Stata m 5 4 5 5 4.750000
7 R m 5 3 4 4 4.000000
8 Stata m 4 5 5 5 5.750000

Finally, we can apply a function to each vector in a data frame by using
the lapply function. A data frame is a type of list, and the letter “l” in
lapply stands for l ist. The function applies other functions to lists, and it
returns its results in a list. Since it is clear we want to apply the function
to each component in the list, there is no need for a row/column margin
argument.

> lapply(mydata[ ,3:6], mean, na.rm=TRUE)

$q1
[1] 3.25

$q2
[1] 2.75

$q3
[1] 4.1429

$q4
[1] 3.25
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Since the output is in the form of a list, it takes up more space when printed
than the vector output from the apply function. You can also use the sapply
function on a data frame. Its simplified vector output would be much more
compact. The “s” in sapply means it simplifies its output whenever possible
to vector, matrix, or array form. Both the lapply and sapply functions can
apply functions that return more than one value, because lists and matrices or
arrays can store much more information than the vectors to which the apply
function is restricted.

> sapply(mydata[ ,3:6], mean, na.rm=TRUE)

q1 q2 q3 q4
3.250000 2.750000 4.142857 3.250000

Since the result is a vector, it is very easy to get the mean of the means:

> mean(
+ sapply(mydata[ ,3:6], mean, na.rm=TRUE)
+ )

[1] 3.3482

Other statistical functions that work very similarly are sd for standard
deviation, var for variance, and median. The length function is similar to
the Stata length function but different enough to deserve its own section
(below).

10.2.2 Finding N or NVALID

In Stata saying, egen varok = rownonmiss(q1 q2 q3 q4), would count the
valid values of those variables for each observation. Running descriptive sta-
tistical procedures would give you the number of valid observations for each
variable. R has several variations on this theme. First, let us look at the
length function.

> length(mydata[ ,"q3"] )

[1] 8

The variable q3 has seven valid values and one missing value. The length
function is telling us the number of total responses. Another approach is to
ask for values that are not missing. The “!” sign means “not,” so let us try
the following:

> !is.na( mydata[ ,"q3"] )

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
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That identified them logically. Since statistical functions will interpret TRUE
as 1 and FALSE as 0, summing them will give us the number of valid values.

> sum( !is.na( mydata[ ,"q3"] ) )

[1] 7

Jim Lemon and Philippe Grosjean’s prettyR package has a function that
does that very calculation. Let us load that package from our library and
apply the function to our data frame using sapply.

> library("prettyR")

> sapply(mydata, valid.n)

workshop gender q1 q2 q3 q4
8 7 8 8 7 8

That is the kind of output we would get from descriptive statistics procedures
in Stata. In Chapter17, “Statistics” we will see functions that provide that
information and much more, like means and standard deviations.

What about applying it across rows, like the Stata rownonmiss function?
Let us create a myQn variable that contains the number of valid responses in
q1 through q4. First, we will pull those variables out into a matrix. That will
let us use the apply function to the rows.

> myMatrix <- as.matrix( mydata[ ,3:6] )

> myMatrix

q1 q2 q3 q4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

Now we use the apply function with the margin argument set to 1, which
asks it to go across rows.

> apply(myMatrix, 1, valid.n)

1 2 3 4 5 6 7 8
4 4 4 3 4 4 4 4
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So we see that all of the observations have four valid values except for the
fourth. Now let us do that again, but this time save it in our data frame as
variable myQn.

> mydata$myQn <- apply(myMatrix, 1, valid.n)

> mydata

workshop gender q1 q2 q3 q4 myQn
1 1 f 1 1 5 1 4
2 2 f 2 1 4 1 4
3 1 f 2 2 4 3 4
4 2 <NA> 3 1 NA 3 3
5 1 m 4 5 2 4 4
6 2 m 5 4 5 5 4
7 1 m 5 3 4 4 4
8 2 m 4 5 5 5 4

Another form of the apply function is tapply. It exists to create tables,
by applying a function repeatedly to groups in the data. For details, see the
Section 10.11, “Creating Collapsed or Aggregated Data Sets.”

Finally, there is the mapply function, which is a multivariate version of
sapply. See help(mapply) for details.

The functions we have examined in this section are very basic. Their sparse
output is similar to Stata functions. For R functions that act more like Stata
commands, see Chapter 17, Statistics. Still, R does not differentiate one type
of function from another as Stata does for its functions and commands.

10.2.3 Example Programs for Applying Statistical Functions

Stata Program for Applying Statistical Functions

* Filename: FunctionsCommands.do

use c:\myRfolder\mydata, clear
preserve

* Some statistical functions
egen mymean = rowmean(q1-q4)
egen mysum = rowtotal(q1-q4)
gen myn = mysum/mymean
restore

* A statistical command
summ



10.2 Functions or Commands? The apply Function Decides 179

R Program for Applying Statistical Functions

# Filename: FunctionsCommands.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata
attach(mydata)

# Create myQmatrix.
myQmatrix <- as.matrix( mydata[ ,3:6] )
myQmatrix
# Get mean of whole matrix.
mean( myQmatrix )
mean( myQmatrix,na.rm=TRUE )

# Get mean of matrix columns
apply(myQmatrix,2,mean,na.rm=TRUE)

# Get mean of matrix rows.
apply(myQmatrix,1,mean,na.rm=TRUE)
rowMeans(myQmatrix,na.rm=TRUE)

# Add row means to mydata.
mydata$meanQ <- apply(myQmatrix, 1, mean, na.rm=TRUE)
mydata$meanQ <- rowMeans(myQmatrix,na.rm=TRUE)
mydata <- transform(mydata,
meanQ=rowMeans(myQmatrix, na.rm=TRUE)

mydata

# Means of data frames & their vectors.
mean(mydata, na.rm=TRUE)
lapply(mydata[ ,3:6], mean, na.rm=TRUE)
sapply(mydata[ ,3:6], mean, na.rm=TRUE)
mean(
sapply(mydata[ ,3:6], mean, na.rm=TRUE)

)

# Length of data frames & their vectors.
length(mydata[ ,"q3"] )
is.na( mydata[ ,"q3"] )
!is.na( mydata[ ,"q3"] )
sum( !is.na( mydata[ ,"q3"] ) )
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# Like the Stata count from stat procedures.
library("prettyR")
sapply(mydata, valid.n)

# Like the Stata count function.
apply(myMatrix, 1, valid.n)
mydata$myQn <- apply(myMatrix, 1, valid.n)
mydata

10.3 Conditional Transformations

Conditional transformations apply different formulas to various groups in your
data. For example, the formulas for recommended daily allowances of vitamins
differ for males and females. The ifelse function does conditional transfor-
mations in a way that is similar to the Stata approach. The general form of
the function is

ifelse(logic, true, false)

where “logic” is a logical condition to test, “true” is the value to return when
the logic is true, and “false” is the value to return when the logic is false. For
example, to create a variable that has a value of 1 for people who strongly
agree with question 4 on our survey, we could use

> mydata$q4Sagree <- ifelse( q4 == 5, 1, 0 )

> mydata$q4Sagree

[1] 0 0 0 0 0 1 0 1

This is such a simple outcome that we can also do this using

mydata$q4Sagree <- as.numeric( q4 == 5 )

However, the latter approach only allows the outcomes of 1 and 0, whereas
the former version allows for any value. The statement q4==5 will result in a
vector of logical TRUE/FALSE values. The as.numeric function converts it
into zeros and ones.

R has some slightly different symbols and rules for logical comparisons.
The table of logical operators, Table 10.2, shows the symbols and some of the
rules used by each package.

If we want a variable to indicate when people agree with question 4, (i.e.,
they responded with agree or strongly agree), we can use

> mydata$q4agree <- ifelse( q4 >= 4, 1,0)

> mydata$q4agree

[1] 0 0 0 0 1 1 1 1
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Table 10.2. Logical operators in Stata and R.

R Stata

Equals == ==

Less than < <

Greater than > >

Less than or equal <= <=

Greater than or equal >= >=

Not equal != ~= or !=

And & &

Or | |

0<=x<=1 (x >= 0) & (x<=1) 0<=x<=1

Missing value size Missing values have no
size

Missing values are
greater than all numbers
in logical comparisons

Logic for missing values x=NA can never be true.
Use is.na(x) instead.

x=. can be true

The logical condition can be as complicated as you like. The following is
one that creates a score of 1 when people took workshop 1 (abbreviated ws1)
and agreed that it was good:

> mydata$ws1agree <- ifelse( workshop == 1 & q4 >=4 , 1,0)

> mydata$ws1agree

[1] 0 0 0 0 1 0 1 0

We can fill in equations that will supply values under the two conditions.
The following equations for males and females are a bit silly, but they make the
point obvious. You might think that if gender were missing, the gender=="f"
condition would be false and the second equation would apply. However, in
this circumstance, R, like Stata, sets the result to missing.

> mydata$score <- ifelse( gender=="f",(2*q1)+q2,(3*q1)+q2 )

The following is our resulting data frame:

> mydata

workshop gender q1 q2 q3 q4 q4Sagree q4agree ws1agree score
1 1 f 1 1 5 1 0 0 0 3
2 2 f 2 1 4 1 0 0 0 5
3 1 f 2 2 4 3 0 0 0 6
4 2 <NA> 3 1 NA 3 0 0 0 NA
5 1 m 4 5 2 4 0 1 1 17
6 2 m 5 4 5 5 1 1 0 19
7 1 m 5 3 4 4 0 1 1 18
8 2 m 4 5 5 5 1 1 0 17
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10.3.1 Example Programs for Conditional Transformations

Stata Program for Conditional Transformations

* Filename: TransformIF.do

use c:\myRfolder\mydata, clear
preserve
if q4 == 5 {
gen x1=1
}
else {
gen x1=0
}
if q4>=4 {
gen x2=1
}
else {
gen x2=0
}
if workshop == 1 & q4>=5 {
gen x3=1
}
else {
gen x3=0
}
if gender=="f" {
gen scoreA = 2*q1+q2
}
else {
gen scoreA = 3*q1+q2
}
if workshop==1 & q4>5 {
gen scoreB = 2*q1+q2
}
else {
gen scoreB = 3*q1+q2
}
restore

R Program for Conditional Transformations

# Filename: TransformIF.R

setwd("/myRfolder")
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load(file="mydata.RData")
mydata
attach(mydata)

#Create a series of dichotomous 0/1 variables
# The new variable q4SAgree will be 1 if q4 equals 5,
# (Strongly agree) otherwise zero.
mydata$q4Sagree <- ifelse( q4 == 5, 1,0)
mydata$q4Sagree

# This does the same as above.
mydata$q4Sagree <- as.numeric( q4 == 5 )
mydata$q4Sagree

# Create a score for people who agree with q4.
mydata$q4agree <- ifelse( q4 >= 4, 1,0)
mydata$q4agree

# Find the people only in workshop1 agree to item 5.
mydata$ws1agree <- ifelse( workshop == 1 & q4 >=4 , 1,0)
mydata$ws1agree

# Use equations to calculate values.
mydata$score <- ifelse( gender=="f",(2*q1)+q2,(3*q1)+q2 )
mydata

10.4 Multiple Conditional Transformations

Conditional transformations apply different formulas to different subsets of
your data. If you have only a single formula to apply to each group, read
Section 10.3, “Conditional Transformations.” Like Stata, R uses the same
approach for single conditional transformations as it does for multiple con-
ditional transformations. It does, however, let us look at some interesting
variations in R.

The simplest approach is to use the ifelse function a few times. Here
we create two scores, cleverly named score1 and score2, which are calculated
differently for the males and the females:

mydata$score1 <- ifelse( gender=="f",(2*q1)+q2,(20*q1)+q2 )
mydata$score2 <- ifelse( gender=="f",(3*q1)+q2,(30*q1)+q2 )

As earlier, the calls to the ifelse functions have three arguments:

1. The gender=="f" argument provides the logical condition to test.
2. The first formula applies to the TRUE condition, for the females.
3. The second formula applies to the FALSE condition, for the males.
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We can do the same thing using the index approach, but it is a bit trickier.
First, let us add the new score names to our data frame so that we can refer
to the columns by name:

> mydata <- data.frame( mydata, score1=NA, score2=NA )

> mydata

workshop gender q1 q2 q3 q4 score1 score2
1 R f 1 1 5 1 NA NA
2 Stata f 2 1 4 1 NA NA
3 R f 2 2 4 3 NA NA
4 Stata <NA> 3 1 NA 3 NA NA
5 R m 4 5 2 4 NA NA
6 Stata m 5 4 5 5 NA NA
7 R m 5 3 4 4 NA NA
8 Stata m 4 5 5 5 NA NA

This initializes the scores to zero. We could also have initialized them to
missing by changing “score1=0, score2=0”, to “score1=NA, score2=NA”.

Next, we want to differentiate between the genders. We can use the
form gender=="f", but we do not want to use it directly as indexes to
our data frame because gender has a missing value. What would R do with
mydata[NA, ]? Luckily, the which function only cares about TRUE values,
so we will use that to locate the observations we want:

> gals <- which( gender=="f" )

> gals

[1] 1 2 3

> guys <- which( gender=="m" )

> guys

[1] 5 6 7 8

We can now use the gals and guys variables (American slang for women and
men) to make the actual formula with the needed indexes much
shorter:

> mydata[gals,"score1"] <- 2*q1[gals] + q2[gals]
> mydata[gals,"score2"] <- 3*q1[gals] + q2[gals]
> mydata[guys,"score1"] <- 20*q1[guys] + q2[guys]
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> mydata[guys,"score2"] <- 30*q1[guys] + q2[guys]

> mydata
workshop gender q1 q2 q3 q4 score1 score2

1 1 f 1 1 5 1 3 4
2 2 f 2 1 4 1 5 7
3 1 f 2 2 4 3 6 8
4 2 <NA> 3 1 NA 3 0 0
5 1 m 4 5 2 4 85 125
6 2 m 5 4 5 5 104 154
7 1 m 5 3 4 4 103 153
8 2 m 4 5 5 5 85 125

We can see that this approach worked, but look closely at the index values.
We are selecting observations based on the rows. So where is the required
comma? When we attached the data frame, the variables q1 and q2 became
accessible by their simple component names. In essence, they are vectors now,
albeit temporary ones. Vectors can use index values too, but since they only
have one dimension, they only use one index. If we had not attached the file,
we would have had to write the formulas as

2* mydata[gals, "q1"] + mydata[gals, "q2"]

We no longer need the guys and gals variables, so we can remove them
from our workspace.

rm(guys,gals)

10.4.1 Example Programs for Multiple Conditional
Transformations

Stata Program for Multiple Conditional Transformations

* Filename: TransformIF2.do

use c:\myRfolder\mydata, clear
preserve
if gender=="m" {
gen score1 = (1.1*q1)+q2
gen score2 = (1.2*q1)+q2
}
else if gender=="f" {
gen score1 = (2.1*q1) + q2
gen score2 = (2.2*q1) + q2
}
restore
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R Program for Multiple Conditional Transformations

# Filename: TransformIF2.R

# Read the file into a data frame and print it.
setwd("/myRfolder")
load(file="mydata.RData")
attach(mydata)
mydata

# Using the ifelse approach.
mydata$score1 <-
ifelse( gender=="f",(2*q1)+q2,(20*q1)+q2 )

mydata$score2 <-
ifelse( gender=="f",(3*q1)+q2,(30*q1)+q2 )

mydata

# Using the index approach.
load(file="mydata.RData")

# Create names in data frame.
mydata <- data.frame( mydata, score1=0, score2=0 )
attach(mydata)
mydata

# Find which are males and females.
gals <- which( gender=="f" )
gals
guys <- which( gender=="m" )
guys
mydata[gals,"score1"] <- 2*q1[gals] + q2[gals]
mydata[gals,"score2"] <- 3*q1[gals] + q2[gals]
mydata[guys,"score1"] <- 20*q1[guys] + q2[guys]
mydata[guys,"score2"] <- 30*q1[guys] + q2[guys]
mydata

# Clean up.
rm(guys, gals)

10.5 Missing Values

We have discussed missing values briefly in several previous chapters. Let us
bring those various topics together to review and expand on. R represents
missing values with NA, for Not Available. The letters NA are also an object
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in R that you can use to assign missing values. In Stata, numeric missing values
are indicated with a period, while a string missing value is simply displayed
in double quotes, "". Stata also has extended missing numeric values ranging
from .a, .b, through .z in ascending order. Relational operators such as these
missing value indicators are stored as very high numeric values, (i.e., higher
than the range of real numbers).

When importing numeric data, R reads blanks as missing (except when
blanks are delimiters). R reads the string NA as missing for both numeric
and character variables. When importing a text file, Stata recognizes a
period as a missing value for numeric variables. R will, instead, read the
whole variable as a character vector! If you have control of the source of the
data, it is best not to write them out that way. If not, you can use a text
editor to replace the periods with NA, but you have to be careful to do so
in a way that does not also replace valid decimal places. Some editors make
that easier than others. A safer method would be to fix it in R, which we do
below.

When other values represent missing, you will, of course, have to tell R
about them. The read.table function provides an argument, na.strings,
which allows you to provide a set of missing values. However, it applies that
value to every variable, so its usefulness is limited. The following is a data set
that we will use to demonstrate the various ways to set missing values. The
data frame we use, mydataNA, is the same as mydata in our other examples,
except that it uses several missing value codes:

> mydataNA <- read.table("mydataNA.txt")

> mydataNA

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 99
3 . f 9 2 4 3
4 2 . 3 9 99 3
5 1 m 4 5 2 4
6 . m 9 9 5 5
7 1 . 5 3 99 4
8 2 m 4 5 5 99

In the data we see that workshop and gender have periods as missing val-
ues, q1 and q2 have 9’s, and q3 and q4 have 99’s. Do not be fooled by the
periods in workshop and gender; they are not already set to missing! If so,
they would have appeared as NA instead. R has seen the periods and has
converted both variables to character (string) variables. Since read.table
converts string variables to factors unless the as.is=TRUE argument is added,
both workshop and gender are now factors. We can set all three codes to miss-
ing by simply adding the na.strings argument to the read.table function:
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> mydataNA <- read.table("mydataNA.txt",
+ na.strings=c(".", "9", "99") )

> mydataNA

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 NA
3 NA f NA 2 4 3
4 2 <NA> 3 NA NA 3
5 1 m 4 5 2 4
6 NA m NA NA 5 5
7 1 <NA> 5 3 NA 4
8 2 m 4 5 5 NA

If the data did not come from a text file, we could still easily scan every
variable for 9 and 99 to replace with missing values using

mydataNA[mydataNA==9 | mydataNA==99] <- NA

Both of the above approaches treat all variables alike. If any variables, like
age, had valid values of 99, it would set them to missing too! For how to handle
that situation, see Section 10.5.3, “When “99” Has Meaning.” Of course “.”
never has meaning by itself, so getting rid of them all with na.strings="."
is usually fine.

10.5.1 Substituting Means for Missing Values

There are several methods for replacing missing values with estimates of what
they would have been. These methods include simple mean substitution, re-
gression, and,—the gold standard—multiple imputation. We will just do mean
substitution.

Any logical comparison on NAs results in an NA outcome, so q1==NA will
never be TRUE, even when q1 is indeed NA. Therefore, if you wanted to
substitute another value such as the mean, you would need to use the is.na
function. Its output is TRUE when a value is NA. The following shows how
you can use it to substitute missing values.

attach(mydataNA)

mydataNA$q1[ is.na(q1) ] <- mean( q1, na.rm=TRUE )

On the left-hand side, the statement above selects mydataNA$q1 as a vec-
tor and then finds its missing elements with is.na(mydata$q1). On the right,
it calculates the mean of q1 across all observations to assign to those NA val-
ues on the left. We are attaching mydata so we can use short variables names
to simplify the code, but we are careful to use the long form, mydataNA$q1,
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where we write the result. This ensures that the result will be stored within
the data frame, mydata, rather than in the attached copy. See Section 13.3,
“Attaching Data Frames” for details.

10.5.2 Finding Complete Observations

You can omit all observations that contain any missing values with the
na.omit function. The new data frame, myNoMissing, contains no missing
values for any variables.

> myNoMissing <- na.omit(mydataNA)

> myNoMissing

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
5 1 m 4 5 2 4

Yikes! We do not have much data left. Thank goodness this is not our
dissertation data. The complete.cases function returns a value of TRUE
when a case is complete —that is, when an observation has no missing
values:

> complete.cases(mydataNA)

[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

Therefore, we can use this to get the cases that have no missing values (the
same result as the na.omit function) by doing

> myNoMissing <- mydataNA[ complete.cases(mydataNA), ]

> myNoMissing

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
5 1 m 4 5 2 4

Since we already saw na.omit do that, it is of more interest to do the
reverse. If we want to see which observations contain any missing values, we
can use “!” for NOT:

> myIncomplete <- mydataNA[ !complete.cases(mydataNA), ]

> myIncomplete
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workshop gender q1 q2 q3 q4
2 2 f 2 1 4 NA
3 NA f NA 2 4 3
4 2 <NA> 3 NA NA 3
6 NA m NA NA 5 5
7 1 <NA> 5 3 NA 4
8 2 m 4 5 5 NA

10.5.3 When “99” Has Meaning

Occasionally, data sets use different missing values for different sets of vari-
ables. In that case, the methods described earlier would not work because
they assume every missing value code applies to all variables.

Variables often have several missing value codes to represent things like,
“not applicable,” “do not know,” and “refused to answer.” Early statistics
programs used to read blanks as zeros, so researchers got used to filling their
fields with as many 9’s as would fit. For example, a two-column variable such
as years of education would use 99, to represent missing. The data set might
also have a variable like age, for which 99 is a valid value. Age, requiring
three columns, would have a missing value of 999. Data archives like the
Interuniversity Consortium of Political and Social Research (ICPSR) have
many data sets coded with multiple values for missing.

We will use conditional transformations, covered earlier in this chapter, to
address this problem. Let us read the file again and put NAs in for the values
9 and 99 independently:

> mydataNA <- read.table("mydataNA.txt", na.strings=".")

> attach(mydataNA)

> mydataNA$q1[q1==9 ] <- NA
> mydataNA$q2[q2==9 ] <- NA
> mydataNA$q3[q3==99] <- NA
> mydataNA$q4[q4==99] <- NA

> mydataNA

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 NA
3 NA f NA 2 4 3
4 2 <NA> 3 NA NA 3
5 1 m 4 5 2 4



10.5 Missing Values 191

6 NA m NA NA 5 5
7 1 <NA> 5 3 NA 4
8 2 m 4 5 5 NA

That approach can handle any values we might have and assign NAs only
where appropriate, but it would be quite tedious with hundreds of variables.
We have used the apply family of functions to execute the same function
across sets of variables. We can use that method here. First, we need to create
some functions, letting x represent each variable. We can do this using the
index method:

my9isNA <- function(x) { x[x==9 ] <- NA; x}
my99isNA <- function(x) { x[x==99 ] <- NA; x}

or we could use the ifelse function:

my9isNA <- function(x) { ifelse( x==9, NA, x) }
my99isNA <- function(x) { ifelse( x==99, NA, x) }

Either of these approaches create functions that will return a value of NA
when x==9 or x==99 and will return a value of just x if they are false. If
you leave off that last “...x}” above, what will the functions return when the
conditions are false? That would be undefined, so every value would become
NA!

Now we need to apply each function where it is appropriate, using the
lapply function.

> mydataNA <- read.table("mydataNA.txt", na.strings=".")

> attach(mydataNA)

> mydataNA[3:4] <- lapply( mydataNA[3:4], my9isNA )
> mydataNA[5:6] <- lapply( mydataNA[5:6], my99isNA )

> mydataNA

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 NA
3 NA f NA 2 4 3
4 2 <NA> 3 NA NA 3
5 1 m 4 5 2 4
6 NA m NA NA 5 5
7 1 <NA> 5 3 NA 4
8 2 m 4 5 5 NA
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The sapply function could have done this too. With our small data frame,
this has not saved us much effort. However, to handle thousands of variables,
all we would need to change are the above indices from 3:4 and 5:6 to perhaps
3:4000 and 4001:6000.

10.5.4 Example Programs to Assign Missing Values

Stata Program to Assign Missing Values

* Filename: MissingValues.do

use c:\myRfolder\mydata, clear
preserve
replace q1=. if q1==9
replace q2=. if q2==9
replace q3=. if q3==99
replace q4=. if q4==99

* Same thing but is quicker for lots of vars
restore
forvalues i = 1/2 {
replace q‘i’=. if q‘i’==9
}
forvalues i = 3/4 {
replace q‘i’=. if q‘i’==90
}
restore

R Program to Assign Missing Values

# Filename: MissingValues.R

setwd("/myRfolder")
# Read the data to see what it looks like.

mydataNA <- read.table("mydataNA.txt")
mydataNA

# Now read it so that ".", 9, 99 are
# converted to missing.
mydataNA <- read.table("mydataNA.txt",
na.strings=c(".", "9", "99") )

mydataNA

# Convert 9 and 99 manually



10.5 Missing Values 193

mydataNA <- read.table("mydataNA.txt",
na.strings=".")

mydataNA[mydataNA==9 | mydataNA==99] <- NA
mydataNA
# Substitute the mean for missing values.
mydataNA$q1[is.na(mydataNA$q1)] <-
mean(mydataNA$q1, na.rm=TRUE)

mydataNA

# Eliminate observations with any NAs.
myNoMissing <- na.omit(mydataNA)
myNoMissing

# Test to see if each case is complete.
complete.cases(mydataNA)

# Use that result to select compete cases.
myNoMissing <- mydataNA[ complete.cases(mydataNA), ]
myNoMissing

# Use that result to select incomplete cases.
myIncomplete <- mydataNA[ !complete.cases(mydataNA), ]
myIncomplete

# When "99" Has Meaning...
# Now read it and set missing values
# one variable at a time.
mydataNA <- read.table("mydataNA.txt", na.strings=".")
mydataNA
attach(mydataNA)

# Assign missing values for q variables.
mydataNA$q1[q1==9] <- NA
mydataNA$q2[q2==9] <- NA
mydataNA$q3[q3==99] <- NA
mydataNA$q4[q4==99] <- NA
mydataNA
detach(mydataNA)

# Read file again, this time use functions.
mydataNA <- read.table("mydataNA.txt",na.strings=".")
mydataNA
attach(mydataNA)

#Create a functions that replaces 9, 99 with NAs.
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my9isNA <- function(x) { x[x==9 ] <- NA; x}
my99isNA <- function(x) { x[x==99 ] <- NA; x}

# Now apply our functions to the data frame using lapply.
mydataNA[3:4] <- lapply( mydataNA[3:4], my9isNA )
mydataNA[5:6] <- lapply( mydataNA[5:6], my99isNA )
mydataNA

10.6 Renaming Variables (and Observations)

In Stata, you do not know where variable names are stored or how. You just
know they are in the data set somewhere. Renaming is simply a matter of
matching the new name to the old name with a rename command. In R,
however, both row and column names are stored in attributes—essentially
character vectors—within the data frame. In essence, they are just another
form of variable that you can manipulate.

If you use Microsoft Windows, you can see the names in the data editor,
and changing them there by hand is a very easy way to rename them. The
function call fix(mydata) brings up the data editor. Clicking on the name of
a variable opens a box that enables you to change its name. In Fig. 10.1, we
are in the midst of changing the name of the variable q1 (see the name in the
spreadsheet) to x1.

Closing the Variable Name box, the Data Editor completes your changes.
If you use Macintosh or Linux, the fix function does not work this way.
However, on any operating system, you can use functions to change variable
names. The programming approach to changing names that feels the closest
to Stata is the rename function in Hadley Wickham’s reshape package [53].
To use it, install the package and then load it with the library function.
Then create a character vector whose values are the new names. The names
of the vector elements are the old variable names. This approach makes it
particularly easy to to rename only a subset of your variables. It also feels
very familiar to Stata users since it follows the old-name=new-name style of
their rename command.

> library("reshape")

> myChanges <- c(q1="x1", q2="x2", q3="x3", q4="x4")

> myChanges

q1 q2 q3 q4
"x1" "x2" "x3" "x4"

Now it is very easy to change names with
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Fig. 10.1. Renaming a variable using R’s data editor.

> mydata <- rename(mydata, myChanges)

> mydata

workshop gender x1 x2 x3 x4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

R’s built-in approach to renaming variables is to use the names function.
Simply entering names(mydata) causes R to print out the names vector.

> names(mydata)

[1] "group" "gender" "q1" "q2" "q3" "q4"

You can also assign a character vector of equal length to that function,
which renames the variables. With this approach, you can supply a name for
every variable.
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> names(mydata) <- c("group","gender","x1","x2","x3","x4")

> mydata

group gender x1 x2 x3 x4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...

You can also use subscripting for this type of renaming. Since gender is
the second variable in our data frame, you could change just the name gender
to sex as follows:

names(mydata)[2] <- "sex"

The edit function, described in Section 6.1, “The R Data Editor,” will
generate a character vector of variable names, complete with the c function
and parentheses.

In Fig. 10.2, you can see the command we entered and the window that it
opened, titled names(mydata) – R Editor. We have changed the name of the
variable “gender” to “sex.” When we finish our changes, closing the box will
execute the command.

Fig. 10.2. Renaming variables using the edit function.

10.6.1 Renaming Variables—Advanced Examples

The methods shown above are often sufficient to rename your variables. You
can view the next few sections as either beating the topic to death or as a
wonderful opportunity to extend what you have learned about R into further
examples. I think it is worthwhile because if you read the R-help e-mail sup-
port list, you will see these methods used to rename variables. The approach
used in Section 10.6.4, “Renaming Many Sequentially Numbered Variable
Names,” can be a real time saver.



10.6 Renaming Variables (and Observations) 197

10.6.2 Renaming by Index

Let us extract the names of our variables using the names function.

> mynames <- names(mydata)

> mynames

[1] "group" "gender" "q1" "q2" "q3" "q4"

Now we have a character vector whose values we can change using the R
techniques we have covered elsewhere. We would like to get the index value
of each variable name. Recall that whenever a data frame is created, row
names are added that are sequential numbers by default. So we can use the
data.frame function to number our variable names:

> data.frame(mynames)

mynames
1 group
2 gender
3 q1
4 q2
5 q3
6 q4

We see from the above list that q1 is the third name and q4 is the sixth.
We can now use that information to enter new names directly into this vector
and print the result so that we can see if we had made errors:

> mynames[3] <- "x1"
> mynames[4] <- "x2"
> mynames[5] <- "x3"
> mynames[6] <- "x4"

> mynames

[1] "group" "gender" "x1" "x2" "x3" "x4"

That looks good, so let us place those new names into the names attribute of
our data frame and look at the results:

> names(mydata) <- mynames
> mydata
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group gender x1 x2 x3 x4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...

As you will see in the program below, each time we do another method
of name changes, we need to restore the old names to demonstrate the new
techniques. We can accomplish that by either reloading our original data frame
or by using

names(mydata) <- c("group","gender","q1","q2","q3","q4")

10.6.3 Renaming by Column Name

If you prefer to use variable names instead of index numbers, that is easy to
do. We will make another copy of mynames:

> mynames <- names(mydata)

> mynames

[1] "group" "gender" "q1" "q2" "q3" "q4"

Now we will make the same changes but using a logical match to find where
mynames=="q1" and so on and assigning the new names to those locations.

> mynames[ mynames=="q1" ] <- "x1"
> mynames[ mynames=="q2" ] <- "x2"
> mynames[ mynames=="q3" ] <- "x3"
> mynames[ mynames=="q4" ] <- "x4"

> mynames

[1] "group" "gender" "x1" "x2" "x3" "x4"

Finally, we put the new set mynames into the names attribute of our data
frame, mydata.

> names(mydata) <- mynames

> mydata

group gender x1 x2 x3 x4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...
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You can combine all these steps into one, but we find it very confusing to
read.

names(mydata)[names(mydata)=="q1"] <- "x1"
names(mydata)[names(mydata)=="q2"] <- "x2"
names(mydata)[names(mydata)=="q3"] <- "x3"
names(mydata)[names(mydata)=="q4"] <- "x4"

10.6.4 Renaming Many Sequentially Numbered Variable Names

Our next example works well if you are changing many variable names, like
100 variables named x1, x2,. . . over to similar names like y1, y2,. . . . You occa-
sionally have to make changes like this when you measure many variables at
different times and you need to rename the variables in each data set before
joining them all.

We learned how the paste function can append sequential numbers onto
any string in Section 7.4, “Selecting Variables by Column Name.” We will use
it here to create the new variable names:

> myXs <- paste( "x", 1:4, sep="")

> myXs

[1] "x1" "x2" "x3" "x4"

Now we need to find out where to put the new names. We already know
this of course, but we found that out in the previous example by listing
all of the variables. If we had thousands of variables, that would not be a
very good method. We will use the method we covered previously (and in
more detail) in Section 7.11, “Generating Indexes A to Z from Two Variable
Names”:

> myA <- which( names(mydata)=="q1" )

> myA

[1] 3

> myZ <- which( names(mydata)=="q4" )

> myZ

[1] 6
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Now we know the indexes of the variable names to replace; we can replace
them with the following:

> names(mydata)[myA:myZ] <- myXs

> mydata

group gender x1 x2 x3 x4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
...

10.6.5 Renaming Observations

R has row names that work much the same as variable names, but they apply
to observations. These names must be unique and often come from an ID
variable. When reading a text file using read.table, the row.names argument
allows you to specify an ID variable. See Section 6.2, “Reading Delimited Text
Files” for details.

Row names are stored in a vector called the row names attribute. Therefore,
when renaming rows using a variable, you must select it so that it will pass as
a vector. In the examples below, the first three select a variable named ”id”
as a vector, so they work. The last approach looks almost like the first, but it
selects id as a data frame, which will not fit in the row names attribute. Recall
that leaving out the comma in mydata["id"] makes R select a variable as a
data frame. The moral of the story is that when renaming observations using
index values, keep the comma!

> row.names(mydata) <- mydata[ ,"id"] #This works.

> row.names(mydata) <- mydata$id #This works too.

> row.names(mydata) <- mydata[["id"]] #This does too.

> row.names(mydata) <- mydata["id"] #This does not.

Error in ‘row.names<-.data.frame‘(‘*tmp*‘,
value = list(id = c(1, 2, 3, :
invalid ’rowrow.names’ names length

10.6.6 Example Programs for Renaming Variables

For many of our programming examples, the R programs are longer be-
cause they demonstrate a wider range of functionality. In this case, renaming
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variables is definitely easier in Stata. R does have a greater flexibility in this
area, but it is an ability that only a fanatical programmer could love!

Stata Program for Renaming Variables

* Filename: Rename.do

use c:\myRfolder\mydata, clear
preserve
rename q1 x1
rename q2 x2
rename q3 x3
rename q4 x4

* or
restore
forvalues i = 1/4 {
rename q‘i’ x‘i’
}

R Program for Renaming Variables

# Filename: Rename.R
setwd("/myRfolder")
load(file="mydata.RData")
mydata

# Using the data editor.

fix(mydata)
mydata

# Restore original names for next example.
names(mydata) <- c("group", "gender",
"q1", "q2", "q3", "q4")

# Using the reshape package.

library("reshape")
myChanges <- c(q1="x1",q2="x2",q3="x3",q4="x4")
myChanges

mydata <- rename(mydata, myChanges)
mydata
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# Restore original names for next example.
names(mydata) <- c("group", "gender",
"q1", "q2", "q3", "q4")

# The standard R approach.
names(mydata) <- c("group", "gender",
"x1", "x2", "x3", "x4")

mydata

# Restore original names for next example.
names(mydata) <- c("group", "gender",
"q1", "q2", "q3", "q4")

# Using the edit function.
names(mydata) <- edit( names(mydata) )
mydata

# Restore original names for next example.
names(mydata) <- c ("workshop", "gender",
"q1", "q2", "q3", "q4")

#---Selecting Vaiables by Index Numbers---

mynames <- names(mydata)

# Data.frame adds index numbers to names.
data.frame(mynames)

# Then fill in index numbers in brackets.
mynames[3] <- "q1"
mynames[4] <- "q2"
mynames[5] <- "q3"
mynames[6] <- "q4"

# Finally, replace old names with new.
names(mydata) <- mynames
mydata

# Restore original names for next example.
names(mydata) <- c("group", "gender",
"q1", "q2", "q3", "q4")
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#---Selecting Variables by Name---
# Make a copy to work on.
mynames <- names(mydata)
mynames

# Replace names in copy.
mynames[ mynames=="q1" ] <- "x1"
mynames[ mynames=="q2" ] <- "x2"
mynames[ mynames=="q3" ] <- "x3"
mynames[ mynames=="q4" ] <- "x4"
mynames

# Then replace the old names.
names(mydata) <- mynames
mydata

# Restore original names for next example.
names(mydata) <- c ("group", "gender",
"q1", "q2", "q3", "q4")

#---Same as Above, but Confusing!---

names(mydata)[names(mydata)=="q1"] <- "x1"
names(mydata)[names(mydata)=="q2"] <- "x2"
names(mydata)[names(mydata)=="q3"] <- "x3"
names(mydata)[names(mydata)=="q4"] <- "x4"
print(mydata)

# Restore original names for next example.
names(mydata) <- c("group", "gender",
"q1", "q2", "q3", "q4")

#---Replacing Many Numbered Names---

# Examine names
names(mydata)

# Generate new numbered names.
myXs <- paste( "x", 1:4, sep="")
myXs

# Find out where to put the new names.
myA <- which( names(mydata)=="q1" )
myA
myZ <- which( names(mydata)=="q4" )
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myZ
# Replace names at index locations.
names(mydata)[myA:myZ] <- myXs(mydata)

#remove the unneeded objects.
rm(myXs, myA, myZ)

10.7 Recoding Variables

Recoding is just a simpler way of doing a set of related IF/THEN conditional
transformations. Survey researchers often collapse five-point Likert-scale items
to simpler three-point Disagree/Neutral/Agree scales to summarize results.
This can also help when a cross-tabulation (or similar analysis) with other
variables creates tables that are too sparse to analyze.

Recoding can also reverse the scale of negatively worded items so that
a large numeric value has the same meaning across all items. It is easier to
reverse scales by subtracting each score from 6 as in

mydata$qr1 <- 6-mydata$q1

That results in 6-5=1, 6-4=2, and so on.
There are two important issues to consider when recoding data. First,

collapsing a scale loses information and power. You will lessen your ability to
find significant, and hopefully useful, relationships. Second, recoding nominal
categorical variables like race can be disastrous. For example, inexperienced
researchers often recode race into Caucasian and Other without checking to
see how reasonable that is beforehand. You should do an analysis to see if the
groups you are combining show similar patterns with regard to your dependent
variable of interest. Given how much time that can add to the overall analysis,
it is often far easier to set values to missing. Simply focus your analysis on the
groups for which you have sufficient data rather than combine groups without
justification.

Stata has a specific recode command by that name and offers a “label”
option that allows value labels to follow the recoding.

You can also recode the data with a series of IF/THEN statements. We
show both methods below. For simplicity, we leave the value labels out of
the Stata and R programs. We cover those in Section 11.1, “Value Labels or
Formats (and Measurement Level).”

For recoding continuous variables into categorical, see the cut function in
base R and the cut2 function in Frank Harrell’s Hmisc package. For choosing
optimal cut points with regard to a target variable, see the rpart function in
the rpart package or the tree function in the Hmisc package.

It is wise to avoid modifying your original data, so recoded variables are
typically stored under new names. If you named your original variables q1,
q2,. . . then you might name the recoded ones qr1, qr2,. . . , with ”r” represent-
ing recoded.
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10.7.1 Recoding a Few Variables

We will work with the recode function from John Fox’s car package, which
you will have to install before running this. See Chapter 2, “Installing and
Updating R,” for details. We will apply it below to collapse our five-point
scale down to a three-point one representing just disagree, neutral, and agree.

> library("car")

> mydata$qr1 <- recode(q1, "1=2; 5=4")
> mydata$qr2 <- recode(q2, "1=2; 5=4")
> mydata$qr3 <- recode(q3, "1=2; 5=4")
> mydata$qr4 <- recode(q4, "1=2; 5=4")

> mydata

workshop gender q1 q2 q3 q4 qr1 qr2 qr3 qr4
1 1 f 1 1 5 1 2 2 4 2
2 2 f 2 1 4 1 2 2 4 2
3 1 f 2 2 4 3 2 2 4 3
4 2 <NA> 3 1 NA 3 3 2 NA 3
5 1 m 4 5 2 4 4 4 2 4
6 2 m 5 4 5 5 4 4 4 4
7 1 m 5 3 4 4 4 3 4 4
8 2 m 4 5 5 5 4 4 4 4

The recode function needs only two arguments: the variable you wish to
recode and a string of values in the form “old1=new1; old2=new2;....”

10.7.2 Recoding Many Variables

The above approach worked fine with our tiny data set, but in a more realistic
situation, we would have many variables to recode. So let us scale this example
up. We learned how to rename many variables in Section 10.6.4, so we will
use that knowledge here.

> myQnames <- paste( "q", 1:4, sep="")

> myQnames

[1] "q1" "q2" "q3" "q4"

> myQRnames <- paste( "qr", 1:4, sep="")

> myQRnames

[1] "qr1" "qr2" "qr3" "qr4"
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Now we will use the original names to extract the variables we want to recode
to a separate data frame.

> myQRvars <- mydata[ ,myQnames]
> myQRvars

q1 q2 q3 q4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

We will use our other set of variable names to rename the variables we just
selected.

> names(myQRvars) <- myQRnames

> myQRvars

qr1 qr2 qr3 qr4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

Now we need to create a function that will allow us to apply the recode
function to each of the selected variables. Our function only has one argument,
x, which will represent each of our variables.

myRecoder <- function(x) { recode(x,"1=2;5=4") }

Here is how we can use myRecoder on a single variable. Notice that the
qr1 variable had a 1 for the first observation, which myRecoder made a 2. It
also had values of 5 for the sixth and seventh observations, which became 4s.

> myQRvars$qr1

[1] 1 2 2 3 4 5 5 4
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> myRecoder(myQRvars$qr1)

[1] 2 2 2 3 4 4 4 4

To apply this function to our whole data frame, myQRvars, we can use the
sapply function.

> myQRvars <- sapply( myQRvars, myRecoder)

> myQRvars

qr1 qr2 qr3 qr4
[1,] 2 2 4 2
[2,] 2 2 4 2
[3,] 2 2 4 3
[4,] 3 2 NA 3
[5,] 4 4 2 4
[6,] 4 4 4 4
[7,] 4 3 4 4
[8,] 4 4 4 4

The sapply function has converted our data frame to a matrix, but that is
fine. We will use the cbind function to bind these columns to our original
data frame.

> mydata <- cbind(mydata,myQRvars)

> mydata

workshop gender q1 q2 q3 q4 qr1 qr2 qr3 qr4
1 1 f 1 1 5 1 2 2 4 2
2 2 f 2 1 4 1 2 2 4 2
3 1 f 2 2 4 3 2 2 4 3
4 2 <NA> 3 1 NA 3 3 2 NA 3
5 1 m 4 5 2 4 4 4 2 4
6 2 m 5 4 5 5 4 4 4 4
7 1 m 5 3 4 4 4 3 4 4
8 2 m 4 5 5 5 4 4 4 4

Now we can use either the original variables or their recoded counterparts in
any analysis we choose. In this simple case, it was not necessary to create the
myRecorder function. We could have used the form,

sapply(myQRvars, recode, "1=2;5=4")

However, you can generalize the approach we took to far more situations.
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10.7.3 Example Programs for Recoding Variables

Stata Program for Recoding Variables

* Filename: Recode.do

use c:\myRfolder\mydata, clear
recode q1-q4 (1=2) (5=4)

R Program for Recoding Variables

# Filename: Recode.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata
attach(mydata)

library("car")
mydata$qr1 <- recode(q1, "1=2; 5=4")
mydata$qr2 <- recode(q2, "1=2; 5=4")
mydata$qr3 <- recode(q3, "1=2; 5=4")
mydata$qr4 <- recode(q4, "1=2; 5=4")
mydata

# Do it again, stored in new variable names.
load(file="mydata.RData")
attach(mydata)

# Generate two sets of var names to use.
myQnames <- paste( "q", 1:4, sep="")
myQnames
myQRnames <- paste( "qr", 1:4, sep="")
myQRnames

# Extract the q variables to a separate data frame.
myQRvars <- mydata[ ,myQnames]
myQRvars

# Rename all of the variables with R for Recoded.
names(myQRvars) <- myQRnames
myQRvars

# Create a function to apply the labels to lots of variables.
myRecoder <- function(x) { recode(x,"1=2;5=4") }
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# Here’s how to use the function on one variable.
myQRvars$qr1
myRecoder(myQRvars$qr1)

#Apply it to all of the variables.
myQRvars <- sapply( myQRvars, myRecoder)
myQRvars

# Save it back to mydata if you want.
mydata <- cbind(mydata,myQRvars)
mydata
summary(mydata)

10.8 Keeping and Dropping Variables

In Stata, you use the keep and drop commands to determine which variables
to save in your data set. In R, the main methods to do this within a data
frame are in Chapter 7, “Selecting Variables.” For example, if we want to keep
variables on the left side of our data frame, workshop through q2 (variables 1
through 4), an easy way to do this is with

myleft <- mydata[ ,1:4]

We will strip off the ones on the right side in a future example on merging
data frames.

Another way to drop variables is to assign the NULL object to the variable:

mydata$varname <- NULL

This has the advantage of removing a variable without having to make a
copy of the data frame. That may come in handy with data frames so large
that your workspace will not hold a copy, but it is usually much safer to work
on copies when you can. Mistakes happen! You can apply NULL repeatedly
with the form

myleft <- mydata

myleft$q3 <- myleft$q4 <- NULL

NULL is only used to remove components from data frames and lists. You
cannot use it to drop elements of a vector nor can you use it to remove a
vector by itself from your workspace.

In Section 13.5, “Removing Objects from Your Workspace,” we will discuss
removing objects using the rm function. That function removes only whole
objects; it cannot remove variables from within a data frame:

rm( mydata$q4 ) #This does NOT work.
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10.8.1 Example Programs for Keeping and Dropping Variables

Stata Program for Keeping and Dropping Variables

* Filename: KeepDrop.do

use c:\myRfolder\mydata, clear
keep id workshop gender q1 q2

* Or equivalently;
* drop q3 q4

save c:\myRfolder\myleft, replace

R Program for Keeping and Dropping Variables

# Filename: KeepDrop.R

setwd("/myRfolder")
load(file="mydatda.RData")

# Using variable selection.
myleft <- mydata[ ,1:4]
myleft

# Using NULL.
myleft <- mydata
myleft$q3 <- myleft$q4 <- NULL
myleft

10.9 Stacking/Appending Data Sets

Often we find data with observations divided into two or more sets due to
collection at different times or places. Combining them is an important step
prior to analysis. Stata calls this appending data sets and accomplishes this
with the append command. R, with its row/column orientation calls it binding
rows.

To demonstrate this, let us take our practice data set and split it into
separate ones for females and males. Then we will bind the rows back together.
A split function exists to do this type of task, but it puts the resulting data
frames into a list, so we will use an alternate approach.

First, let us get the females:

> females <- mydata[ which(gender=="f"), ]
> females
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workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3

Now we get the males:

> males <- mydata[ which(gender=="m"), ]
> males

workshop gender q1 q2 q3 q4
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

We can put them right back together by binding their rows with the rbind
function. The “r” in rbind stands for row.

> both <- rbind(females, males)

> both

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

This works fine when the two data frames share the exact same vari-
ables. Often the data frames you will need to bind have a few variables
missing. We will drop variable q2 in the males data frame to create such a
mismatch.

> males$q2 <- NULL
> males

workshop gender q1 q3 q4
5 1 m 4 2 4
6 2 m 5 5 5
7 1 m 5 4 4
8 2 m 4 5 5

Note that variable q2 is indeed gone. Now let us try to put the two data
frames together again.
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> both <- rbind(females, males)

Error in match.names(clabs, names(xi)) :
names do not match previous names

It fails because the rbind function needs both data frames to have the ex-
act same variable names. Luckily, Hadley Wickham’s reshape package has a
function, rbind.fill, that binds whichever variables it finds that match and
then fills in missing values for those that do not. This next example assumes
that you have installed the reshape package. See Chapter 2, “Installing and
Updating R,” for details.

> library("reshape")

> both <- rbind.fill(females, males)

> both

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
5 1 m 4 NA 2 4
6 2 m 5 NA 5 5
7 1 m 5 NA 4 4
8 2 m 4 NA 5 5

We can do the same thing with the built-in rbind function, but we have to
first determine which variables we need to add and then add them manually
with the data.frame function and set them to NA.

> males <- data.frame( males, q2=NA )

> males

workshop gender q1 q3 q4 q2
5 1 m 4 2 4 NA
6 2 m 5 5 5 NA
7 1 m 5 4 4 NA
8 2 m 4 5 5 NA

The males data frame now has a variable q2 again and so we can bind the
two data frames using rbind. The fact that q2 is now on at the end will not
matter. The data frame you list first on the rbind function call will determine
the order of the final data frame. However, if you use index values to refer to
your variables, you need to be aware of the difference!



10.9 Stacking/Appending Data Sets 213

> both <- rbind(females, males)

> both

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
5 1 m 4 NA 2 4
6 2 m 5 NA 5 5
7 1 m 5 NA 4 4
8 2 m 4 NA 5 5

This was an easy way to do it with such a tiny data frame. In situations
that are more realistic, rbind.fill is usually a great time saver.

10.9.1 Example Programs for Stacking/Appending Data Sets

Stata Program for Stacking/Appending Data Sets

* Filename: Append.do

use c:\myRfolder\mydata, clear
preserve

keep if gender=="m"
save c:\myRfolder\mymale
restore

keep if gender=="f"
save c:\myRfolder\myfemale
use c:\myRfolder\mymale, clear

append using c:\myRfolder\myfemale
save c:\myRfolder\both

R Program for Stacking/Appending Data Sets

# Filename: Append.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata
attach(mydata)
# Create female data frame.
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females <- mydata[ which(gender=="f"), ]
females

# Create male data frame.
males <- mydata[ which(gender=="m"), ]
males

#Bind their rows together with the rbind function.
both <- rbind(females, males)
both

# Drop q2 to see what happens.
males$q2 <- NULL
males

# See that row bind will not work.
both <- rbind(females, males)

# Use reshape’s rbind.fill.
library("reshape")
both <- rbind.fill(females, males)
both

# Add a q2 variable to males.
males <- data.frame( males, q2=NA )
males

# Now rbind can handle it.
both <- rbind(females,males)
both

10.10 Joining/Merging Data Sets

One of the most frequently used data manipulation methods is joining or
merging two data sets, each of which contains variables that the other lacks.
Stata does this with its merge command.

If you have a one-to-many join, it will create a row for every possible
match. A common example is a short data frame containing household-
level information such as family income joined to a longer data set of in-
dividual family member variables. A complete record of each family mem-
ber along with his or her household income will result. Duplicates in more
than one data frame are possible, but you should study them carefully for
errors.
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So that we will have an ID variable to work with, let us read our practice
data without the row.names argument. That will keep our ID variable as is
and fill in row names with 1, 2, 3, . . . .

> mydata <- read.table("mydata.csv",
+ header=TRUE,sep=",",na.strings=" ")

> mydata

id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
2 2 2 f 2 1 4 1
3 3 1 f 2 2 4 3
4 4 2 <NA> 3 1 NA 3
5 5 1 m 4 5 2 4
6 6 2 m 5 4 5 5
7 7 1 m 5 3 4 4
8 8 2 m 4 5 5 5

Now we will split the left half of the data frame into one called myleft:

> myleft <- mydata[ c("id","workshop","gender","q1","q2") ]

> myleft

id workshop gender q1 q2
1 1 1 f 1 1
2 2 2 f 2 1
3 3 1 f 2 2
4 4 2 <NA> 3 1
5 5 1 m 4 5
6 6 2 m 5 4
7 7 1 m 5 3
8 8 2 m 4 5

We then do the same for the variables on the right, but we will keep id and
workshop to match on later.

> myright <- mydata[ c("id","workshop","q3","q4") ]

> myright

id workshop q3 q4
1 1 1 5 1
2 2 2 4 1
3 3 1 4 3
4 4 2 NA 3
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5 5 1 4 4
6 6 2 5 5
7 7 1 4 4
8 8 2 5 5

Now we can use the merge function to put the two data frames back together.

> both <- merge(myleft, myright, by="id")

> both

id workshop.x gender q1 q2 workshop.y q3 q4
1 1 1 f 1 1 1 5 1
2 2 2 f 2 1 2 4 1
3 3 1 f 2 2 1 4 3
4 4 2 <NA> 3 1 2 NA 3
5 5 1 m 4 5 1 2 4
6 6 2 m 5 4 2 5 5
7 7 1 m 5 3 1 4 4
8 8 2 m 4 5 2 5 5

This call to the merge function has three arguments.

1. The first data frame to merge.
2. The second data frame to merge.
3. The by argument that has either a single variable name in quotes or a

character vector of names.

If you leave out the by argument, it will match by all variables with com-
mon names! That is quite unlike Stata, which would simply match the two
row-by-row. That is what the R cbind function will do. It is much safer to
match on some sort of ID variable(s) though. Very often, rows do not match
up as well as you think.

Sometimes the same variable has two different names in the data frames
you need to merge. For example, one may have “id” and another “subject.”
If you have such a situation, you can use the by.x argument to identify the
first variable or set of variables and the by.y argument to identify the second.
The merge function will match them up in order and do the proper merge. In
this next example, we do just that. In our case variables have the same name,
but now they would not have to.

> both <- merge(myleft, myright,
+ by.x="id", by.y="id")

> both
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id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
2 2 2 f 2 1 4 1
3 3 1 f 2 2 4 3
4 4 2 <NA> 3 1 NA 3
5 5 1 m 4 5 2 4
6 6 2 m 5 4 5 5
7 7 1 m 5 3 4 4
8 8 2 m 4 5 5 5

If you have multiple variables in common, but you only want to match on
a subset of them, you can use the form

both <- merge( myleft,myright,
by=c("id","workshop") )

If each file had variables with slightly different names, you could use the form

both <- merge( myleft,myright,
by.x=c("id", "workshop"),
by.y=c("subject","shortCourse")

)

By default, Stata keeps all records regardless of whether or not they match
(a full outer join). For observations that do not have matches in the other
file, the merge function will fill in with missing values. R takes the opposite
approach, keeping only those that have a record in both (an inner join). To
get merge to keep all records, use the argument all=TRUE. You can also use
all.x=TRUE to keep all of the records in the first file regardless of whether
or not they have matches in the second. The all.y=TRUE argument does the
reverse.

While Stata can merge any number of files at once, base R can only do two
at a time. To do more, you can use the merge_all function in the reshape
package.

10.10.1 Example Programs for Joining/Merging Data Sets

Stata Program for Joining/Merging Data Sets

* Filename: Merge.do

use c:\myRfolder\mydata, clear
drop q3 q4
save c:\myRfolder\myleft

use c:\myRfolder\mydata, clear
drop workshop-q2
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save c:\myRfolder\myright

use c:\myRfolder\myleft, clear
sort id

merge id using c:\myRfolder\myright
save c:\myRfolder\both, replace

R Program for Joining/Merging Data Sets

# Filename: Merge.R

setwd("/myRfolder")

# Read data keeping ID as a variable.
mydata <- read.table("mydata.csv",
header=TRUE,sep=",",na.strings=" ")

mydata

#Create a data frame keeping the left two q variables.
myleft <- mydata[ c("id","workshop","gender","q1","q2") ]
myleft

#Create a data frame keeping the right two q variables.
myright <- mydata[ c("id","workshop","q3","q4") ]
myright

#Merge the two dataframes by ID.
both <- merge(myleft,myright,by="id")
both

#Merge the two dataframes by ID.
both <- merge(myleft, myright,

by.x="id", by.y="id" )

#Merge dataframes by both ID and workshop.
both <- merge(myleft,myright,by=c("id","workshop"))
both

#Merge dataframes by both ID and workshop,
#while allowing them to have different names.
both <- merge(myleft,

myright,
by.x=c("id","workshop"),
by.y=c("id","workshop") )

both
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10.11 Creating Collapsed or Aggregated Data Sets

We often have to work on data that is a summarization of other data. For
example, you might work on household-level data that you aggregated from
a data set that had each family member as its own observation. Stata calls
this collapsing data and performs it with the collapse command. Database
programmers call this rolling up data.

R has three distinct advantages over Stata aggregation.

1. It is possible to perform multilevel calculations and selections in a single
step. We will perform some of each below.

2. R can aggregate with every function it has and any function you write! It
is not limited to the few that Stata has in its collapse command.

3. R has data structures optimized to hold aggregate results. Other functions
offer methods to take advantage of those structures.

10.11.1 The aggregate Function

We will use the aggregate function to calculate the mean of the q1 variable
by gender and save it to a new (very small!) data frame.

> attach(mydata)

> myAgg1 <- aggregate(q1,
+ by=data.frame(gender),
+ mean, na.rm=TRUE)

> myAgg1

gender x
1 f 1.666667
2 m 4.500000

The aggregate function call above has four arguments.

1. The variable you wish to aggregate.
2. One or more grouping factors. Unlike Stata, the data does not have

to be sorted by these factors. This must be in the form of a list (or
data frame, which is a type of list). Recall that single subscripting of
a data frame creates a list. So mydata["gender"] and mydata[2] work.
Adding the comma to either one will prevent them from working. There-
fore, mydata[ ,"gender"] or mydata[ ,2] will not work. If you have at-
tached the data frame, data.frame(gender) will work. The function call
list(gender) will also work, but it loses track of the grouping variable
names.
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3. The function that you wish to apply—in this case, the mean function. An
important limitation of the aggregate function is that it can apply only
functions that return a single value. If you need to apply a function that
returns multiple values, you can use the tapply function.

4. Arguments to pass to the function applied. Here na.rm=TRUE is passed to
the mean function to remove missing, or NA, values.

Next we will aggregate by two variables: workshop and gender. To keep
our by-factors in the form of a list (or data frame), we can use any one of the
following forms:

mydata[ c("workshop","gender")]

or

mydata[ c(2,3) ]

or if you have attached the data frame,

data.frame( workshop, gender)

In this example, we will use the latter form.

> myAgg2 <- aggregate(q1,
+ by=data.frame(workshop, gender),
+ mean, na.rm=TRUE)

> myAgg2

workshop gender x
1 R f 1.5
2 Stata f 2.0
3 R m 4.5
4 Stata m 4.5

Now let us use the mode and class functions to see the type of object the
aggregate function creates is a data frame.

> mode(myAgg2)

[1] "list"

> class(myAgg2)

[1] "data.frame"

It is small, but ready for further analysis.
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10.11.2 The tapply Function

In the last subsection we discussed the aggregate function. That function has
an important limitation: You can only use it with functions that return single
values. The tapply function works very similarly to the aggregate function
but can perform aggregation using any R function. To gain this ability, it has
to abandon the convenience of creating a data frame. Instead, its output is in
the form of a matrix or an array.

Let us first duplicate the last example from the above subsection using
tapply.

> myAgg2 <- tapply(q1,
+ data.frame(workshop,gender),
+ mean, na.rm=TRUE)

> myAgg2

gender
workshop f m

R 1.5 4.5
Stata 2.0 4.5

The tapply function call above uses four arguments.

1. The variable to aggregate.
2. One or more grouping factors. Unlike Stata, the data does not have to be

sorted by these factors. This must be in the form of a list (or data frame,
which is a list). Recall that single subscripting of a data frame creates a
list. So mydata["gender"] and mydata[2] work. Adding the comma to ei-
ther one will prevent them from working. Therefore, mydata[ ,"gender"]
or mydata[ ,2] will not work. If you have attached the data frame,
data.frame(gender) will work. The function call list(gender) will also
work, but it loses track of the grouping variable names.

3. The function to apply—in this case, the mean function. This function can
return any result, not just single values.

4. Any additional parameters to pass to the applied function. In this case,
na.rm=TRUE is used by the mean function to remove NA or missing values.

The actual means are, of course, the same as we obtained earlier using the
aggregate function. However, the result is now a numeric matrix rather than
a data frame.

> class(myAgg2)
[1] "matrix"

> mode(myAgg2)
[1] "numeric"
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Now let us do an example that the aggregate function could not perform.
The range function returns two values: the minimum and maximum for each
variable.

> myAgg2 <- tapply(q1,
+ data.frame(workshop,gender),
+ range, na.rm=TRUE)

> myAgg2
gender

workshop f m
R Numeric,2 Numeric,2
Stata Numeric,2 Numeric,2

This output looks quite odd! It is certainly not formatted for communicating
results to others. Let us see how it is stored.

> mode(myAgg2)

[1] "list"

> class(myAgg2)

[1] "matrix"

It is a matrix, whose elements are lists. Let us look at the entry for the
females who took the R workshop. That result is stored in the first row and
first column.

> class( myAgg2[1,1] )

[1] "list"

> myAgg2[1,1]

[[1]]
[1] 1 2

So we see that each component in this matrix is a list that contains a
single vector of minimum and maximum values. The opinions of the females
who took the R workshop range from 1 to 2.

While this output is not very useful for communicating results, it is very
useful as input for further programming.

10.11.3 Merging Aggregates with Original Data

It is often useful to add aggregate values back to the original data frame.
This allows you to perform multilevel transformations that involve both
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individual-level and aggregate-level values. A common example of such a cal-
culation is a Z score, which subtracts a variable’s mean and then divides by its
standard deviation (the scale function performs this particular calculation
more easily).

Another important use for merging aggregates with original data is to
perform multilevel selections of observations. To select individual-level obser-
vations based on aggregate-level values requires access to both at once. For
example, we could create a subset of subjects who fall below their group’s
mean value.

This is an area in which R has a distinct advantage over Stata. R’s greater
flexibility allows it to do both multi-level transformations and selections in a
single step.

Now let us calculate a Z-score for variable q1 with the single following
statement. Note that we are specifying the long form of the name for our new
variable, mydata$Zq1, so that it will go into our data frame.

> mydata$Zq1 <- (q1 - mean(q1) ) / sd(q1)

> mydata

workshop gender q1 q2 q3 q4 Zq1
1 R f 1 1 5 1 -1.5120484
2 Stata f 2 1 4 1 -0.8400269
3 R f 2 2 4 3 -0.8400269
4 Stata <NA> 3 1 NA 3 -0.1680054
5 R m 4 5 2 4 0.5040161
6 Stata m 5 4 5 5 1.1760376
7 R m 5 3 4 4 1.1760376
8 Stata m 4 5 5 5 0.5040161

You can also select the observations that were below average with this single
statement.

> mySubset <- mydata[ q1 < mean(q1), ]

> mySubset
workshop gender q1 q2 q3 q4 Zq1

1 R f 1 1 5 1 -1.5120484
2 Stata f 2 1 4 1 -0.8400269
3 R f 2 2 4 3 -0.8400269
4 Stata <NA> 3 1 NA 3 -0.1680054

Stata cannot perform such calculations and selections in one step. You
would have to create the aggregate-level data and then merge it back into the
individual-level data set. R can use that approach too, and as the number of
levels you consider increases, it becomes more reasonable to do so.
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So let us now merge myAgg2, created in Section 10.11.1, “The aggregate
Function.” to mydata. To do that, we will rename the mean of q1 from x to
mean.q1. We will use the rename function from the reshape package. If you
do not have that installed, see Chapter 2, “Installing and Maintaining R.”

> library("reshape")

> myAgg3 <- rename(myAgg2, c(x="mean.q1"))

> myAgg3

workshop gender mean.q1
1 R f 1.5
2 Stata f 2.0
3 R m 4.5
4 Stata m 4.5

Now we merge the mean onto each of the original observations.

> mydata2 <- merge(mydata, myAgg3,
+ by=c("workshop","gender") )

> mydata2

workshop gender q1 q2 q3 q4 Zq1 mean.q1
1 R f 1 1 5 1 -1.5120484 1.5
2 R f 2 2 4 3 -0.8400269 1.5
3 R m 4 5 2 4 0.5040161 4.5
4 R m 5 3 4 4 1.1760376 4.5
5 Stata f 2 1 4 1 -0.8400269 2.0
6 Stata m 5 4 5 5 1.1760376 4.5
7 Stata m 4 5 5 5 0.5040161 4.5

The merge function call above has only two arguments.

1. The two data frames to merge. Unlike Stata, which can merge many data
sets at once, R can only do two at a time.

2. The by argument specifies the variables to match on. In this case, they
have the same name in both data frames. They can, however, have different
names. See the merge help files for details. While some other functions
require by variables in list form, here you provide more than one variable
in the form of a character vector.

We could now perform multilevel transformations or selections on
mydata2.

10.11.4 Tabular Aggregation

The aim of table creation in Stata is to communicate the results to people. You
can create simple tables of frequencies and percents using the Stata tabulate
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command. However, no other procedures are programmed to process these
tables further automatically.

While R can create tables that are nicely formatted for presentation, its
output is usually sparse and optimized for further use by other functions. They
are a different form of aggregated data set. See Chapter 17, “Statistics,” for
other uses of tables.

Let us revisit simple frequencies using the table function. First, let us
look at just workshop attendance (the data frame is attached, so we are using
short variable names).

> table(workshop)

workshop
R Stata
4 4

And now gender and workshop.

> table(gender,workshop)
workshop

gender R Stata
f 2 1
m 2 2

Let us save this table to an object myCounts and check its mode and class.

> myCounts <- table(gender, workshop)

> mode(myCounts)

[1] "numeric"

> class(myCounts)

[1] "table"

We see that the mode of myCounts is numeric and its class is table. Other
functions that exist to work with presummarized data know what to do
with table objects. In Chapter 15, “Traditional Graphics,” we will see the
kinds of plots we can make from tables. In Chapter 17, “Statistics,” we will
also work with table objects to calculate related values like row and column
percents.

Other functions prefer count data in the form of a data frame. This is the
type of output created by the Stata collapse command. The as.data.frame
function makes quick work of it.

> myCountsDF <- as.data.frame(myCounts)

> myCountsDF
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gender workshop Freq
1 f R 2
2 m R 2
3 f Stata 1
4 m Stata 2

> class(myCountsDF)
[1] "data.frame"

This approach is particularly useful for people who use analysis of variance.
You can get cell counts for very complex models in a form that is very easy
to read and use in further analyses.

10.11.5 The reshape Package

If you perform a lot of aggregation, you will want to learn how to use
Hadley Wickham’s powerful reshape package [53].

10.11.6 Example Programs for Collapsing/Aggregating Data

Stata Program for Collapsing/Aggregating Data

* Filename: Collapse.do

use c:\myRfolder\mydata
* Get means of q1 for each gender
tabstat q1, by(gender)

* Get means of q1 by workshop and gender;
tabulate outwork gender, summarize(q1) means

* Strip out just the mean and matching variables;
collapse (mean) workshop gender, by(q1)

* Merge aggregated data back into mydata.
* mydata assumed to be sorted by q1
sort q1
merge q1 using mydata

R Program for Collapsing/Aggregating Data

# Filename: Collapse.R

setwd("/myRfolder")
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load(file="mydata.RData")
attach(mydata)
mydata

# The aggregate Function.
# Means by gender.
myAgg1 <- aggregate(q1,
by=data.frame(gender),
mean, na.rm=TRUE)

myAgg1

# Now by workshop and gender.
myAgg2 <- aggregate(q1,
by=data.frame(workshop, gender),
mean, na.rm=TRUE)

myAgg2
mode(myAgg2)
class(myAgg2)

# Aggregation with tapply.
myAgg2 <- tapply(q1,
data.frame(workshop,gender),
mean, na.rm=TRUE)

myAgg2
class(myAgg2)
mode(myAgg2)

myAgg2 <- tapply(q1,
data.frame(workshop,gender),
range, na.rm=TRUE)

myAgg2

mode(myAgg2)
class(myAgg2)
class( myAgg2[1,1] )
myAgg2[1,1]

# Example multi-level transformation.
mydata$Zq1 <- (q1 - mean(q1) ) / sd(q1)
mydata
mySubset <- mydata[ q1 < mean(q1), ]
mySubset
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# Rename x to be mean.q1.
library("reshape")
myAgg3 <- rename(myAgg2, c(x="mean.q1"))
myAgg3

# Now merge means back with mydata.
mydata2 <- merge(mydata,myAgg3,
by=c("workshop","gender") )

mydata2

# Tables of Counts
table(workshop)
table(gender,workshop)
myCounts <- table(gender, workshop)

mode(myCounts)
class(myCounts)

# Counts in Summary/Aggregate style.
myCountsDF <- as.data.frame(myCounts)
myCountsDF
class(myCountsDF)

# Clean up
mydata["Zq1"] <- NULL
rm(myAgg1, myAgg2, myAgg3,
myComplete, myMeans, myCounts, myCountsDF)

10.12 By or Split-File Processing

When you want to repeat an analysis for every level of a categorical variable,
you can use the by command in Stata. Stata requires you to sort the data by
the factor variable(s) first, but R does not.

R has a by function, which repeats analysis for levels of factors. In Sec-
tion 10.11, “Creating Collapsed or Aggregated Data Sets,” we did similar
things while creating summary data sets. When we finish with this topic, we
will compare the two approaches.

Let us look at the by function first and then discuss how it compares to
similar functions. We will use the by function to apply the mean function.
First, let us use the mean function by itself just for review. To get the means
of our q variables, we can use

> mean( mydata[ c("q1","q2","q3","q4") ] ,
+ na.rm=TRUE)
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q1 q2 q3 q4
3.25003.2500 2.7500 4.1429 3.7500

Now let us get means for the males and females using the by function:

> myBYout <- by( mydata[ c("q1","q2","q3","q4") ] ,
+ mydata["gender"],
+ mean,na.rm=TRUE)

> myBYout

gender: f
q1 q2 q3 q4

1.666667 1.333333 4.333333 1.666667
---------------------------------------------------
gender: m
q1 q2 q3 q4

4.50 4.25 4.00 4.50

The by function call above has four arguments.

1. The data frame name and/or variables to analyze,
mydata[ c("q1","q2","q3","q4") ].

2. One or more grouping factors. Unlike Stata, the data does not have
to be sorted by these factors. This must be in the form of a list (or
data frame, which is a type of list). Recall that single subscripting of
a data frame creates a list. So mydata["gender"] and mydata[2] work.
Adding the comma to either one will prevent them from working. There-
fore, mydata[ ,"gender"] or mydata[ ,2] will not work. If you have at-
tached the data frame, data.frame(gender) will work. The function call
list(gender) will also work, but it loses track of the grouping variable
names.

3. The function to apply—in this case, the mean function. The by func-
tion can apply functions that calculate more than one value (unlike the
aggregate function).

4. Any additional arguments are ignored by the by function and simply
passed to the applied function. In this case, na.rm=TRUE is simply passed
to the mean function.

Let us check to see what the mode and class are of the output
object.

> mode(myBYout)

[1] "list"
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> class(myBYout)

[1] "by"

It is a list, with a class of “by.” If we would like to convert that to a data
frame, we can do so with the following. The as.table function gets the
data into a form that the as.data.frame function can then turn into a data
frame.

> myBYdata <- as.data.frame( (as.table(myBYout) ) )

> myBYdata

gender Freq.f Freq.m
q1 f 1.666667 4.50
q2 m 1.333333 4.25
q3 f 4.333333 4.00
q4 m 1.666667 4.50

Now let us break the mean down by both workshop and gender. To keep
our by factors in the form of a list (or data frame), we can use any one of
these forms:

mydata[ c("workshop","gender")]

or

mydata[ c(2,3) ]

or, if you have attached the data frame,

data.frame( workshop, gender)

This starts to look messy, so let us put both our variable list and our factor
list into character vectors:

myVars <- c("q1","q2","q3","q4")

myBys <- mydata[ c("workshop","gender") ]

By using our character vectors as arguments for the by function, it is much
easier to read. This time, let us use the range function to show that the by
function can apply functions that return more than one value.

> myBYout <- by( mydata[myVars],
+ myBys, range, na.rm=TRUE )

> myBYout
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workshop: R
gender: f
[1] 1 5
---------------------------------------------------
workshop: Stata
gender: f
[1] 1 4
---------------------------------------------------
workshop: R
gender: m
[1] 2 5
---------------------------------------------------
workshop: Stata
gender: m
[1] 4 5

That output is quite readable. Recall that when we did this same analysis
using the tapply function, the results were in a form that were optimized for
further analysis rather than communication. However, we can save the data
to a data frame if we like. The approach it takes is most interesting. Let us
see what type of object we have.

> mode(myBYout)
[1] "list"

> class(myBYout)
[1] "by"

> names(myBYout)
NULL

It is a list with a class of “by” and no names. Let us look at one of its
components.

> myBYout[[1]]
[1] 1 5

This is the first set of ranges from the printout above. If we wanted to create
a data frame from these, we could bind them into the rows of a matrix and
then convert that to a data frame with

> myBYdata <- data.frame(
+ rbind( myBYout[[1]], myBYout[[2]],
+ myBYout[[3]], myBYout[[4]] )
+ )

> myBYdata
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X1 X2
1 1 5
2 1 4
3 2 5
4 4 5

That approach is easy to understand but not much fun to use if we had
many more factor levels! Luckily the do.call function can call a function you
choose once, on all of the components of a list, just as if you had entered them
individually. That is quite different from the lapply function, which applies
the function you choose repeatedly on each separate component. All we have
to do is give it the function to feed the components into, rbind in this case,
and the list name, byBYout.

> myBYdata <- data.frame( do.call(rbind, myBYout) )

> myBYdata

X1 X2
1 1 5
2 1 4
3 2 5
4 4 5

10.12.1 Comparing Summarization Methods

So we have seen that the capability of the by function closely mirrors that of
the aggregate and tapply functions. Table 10.3, can help you choose which
to use.

Table 10.3. Comparison of summarization functions.

Input Functions it
can apply

Output

by Data frame Any function List with class of “by.” Easier to
read but not as easy to program

aggregate Data frame Only functions that
return single values

Data frame. Easy to read and
program

tapply List or
data frame

Any function List. Easy to access components
for programming. Not as nicely
formatted for reading.

table Factors Does counting only Table object. Easy to read and
easy to analyze further.
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10.12.2 Example Programs for By or Split-file Processing

Stata Program for By or Split-File Processing

* Filename: By.do

use c:\myRfolder\mydata, clear
sort gender
by gender: sum gender
tabstat q1 q2 q3 q4, stat(mean sd min max)
tabstat q1 q2 q3 q4, stat(mean sd min max) by(gender)

R Program for By or Split-File Processing

# Filename: By.R

setwd("/myRfolder")
load(file="mydata.RData")
attach(mydata)
options(width=64)
mydata

# Get means of q variables for all observations.
mean( mydata[ c("q1","q2","q3","q4") ] ,

na.rm=TRUE)

# Now get means by gender.
myBYout <- by( mydata[ c("q1","q2","q3","q4") ] ,

mydata["gender"],
mean,na.rm=TRUE)

myBYout
mode(myBYout)
class(myBYout)
myBYdata <- as.data.frame( (as.table(myBYout) ) )
myBYdata

# Get range by workshop and gender
myVars <- c("q1","q2","q3","q4")
myBys <- mydata[ c("workshop","gender") ]
myBYout <- by( mydata[myVars],
myBys, range, na.rm=TRUE )

myBYout

# Converting output to data frame.
mode(myBYout)
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class(myBYout)
names(myBYout)
myBYout[[1]]

# A data frame the long way.
myBYdata <- data.frame(
rbind(myBYout[[1]], myBYout[[2]],

myBYout[[3]], myBYout[[4]])
)
myBYdata

# A data frame using do.call.
myBYdata <- data.frame( do.call( rbind, myBYout) )
myBYdata
mode(myBYdata)
class(myBYdata)

10.13 Removing Duplicate Observations

Duplicate observations frequently creep into data sets, especially those that
are merged from various other data sets. The Stata approach is to use the
duplicates command, but there are several other ways duplicate can be
dropped. For example, the collapse command may be used with sort and
keep to get rid of duplicates without examining them.

First, we will create a data frame that takes the top two observations from
mydata and appends them to the bottom with the rbind function:

> myDuplicates <- rbind( mydata, mydata[1:2,] )

> myDuplicates

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1 <- We are copying
2 Stata f 2 1 4 1 <- these two...
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3
5 R m 4 5 2 4
6 Stata m 5 4 5 5
7 R m 5 3 4 4
8 Stata m 4 5 5 5
9 R f 1 1 5 1 <- ...down here
10 Stata f 2 1 4 1 <- as duplicates.

Next we will use the unique function to find and delete them.
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> myNoDuplicates <- unique(myDuplicates)

> myNoDuplicates
workshop gender q1 q2 q3 q4

1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3
5 R m 4 5 2 4
6 Stata m 5 4 5 5
7 R m 5 3 4 4
8 Stata m 4 5 5 5

So the unique function removed them but did not show them to us. In
a more realistic data set, we would certainly not want to print the whole
thing and examine the duplicates visually as we did above. However, knowing
more about the duplicates might help us prevent them from creeping into our
future analyses. Let us put the duplicates back and see what the duplicated
function can do.

> myDuplicates <- rbind( mydata, mydata[1:2,] )

> myDuplicates$Duplicated <- duplicated(myDuplicates)

> myDuplicates

workshop gender q1 q2 q3 q4 Duplicated
1 R f 1 1 5 1 FALSE
2 Stata f 2 1 4 1 FALSE
3 R f 2 2 4 3 FALSE
4 Stata <NA> 3 1 NA 3 FALSE
5 R m 4 5 2 4 FALSE
6 Stata m 5 4 5 5 FALSE
7 R m 5 3 4 4 FALSE
8 Stata m 4 5 5 5 FALSE
9 R f 1 1 5 1 TRUE
10 Stata f 2 1 4 1 TRUE

The duplicated function added the variable aptly named Duplicated to our
data frame. Its TRUE values show us that R has indeed located the duplicate
records. It is interesting to note that now we technically no longer have com-
plete duplicates! The original first two records now have values of FALSE,
whereas the last two, which up until now had been exact duplicates, have
values of TRUE. So they have ceased to be exact duplicates! Therefore, the
unique function would no longer get rid of the last two records. That is OK
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because now we will just get rid of those marked TRUE after we print a report
of duplicate records.

> attach(myDuplicates)

> myDuplicates[ Duplicated, ]

workshop gender q1 q2 q3 q4 Duplicated
9 R f 1 1 5 1 TRUE
10 Stata f 2 1 4 1 TRUE

Finally, we will choose those not duplicated (i.e., !Duplicated) and drop the
seventh variable, which is the TRUE/FALSE variable itself.

> myNoDuplicates <- myDuplicates[ !Duplicated, -7]

> myNoDuplicates

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3
5 R m 4 5 2 4
6 Stata m 5 4 5 5
7 R m 5 3 4 4
8 Stata m 4 5 5 5

Now our data is back to its original, duplicate-free state.

10.13.1 Example Programs for Removing Duplicate Observations

Stata Program for Removing Duplicate Observations

* Filename: Duplicates.do

use c:\myRfolder\mydata, clear
duplicates drop id workshop gender q1-q4, force
list

R Program for Removing Duplicate Observations

# Filename: Duplicates.R

setwd("/myRfolder")
load("mydata.RData")
mydata
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# Create some duplicates.
myDuplicates <- rbind( mydata, mydata[1:2,] )
myDuplicates

# Get rid of duplicates without seeing them.
myNoDuplicates <- unique(myDuplicates)
myNoDuplicates

# This checks for location of duplicates
# before getting rid of them.
myDuplicates <- rbind( mydata, mydata[1:2,] )
myDuplicates
myDuplicates$Duplicated <- duplicated(myDuplicates)
myDuplicates

# Print a report of just the duplicates.
myDuplicates[ Duplicated, ]

# Remove duplicates and Duplicated variable.
attach(myDuplicates)
myNoDuplicates <- myDuplicates[ !Duplicated, -7]
myNoDuplicates

10.14 Selecting First or Last Observations per Group

When a data set contains groups, members within each group are often sorted
in a useful order. For example, a company may have divisions divided into
departments. Each department might have salary information for each person
and a running total. So the last person’s running total value would be the
total for each department.

The Stata approach on this problem is quite flexible. Simply saying,

use mydata
sort workshop gender

which sorts the data by workshop and within workshop, by gender. A Stata
user may then keep the first, last, or any specified observation within the
grouping, dropping the others.

The R approach to this problem demonstrates R’s extreme flexibility. It
does not have a function aimed directly at this problem. However, it is easy
to create one using several other functions. We have seen the head function
print the top few observations of a data frame. The tail function does the
same for the last few. We have also used the by function to apply a function
to groups within a data frame. We can use the by function to apply the head
function to get the first observation in each group or use the tail function to
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get the last. Since the head and tail functions both have an “n=” argument,
we can not only use n=1 to get the single first or last, but also we could use
n=2 to get the first two or last two observations per group, and so on.

The last record per group is often of greatest interest since it contains the
value of interest when you have a sum, like salaries, that is added cumulatively
for each observation. So we will look at how to select the last observation per
group. The idea readily extends to the first record(s) per group.

First, we will put our by variables into a data frame. By using work-
shop and then gender, we will soon be selecting the last male in each
workshop.

myBys <- data.frame(mydata$workshop, mydata$gender)

Next, we use the by function to apply the tail function to mydata by work-
shop and gender. We are saving the result to mylast, which is in the form of
a list.

mylastList <- by( mydata, myBys, tail, n=1 )

mylastList

The following is the resulting list:

mydata.workshop: 1
mydata.gender: f
workshop gender q1 q2 q3 q4

3 1 f 2 2 4 3
------------------------------------------------------------
mydata.workshop: 2
mydata.gender: f
workshop gender q1 q2 q3 q4

4 2 f 3 1 NA 3
------------------------------------------------------------
mydata.workshop: 1
mydata.gender: m
workshop gender q1 q2 q3 q4

7 1 m 5 3 4 4
------------------------------------------------------------
mydata.workshop: 2
mydata.gender: m
workshop gender q1 q2 q3 q4

8 2 m 4 5 5 9

We would like to put this into a data frame by combining all of the vec-
tors from that list in the form of rows. The do.call function does this. It
essentially takes all of the elements of a list and feeds them into a single call
to the function you choose. In this case, that is the rbind function.
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mylastDF <- do.call( rbind, as.list(mylast) )

The following are the records we desired.

mylastDF
workshop gender q1 q2 q3 q4

3 1 f 2 2 4 3
4 2 f 3 1 NA 3
7 1 m 5 3 4 4
8 2 m 4 5 5 9

That single call to the do.call function does this for you:

mylastDF <- rbind( (mylastList)[[1]],
(mylastList)[[2]],
(mylastList)[[3]],
(mylastList)[[4]] )

If we had hundreds of groups, the do.call function would be a big time
saver!

10.14.1 Example Programs for Selecting Last Observation
per Group

Stata Program for Selecting Last Observation per Group

* Filename: FirstLastObs.do

use c:\myRfolder\mydata, clear
sort workshop gender
by workshop gender: keep if _n==_N
list

R Program for Selecting Last Observation per Group

# Filename: FirstLastObs.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata
myBys <- data.frame(mydata$workshop,mydata$gender)
mylastList <- by( mydata,myBys,tail,n=1 )
mylastList

#Back into a data frame:
mylastDF <- do.call(rbind, mylastList)
mylastDF
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# Another way to create the dataframe:
mylastDF <- rbind(mylastList[[1]],

mylastList[[2]],
mylastList[[3]],
mylastList[[4]])

mylastDF

10.15 Reshaping Variables to Observations and Back

A common data management problem is reshaping data from “wide” format
to “long” and back. If we assume our variables q1, q2, q3, and q4 are the
same item measured at four times, we will have the standard wide format for
repeated measures data.

Converting this to the long format consists of writing out four records, each
of which has just one measure—we will call it Y—and a counter variable, often
called time, that goes 1, 2, 3, and 4. So in the simplest case, just two variables,
Y and time could replace dozens of variables. Going from wide to long is just
the reverse.

Stata can do this using the reshape command.
In R, Hadley Wickham’s reshape package is quite powerful and easy to

use. It uses the analogy of melting your data so that you can cast it into a
different mold. In addition to reshaping, the package makes quick work of a
wide range of aggregation problems.

We will need an ID variable. For this example, we will create one named
subject using the colon operator:

> mydata$subject <- 1:8

> print(mydata)

workshop gender q1 q2 q3 q4 subject
1 1 f 1 1 5 1 1
2 2 f 2 1 4 1 2
3 1 f 2 2 4 3 3
4 2 <NA> 3 1 NA 3 4
5 1 m 4 5 2 4 5
6 2 m 5 4 5 5 6
7 1 m 5 3 4 4 7
8 2 m 4 5 5 5 8

Now we will load the reshape package, attach the data so that we can use
short variable names, and “melt” it into the long form. The melt function
needs only two arguments: the name of the data frame to reshape and the
variables that identify each unique value.
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> library("reshape")

> attach(mydata)

> mylong <- melt(mydata,
id=c("subject","workshop","gender") )

> mylong

subject workshop gender variable value
1 1 1 f q1 1
2 2 2 f q1 2
3 3 1 f q1 2
4 4 2 <NA> q1 3
5 5 1 m q1 4
6 6 2 m q1 5
7 7 1 m q1 5
8 8 2 m q1 4
9 1 1 f q2 1
10 2 2 f q2 1
11 3 1 f q2 2
12 4 2 <NA> q2 1
13 5 1 m q2 5
14 6 2 m q2 4
15 7 1 m q2 3
16 8 2 m q2 5
17 1 1 f q3 5
18 2 2 f q3 4
19 3 1 f q3 4
20 4 2 <NA> q3 NA
21 5 1 m q3 2
22 6 2 m q3 5
23 7 1 m q3 4
24 8 2 m q3 5
25 1 1 f q4 1
26 2 2 f q4 1
27 3 1 f q4 3
28 4 2 <NA> q4 3
29 5 1 m q4 4
30 6 2 m q4 5
31 7 1 m q4 4
32 8 2 m q4 5

Now let us cast it back into the wide format.

> mywide <- cast(mylong, subject+workshop+gender ~ variable)
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> mywide

subject workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
2 2 2 f 2 1 4 1
3 3 1 f 2 2 4 3
4 4 2 <NA> 3 1 NA 3
5 5 1 m 4 5 2 4
6 6 2 m 5 4 5 5
7 7 1 m 5 3 4 4
8 8 2 m 4 5 5 5

The cast function needs only two arguments: the data to reshape and a
formula. The formula has the identifying variables on the left side separated
by plus signs, then a tilde, “~”, and the variable that will contain the new
variables’ values.

As we have seen with the reshape package and others, R’s ability to extend
its power with packages can be very useful. However, it also occasionally leads
to confusion among names. R comes with a function named reshape, and the
Hmisc package has one named reShape. They are totally different due to the
capital “S”! They can both do the task at hand, but the reshape package is
the one we are using. While the package is named reshape, the functions to
do the reshaping are named melt and cast.

10.15.1 Example Programs for Reshaping Variables to
Observations and Back

Stata Program for Reshaping Data

* Filename: Reshape.do

use c:\myRfolder\mydata, clear

reshape long q, i(subject) j(item)
list

reshape wide q, i(subject) j(item)
list

R Program for Reshaping Data

# Filename: Reshape.R

setwd("/myRfolder")
load(file="mydata.RData")
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# Create an id variable.
mydata$subject <- 1:8
mydata
library("reshape")
attach(mydata)

# Melt data into "long" format.
mylong <- melt(mydata,
id=c("subject","workshop","gender") )

mylong

# Cast data back into "wide" format.
mywide <- cast(mylong,
subject+workshop+gender ~ variable)

mywide

10.16 Sorting Data Frames

Sorting is one of the areas that R differs most from Stata. In Stata, sorting is
critical prerequisite for two frequent tasks:

1. In Stata, using the by operator to perform separate analyses on a variable
or set of variables requires that the data be sorted on the variable to which
the by operator refers. Stata’s sort command is used for this purpose. The
gsort command allows sorting in either ascending or descending order.
The bysort command allows the user to use the by operator immediately
without having to previously sort the data.

2. Stata also requires that both files be sorted on a matched variable be-
fore merging files is allowed. Usually, that matching variable is a subject
or id.

As we have seen, R does not need the data sorted for either of these tasks.
Still, sorting is useful in a variety of contexts.

R sorts in a very different way. It does not directly sort a data frame.
Instead, it determines the order that the rows would be in if sorted and then
applies them to do the sort.

Consider the names Ann, Eve, Carla, Dave, and Bob. They are almost
sorted in ascending order. Since the number of names is small, it is easy to
determine the order that the names would require to sort them. We need the
first name, Ann, followed by the fifth name, Bob, followed by the third name,
Carla, the fourth name, Dave, and, finally, the second name, Eve. The order
function would get those index values for us: 1, 5, 3, 4, 2.

To understand how these index values will help us sort, let us review
briefly how data frame indexes work. One way to select rows from a data
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frame is to use the form mydata[rows,columns]. If you leave them all out,
as in mydata[ , ], then you will get all rows and all columns. You can select
the first four records with

> mydata[ c(1,2,3,4), ]

id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
2 2 2 f 2 1 4 1
3 3 1 f 2 2 4 3
4 4 2 <NA> 3 1 NA 3

We can select them in reverse order with

> mydata[ c(4,3,2,1), ]

id workshop gender q1 q2 q3 q4
4 4 2 <NA> 3 1 NA 3
3 3 1 f 2 2 4 3
2 2 2 f 2 1 4 1
1 1 1 f 1 1 5 1

Now let us create a variable to store the order of the observations if sorted
by workshop:

> myW <- order( mydata$workshop )

> myW
[1] 1 3 5 7 2 4 6 8

We can use this variable as the row index to mydata to see it sorted by
workshop:

> mydata[ myW, ]

id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
3 3 1 f 2 2 4 3
5 5 1 m 4 5 2 4
7 7 1 m 5 3 4 4
2 2 2 f 2 1 4 1
4 4 2 <NA> 3 1 NA 3
6 6 2 m 5 4 5 5
8 8 2 m 4 5 5 5

The order function is one of the few R functions that allow you to specify
multiple variables without combining them in some way, like into a vector
with the c function. So we can create an order variable to sort the data by
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gender and then workshop within gender with the following. GW stands for
Gender then Workshop.

> myGW <- order( mydata$gender, mydata$workshop )

> mydata[ myGW, ]

id workshop gender q1 q2 q3 q4
1 1 1 f 1 1 5 1
3 3 1 f 2 2 4 3
2 2 2 f 2 1 4 1
5 5 1 m 4 5 2 4
7 7 1 m 5 3 4 4
6 6 2 m 5 4 5 5
8 8 2 m 4 5 5 5
4 4 2 <NA> 3 1 NA 3

The default order is ascending (small to large). To reverse this, place the minus
sign before any variable. Therefore, this will sort by workshop in descending
order and then, within that, gender in ascending order:

> mydata$myWG <- order( -mydata$workshop, mydata$gender )

> mydata$myWG

[1] 2 6 8 4 1 3 5 7

The WG part of myWG is an acronym for Workgroup, Gender. Stata and
R both view missing values as the highest, or last, values to sort. You can
use the argument na.last=FALSE to cause R to place NAs first. You can also
remove records with missing values by setting na.last=NA.

To see mydata in sorted order, we then use myWG in the row index
position:

> myWdG <- order( -mydata$workshop, mydata$gender )

> mydata[ myWdG, ]

id workshop gender q1 q2 q3 q4
2 2 2 f 2 1 4 1
6 6 2 m 5 4 5 5
8 8 2 m 4 5 5 5
4 4 2 <NA> 3 1 NA 3
1 1 1 f 1 1 5 1
3 3 1 f 2 2 4 3
5 5 1 m 4 5 2 4
7 7 1 m 5 3 4 4
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Since it is so easy to create a variable to store your various order indexes
in, you do not need to store the whole data frame in sorted form to have easy
access to it. However, if you want to, you can save the data frame in sorted
form by using

> mydataSorted <- mydata[ myWdG, ]

> mydataSorted

id workshop gender q1 q2 q3 q4
2 2 2 f 2 1 4 1
6 6 2 m 5 4 5 5
8 8 2 m 4 5 5 5
4 4 2 <NA> 3 1 NA 3
1 1 1 f 1 1 5 1
3 3 1 f 2 2 4 3
5 5 1 m 4 5 2 4
7 7 1 m 5 3 4 4

10.16.1 Example Programs for Sorting Data Sets

Stata Program for Sorting Data

* Filename: Sort.do

use c:\myRfolder\mydata, clear

* sort workshop ascending order
sort workshop
list

* sort gender and workshop, both ascending order
sort gender workshop
list

* sort workshop descending and gender in ascending order.
gsort - workshop + gender
list

R Program for Sorting Data

# Filename: Sort.R

setwd("/myRfolder")
load(file="mydata.RData")
mydata
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# Show first four observations in order.
mydata[ c(1,2,3,4), ]

# Show them in reverse order.
mydata[ c(4,3,2,1), ]

# Create order variable for workshop.
myW <- order( mydata$workshop )
myW
mydata[ myW, ]

# Create order variable for gender then workshop.
myGW <- order( mydata$gender, mydata$workshop )
myGW
mydata[ myGW, ]

# Create order variable for
# descending (-) workshop then gender
myWdG <- order( -mydata$workshop, mydata$gender )
myWdG

# Print data in WG order.
mydata[ myWdG, ]

# Save data in WdG order.
mydataSorted <- mydata[ myWdG, ]
mydataSorted

10.17 Converting Data Structures

In Stata, there is only one main data structure—the data set—although it
may be established as a time series panel data set using the tsset command.
Within the data set, there are variables. It seems absurdly obvious, but we
need to say it: All Stata commands accept variables as input. Of course, you
have to learn that putting a character variable in where a numeric one is
expected causes an error. Occasionally, a character variable contains num-
bers and we must convert them. Putting a categorical variable in where a
continuous variable belongs may not yield an error message, but perhaps it
should.

As we have seen, R has several data structures, including vectors, factors,
data frames, matrices, and lists. For many functions (what Stata calls com-
mands), R can automatically provide output optimized for the data structure
you give it. Said more formally, generic functions apply different methods to
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different classes of objects. So to control a function, you have to know several
things:

1. The classes of objects the function is able to accept.
2. What the function will do with each class; that is, what its method is

for each. Although many important functions in R offer multiple methods
(they are generic), not all are.

3. The data structure you are supplying to the function—that is, what the
class of your object is. As we have seen, the way you select data determines
its data structure or class.

4. If necessary, how to convert from the data structure you have to one you
need.

In Chapter 7, “Selecting Variables,” we learned that both of these com-
mands select our variable q1 and pass the data in the form of a data frame:

mydata[3]
mydata["q1"]

while these, with their additional comma, also select variable q1 but instead
pass the data in the form of a vector:

mydata[ ,3]
mydata[ ,"q1"]

Many functions would work just fine on either result. However, some pro-
cedures are fussier than others and require very specific data structures. If
you are having a problem figuring out which form of data you have, there are
functions that will tell you. For example

class(mydata)

will tell you its class is “data frame.” Knowing a data frame is a type of list,
you will know that functions that require either of those structures will accept
it. As with the print function, it may produce different output, but it will
accept it. There are also functions that test the status of an object, and they
all begin with “is.” For example

is.data.frame( mydata[3] )

will display TRUE, but

is.vector( mydata[3] )

will display FALSE.
Some of the functions you can use to convert from one structure to an-

other are listed in Table 10.4. Let us apply one to our data. First, we will
remind ourselves how the print function prints our data frame in a vertical
format.
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Table 10.4. Data conversion functions.

Conversion to Perform Example

Index vector to logical vector myQindexes <- c(3, 4, 5, 6)

myQtf <- 1:6 %in% myQindexes

Vectors to columns of a data
frame

data.frame(x,y,z)

Vectors to rows of a data frame data.frame( rbind(x,y,z) )

Vectors to columns of a matrix cbind(x,y,z)

Vectors to rows of a matrix rbind(x,y,z)

Vectors combined into one long
one

c(x,y,z)

Data frame to matrix (must be
same type)

as.matrix(mydataframe)

Matrix to data frame as.data.frame(mymatrix)

A vector to an r by c matrix matrix(myvector,nrow=r,ncol=c)

(note this is not as.matrix!)
Matrix to one very long vector as.vector(mymatrix)

List to one long vector unlist(mylist)

Lists or data frames into lists c(list1,list2)

List of vectors, matrices to rows
of matrix

myMatrix <- ( do.call(rbind, myList) )

List of vectors, matrices to cols of
matrix

myMatrix <- ( do.call(cbind, myList) )

Logical vector to index vector myQtf <- c(FALSE, FALSE,

TRUE, TRUE, TRUE, TRUE)

myQindexes <- which(myQtf)

Table to data frame as.data.frame(mytable)

Remove the class completely unclass(myobject)

> print(mydata)

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 Stata f 2 1 4 1
3 R f 2 2 4 3
4 Stata <NA> 3 1 NA 3
5 R m 4 5 2 4
6 Stata m 5 4 5 5
7 R m 5 3 4 4
8 Stata m 4 5 5 9

Now let us print it in list form by adding the as.list function. Essen-
tially, the data frame becomes a list at the moment of printing, giving us the
horizontal orientation that we saw earlier when printing a true list.

> print( as.list(mydata) )
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$workshop
[1] R Stata R Stata R Stata R Stata
Levels: R SAS SPSS STATA

$gender
[1] f f f <NA> m m m m
Levels: f m

$q1
[1] 1 2 2 3 4 5 5 4

$q2
[1] 1 1 2 1 5 4 3 5

$q3
[1] 5 4 4 NA 2 5 4 5

$q4
[1] 1 1 3 3 4 5 4 9

10.17.1 Converting from Logical to Numeric Index and Back

We have looked at various ways to select variables and observations using
both logical and numerical indexes. Now let us look at how to convert from
one to the other.

The which function will examine a logical vector and tell you which of them
are true; that is, it will tell you the index values of those that are true. We
can create a logical vector that chooses our q variables many ways. Let us use
the vector that selects the last four variables in our practice data frame. For
various ways to create a vector like this, See Chapter7, “Selecting Variables”
or Chapter 8, “Selecting Observations.” We will just enter it manually.

myQtf <- c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE)

We can convert that to a numeric index vector that gives us the index numbers
for each occurrence of the value TRUE using the which function.

myQindexes <- which(myQtf)

Now myQindexes contains 3, 4, 5, 6 and we can analyze just the q variables
using

summary( mydata[myQindexes] )

To go in the reverse direction, we would want to know of all of the variable
indexes—1, 2, 3, 4, 5, 6—which of them were, in a logical sense, in our list of
3, 4, 5, 6.
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myQindexes <- c(3, 4, 5, 6)

Now we will use the %in% function to create it using logical comparisons:

myQtf <- 1:6 %in% myQindexes

Now myQtf has the values FALSE, FALSE, TRUE, TRUE, TRUE, TRUE
and we can analyze just the Q variables with

summary( mydata[myQtf] )

Why are there two methods? The logical method is the most direct, since
calling the which function is often an additional step. However, if you have
20,000 variables, as researchers in genetics often have, the logical vector will
contain 20,000 values. The numeric index vector will have only as many values
as there are variables in your subset. The which function also has a critical
advantage. Since it looks only to see which values are TRUE, the NA missing
values do not affect it. Using a logical vector, R will look at all values, TRUE,
FALSE, even the missing values of NA. However, the selection mydata[NA , ]
is undefined, causing problems. See Chapter 8, “Selecting Observations” for
details.
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Enhancing Your Output

As we have seen, R output is quite sparse and not nicely formatted for
word processing. As in Stata, you can improve R’s output by adding value
and variable labels. You can also format the output to make beautiful
tables to use with word processors, web pages, and document preparation
systems.

11.1 Value Labels or Formats (and Measurement Level)

This section blends two topics because in R they are inseparable. In Stata,
assigning labels to values is independent of the variable’s measurement level.
In R, you can assign value labels only to variables whose measurement level
is factor. To be more precise, only objects whose class is factor can have label
attributes.

In Stata, a variable’s measurement level of nominal, ordinal, or interval
is not stored. Instead, how you use the variable dictates whether a variable
is viewed as continuous, categorical, or even binary. You can model a binary
predictor as if it were continuous, although this would not be wise.

Stata uses value labels in a two-step process. For a categorical variable, you
first define the various levels of the variable using the “label define” command,
and then you specify that the defined levels correspond to values provided to
the levels. We will show an example below.

R has the measurement level of factor for nominal data, ordered factor for
ordinal data, and numeric for interval or scale data. You set these in advance
and then the statistical and graphical procedures use them in an appropriate
way automatically. When creating a factor, assigning labels is optional. If you
do not use labels, the variable’s original values are stored as character labels.
R stores value labels in the factor itself.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 253
and Computing, DOI 10.1007/978-1-4419-1318-0 11,
© Springer Science+Business Media, LLC 2010
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11.1.1 Character Factors

Let us review how the read.table function deals with character variables. If
we do not tell it what to do, it will convert all character data to factors.

> mydata <- read.table("mydata.tab")

> mydata

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5

You cannot tell what gender is by looking at it, but the class function can
tell us that gender is a factor.

> class( mydata[ ,"gender"] )

[1] "factor"

In our case, this is helpful. However, there are times when you want to
leave character data as simply characters. When reading people’s names or
addresses from a database, for example, you do not want to store them as
factors. The argument stringsAsFactors=FALSE will tell the read.table
function to leave such variables as character.

> mydata2 <- read.table("mydata.tab",
+ stringsAsFactors=FALSE)

> mydata2

workshop gender q1 q2 q3 q4
1 1 f 1 1 5 1
2 2 f 2 1 4 1
3 1 f 2 2 4 3
4 2 <NA> 3 1 NA 3
5 1 m 4 5 2 4
6 2 m 5 4 5 5
7 1 m 5 3 4 4
8 2 m 4 5 5 5
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This sets how all of the character variables are read, so if some of them do
need to be factors, you can convert those afterward. The data looks just the
same, but the class function can verify that gender is indeed now a character
variable.

> class( mydata2[ ,"gender"] )

[1] "character"

Many functions will not do what you expect with character data. For
example, we have seen the summary function count factor levels. However, it
will not count them in character form. If these were names or addresses, there
would be little use in counting them to see that they were virtually all unique.
Instead, summary simply gives you the grand total (length) and the variable’s
class and mode:

> summary( mydata2$gender )

Length Class Mode
8 character character

We will focus on the first data frame that has gender as a factor. As
read.table scans the data, it assigns the numeric values to the character
values in alphabetical order. Therefore, gender gets 1 for “f” and 2 for “m”
since “f” precedes “m” in the alphabet. R always uses the numbers 1, 2, . . . .
However, if you use the factor in an analysis, say as a regression predictor,
it will do the proper coding for you automatically. For character data, these
defaults are often sufficient. If you supply the levels argument in the factor
function, you can use it to specify the order of label assignment:

mydata$genderF <- factor(
mydata$gender,
levels=c("m","f"),
labels=c("Male","Female") )

The factor function call above has three arguments.

1. The name of the factor.
2. The levels argument with the levels in order. Since “m” appears first, it

will be associated with 1 and “f” with 2.
3. The labels argument provides labels in the same order as the levels

argument. This example sets “m” as 1 and “f” as 2 and uses the fully
written out labels. If you leave the labels out, R will use the levels them-
selves as labels. In this case, the labels would be simply “m” and “f.”
That is how we will leave our practice data set, as it keeps the examples
shorter.

There is a danger in setting value labels with character data that does not
appear at all in Stata. In the function call above, if we instead set
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levels=c("m","F")

R would set the values for all females to missing (NA), because the actual
values are lowercase. There are no capital F’s in the data! This danger applies,
of course, to other more obvious misspellings.

11.1.2 Numeric Factors

Workshop is a categorical measure, but initially R assumes it is numeric
because it is entered as 1 and 2. If we do any analysis on workshop, it will be
as an integer variable.

> class( mydata$workshop )

[1] "integer"

> summary( mydata$workshop )

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 1.0 1.5 1.5 2.0 2.0

We can nest a call to the as.factor function into any analysis to overcome
this problem.

> summary( as.factor(mydata$workshop) )

1 2
4 4

So we see four people took workshops 1 and 2. The values 1 and 2 are merely
labels at this point.

We can use the factor function to convert it to a factor and optionally
assign labels. Factor labels in R are stored in the factor itself.

mydata$workshop <- factor(
mydata$workshop,
levels=c(1,2,3,4),
labels=c("R","Stata","SPSS","SAS")

)

Notice that we have assigned four labels to four values even though our
data only contain the values 1 and 2. This can ensure consistent value label
assignments regardless of the data we currently have on hand. If we collected
another data set in which people only took SPSS and Stata workshops, we do
not want 1=R in one data set and 1=SPSS in another!

To simplify our other examples, we will use only the labels that appear in
this small data set.
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mydata$workshop <- factor(
mydata$workshop,
levels=c(1,2,3,4),
labels=c("R","Stata")

)

Now let us convert our q variables to factors. Since we will need to specify the
same levels repeatedly, let us put them in a variable.

> myQlevels <- c(1,2,3,4,5)

> myQlevels

[1] 1 2 3 4 5

Now we will do the same for the labels.

> myQlabels <- c("Strongly Disagree",
+ "Disagree",
+ "Neutral",
+ "Agree",
+ "Strongly Agree")

> myQlabels

[1] "Strongly Disagree" "Disagree" "Neutral"
[4] "Agree" "Strongly Agree"

Finally, we will use the ordered function to complete the process. It works
just like the factor function but tells R that the data values have order. In
statistical terms, it sets the variable’s measurement level to ordinal. Ordered
factors allow you to perform logical comparisons of greater than or less than.
R’s statistical modeling functions also try to treat ordinal data appropriately.
However, some methods are influenced by the assumption that the ordered
values are equally spaced, which may not be the case in your data.

We will put the factors into new variables with an “f” for f actor in their
names, like qf1 for q1. The f is just there to help us remember; it has no
meaning to R. We will keep both sets of variables because people who do
survey research often want to view this type of variable as numeric for some
analyses and as categorical for others. It is not necessary to do this if you
prefer converting back and forth on the fly.

> mydata$qf1 <- ordered( mydata$q1, myQlevels, myQlabels)
> mydata$qf2 <- ordered( mydata$q2, myQlevels, myQlabels)
> mydata$qf3 <- ordered( mydata$q3, myQlevels, myQlabels)
> mydata$qf4 <- ordered( mydata$q4, myQlevels, myQlabels)
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Now we can use the summary function to get frequency tables on them,
complete with value labels.

> summary( mydata[ c("qf1","qf2","qf3","qf4") ] )

qf1 qf2 qf3
Strongly Disagree:1 Strongly Disagree:3 Strongly Disagree:0
Disagree :2 Disagree :1 Disagree :1
Neutral :1 Neutral :1 Neutral :0
Agree :2 Agree :1 Agree :3
Strongly Agree :2 Strongly Agree :2 Strongly Agree :3

NA’s :1
qf4

Strongly Disagree:3
Disagree :0
Neutral :2
Agree :2
Strongly Agree :1

11.1.3 Making Factors of Many Variables

The approach used above works fine for small numbers of variables. However,
if you have hundreds, it is needlessly tedious. We do the same thing again,
this time in a form that would handle any number of variables whose names
follow the format string1 to stringN. Our practice data only has q1 to q4, but
the same number of commands would handle q1 to q4000.

First, we will generate variable names to use. We will use qf to represent
the q variables in factor form. This is an optional step, needed only if you
want to keep the variables in both forms.

> myQnames <- paste( "q", 1:4, sep="")

> myQnames

[1] "q1" "q2" "q3" "q4"

> myQFnames <- paste( "qf", 1:4, sep="")

> myQFnames

[1] "qf1" "qf2" "qf3" "qf4"

Now we will use the myQnames character vector as column names to select
from our data frame. We will store those in a separate data frame.

> myQFvars <- mydata[ ,myQnames]
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> myQFvars

q1 q2 q3 q4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

Next, we will use the myQFnames character vector to rename these variables.

> names(myQFvars) <- myQFnames

> myQFvars

qf1 qf2 qf3 qf4
1 1 1 5 1
2 2 1 4 1
3 2 2 4 3
4 3 1 NA 3
5 4 5 2 4
6 5 4 5 5
7 5 3 4 4
8 4 5 5 5

Now we need to make up a function to apply to the variables.

myLabeler <- function(x) {
ordered(x, myQlevels, myQlabels)

}

The myLabeler function will apply myQlevels and myQlabels (defined in
Subsection 11.1.2) to any variable, x, that we supply to it. Let us try it on a
single variable.

> summary( myLabeler( myQFvars[ ,"qf1"] ) )

Strongly Disagree Disagree Neutral Agree
1 2 1 2

Strongly Agree
2

It is important to understand that the myLabeler function will work only
on vectors, since the ordered function requires them. Removing the comma
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in the above command would select a data frame containing only q1f, instead
of a vector, and this would not work.

> summary( myLabeler(myQFvars["qf1"]) ) # Doesn’t work!

Strongly Disagree Disagree Neutral Agree
0 0 0 0

Strongly Agree NA’s
0 1

Now we will use the sapply function to apply myLabeler to myQFvars.

myQFvars <- data.frame( sapply( myQFvars, myLabeler ) )

The sapply function simplified the result to a matrix and the data.frame
function converted that to a data frame. Now the summary function will count
the values and display their labels.

> summary(myQFvars)

qf1 qf2 qf3
Agree :2 Agree :1 Agree :3
Disagree :2 Disagree :1 Disagree :1
Neutral :1 Neutral :1 Strongly Agree:3
Strongly Agree :2 Strongly Agree :2 NA’s :1
Strongly Disagree:1 Strongly Disagree:3

qf4
Agree :2
Neutral :2
Strongly Agree :2
Strongly Disagree:2

If you care to, you can bind myQFvars to our original data frame.

mydata <- cbind(mydata, myQFvars)

11.1.4 Converting Factors into Numeric or Character Variables

R has functions for converting factors into numeric or character vectors
(variables). To extract the numeric values from a factor like gender, we can
use the as.numeric function.

> mydata$genderNums <- as.numeric( mydata$gender )

> mydata$genderNums

[1] 1 1 1 NA 2 2 2 2
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If we want to extract the labels themselves to use in a character vector,
we can do so with the as.character function.

> mydata$genderChars <- as.character( mydata$gender)

> mydata$genderChars

[1] "f" "f" "f" NA "m" "m" "m" "m"

We can apply the same two functions to variable qf1. Since we were careful
to set all of the levels, even for those that did not appear in the data, this
works fine. First, we will do it using as.numeric.

> mydata$qf1Nums <- as.numeric(mydata$qf1)

> mydata$qf1Nums

[1] 1 2 2 3 4 5 5 4

Now let us do it again using the as.character function.

> mydata$qf1Chars <- as.character(mydata$qf1)

> mydata$qf1Chars

[1] "Strongly Disagree" "Disagree" "Disagree"
[4] "Neutral" "Agree" "Strongly Agree"
[7] "Strongly Agree" "Agree"

Where you can run into trouble is when you do not specify the original
numeric values, and they are not simply 1, 2, 3,. . . . For example, let us create
a variable whose original values are 10, 20, 30:

> x <- c(10,20,30)

> x

[1] 10 20 30

> xf <- as.factor(x)

> xf

[1] 10 20 30
Levels: 10 20 30

So far, the factor xf looks fine. However, when we try to extract the original
values with the as.numeric function, we get, instead, the levels 1, 2, 3!
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> as.numeric(xf)
[1] 1 2 3

If we use as.character to get the values, there are no nice value labels,
so we get character versions of the original values.

> as.character(xf)

[1] "10" "20" "30"

If we want those original values in a numeric vector like the one we began
with, we can use as.numeric to convert them. To extract the original values
and store them in a variable x10, we can use the following:

> x10 <- as.numeric( as.character(xf) )

> x10

[1] 10 20 30

The original values were automatically stored as value labels. If you had
specified value labels of your own, like low, medium, and high, the original
values would have been lost. You would then have to recode the values to get
them back. For details, see Section 10.7, “Recoding Variables.”

11.1.5 Dropping Factor Levels

Earlier in this chapter, we created labels for factor levels that did not exist
in our data. While it is not at all necessary, it is helpful if you were to enter
more data or merge your data frame with others that have a full set of values.
However, when using such variables in analysis, it is often helpful to get rid
of such empty levels.

To get rid of the unused levels, append [ ,drop=TRUE] to the variable
reference. For example, if you want to include the empty levels, skip the drop
argument.

> summary( workshop )

R Stata SPSS SAS
4 4 0 0

However, when you need to get rid of empty levels, add the drop argument.

> summary( workshop[ ,drop=TRUE])

R Stata
4 4
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11.1.6 Example Programs for Value Labels or Formats

Stata Program to Assign Value Labels

Note: In Stata, one may not label strings. Therefore, given that gender is
coded as a string with values of “f” and “m,” it cannot be further labeled. It
is, though, common in Stata to have a labeled categorical numeric variable.
The labels are displayed on the screen unless one uses the NOLABEL option.

* Filename: ValueLabels.do

use c:\myRfolder\mydata, clear
label define workshop 1 "R" 2 "Stata"
label values workshop workshop
label define agreement 1 "Strongly Disagree" 2 "Disagree" //
3 "Neutral" 4 "Agree" 5 "Strongly Agree"
label values q1-q4 agreement

R Program to Assign Value Labels and Factor Status

# Filename: ValueLabels.R

setwd("f:/myRfolder")

#---Character Factors---

# Read gender as factor.
mydata <- read.table("mydata.tab")
mydata
class( mydata[ ,"gender"] )

# Read gender as character.
mydata2 <- read.table("mydata.tab", as.is=TRUE)
mydata2
class( mydata2[ ,"gender"] )
summary( mydata2$gender )
rm(mydata2)

#---Numeric Factors---

class( mydata$workshop )
summary( mydata$workshop )

summary( as.factor(mydata$workshop) )
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# Now change workshop into a factor:
mydata$workshop <- factor( mydata$workshop,
levels=c(1,2,3,4),
labels=c("R","SAS","SPSS","Stata") )

mydata

# Now summary only counts workshop attendance.
summary(mydata$workshop)

#---Making the Q Variables Factors---

# Store levels to use repeatedly.
myQlevels <- c(1,2,3,4,5)
myQlevels

# Store labels to use repeatedly.
myQlabels <- c("Strongly Disagree",

"Disagree",
"Neutral",
"Agree",
"Strongly Agree")

myQlabels

mydata$qf1 <- ordered( mydata$q1, myQlevels, myQlabels)
mydata$qf2 <- ordered( mydata$q2, myQlevels, myQlabels)
mydata$qf3 <- ordered( mydata$q3, myQlevels, myQlabels)
mydata$qf4 <- ordered( mydata$q4, myQlevels, myQlabels)

# Get summary and see that workshops are now counted.
summary( mydata[ c("qf1","qf2","qf3","qf4") ] )

#---An Approach for Many Numbered Variables---

# Generate two sets of var names to use.
myQnames <- paste( "q", 1:4, sep="")
myQnames
myQFnames <- paste( "qf", 1:4, sep="")
myQFnames

# Extract the q variables to a separate data frame.
myQFvars <- mydata[ ,myQnames]
myQFvars

# Rename all of the variables with F for Factor.
names(myQFvars) <- myQFnames
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myQFvars

# Create a function to apply the labels to lots of variables.
myLabeler <- function(x) {
ordered(x, myQlevels, myQlabels)

}

# Using the function on one variable.
summary( myLabeler(myQFvars[,"qf1"]) )
summary( myLabeler(myQFvars["qf1"]) ) # Doesn’t work!

# Appling it to all of the variables.
myQFvars <- data.frame( sapply( myQFvars, myLabeler ) )

# Get summary again, this time with labels.
summary(myQFvars)

# Joining the new factors to mydata.
mydata <- cbind(mydata,myQFvars)
mydata

#---Converting Factors to Character/Numeric---

# Converting the gender factor, first with as.numeric.
mydata$genderNums <- as.numeric( mydata$gender )
mydata$genderNums

# Again with as.character.
mydata$genderChars <- as.character( mydata$gender)
mydata$genderChars

# Converting the qf1 factor.
mydata$qf1Nums <- as.numeric(mydata$qf1)
mydata$qf1Nums

mydata$qf1Chars <- as.character(mydata$qf1)
mydata$qf1Chars

# Example with bigger values.
x <- c(10,20,30)
x
xf <- factor(x)
xf
as.numeric(xf)
as.character(xf)
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x10 <- as.numeric( as.character(xf) )
x10

11.2 Variable Labels

Perhaps the most fundamental feature missing from the main R distribution
is support for variable labels. It does have a comment attribute that you can
apply to each variable, but only the comment function itself will display it.

In Stata, you might name a variable BP and want your publication-ready
output to display “Systolic Blood Pressure” instead. Stata does this using the
label define command. We discussed this in part in the previous chapter.

Survey researchers in particular rely on variable labels. They often name
their variables Q1, Q2, and so on and assign labels as the full text of the
survey items. R is the only statistics package that we are aware of that lacks
this feature.

11.2.1 Variable Labels in The Hmisc Package

It is a testament to R’s openness and flexibility that a user can add such a
fundamental feature. Frank Harrell did just that in his Hmisc package [14].
It adds a label attribute to the data frame and stores the labels there. The
fact that variable labels were not included in the main distribution means
that most procedures do not take advantage of what Hmisc adds. The many
wonderful functions in the Hmisc package do, of course.

Unfortunately, some functions, like barplot, no longer work with the vari-
ables once you have labeled them. So it is best to make a copy of your data
frame, apply the labels to it, and only use that version of your data set when
using functions from the Hmisc package. Use your original copy for your other
analyses.

The Hmisc package creates variable labels using its label function.

library("Hmisc")

label(mydata$q1) <- "The instructor was well prepared."
label(mydata$q2) <- "The instructor communicated well."
label(mydata$q3) <- "The course materials were helpful."
label(mydata$q4) <- "Overall, I found this workshop useful."

Now the Hmisc describe function will take advantage of the labels.

> describe( mydata[ ,3:6] )

mydata[, 3:6]

4 Variables 8 Observations
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------------------------------------------------------
q1 : The instructor was well prepared.

n missing unique Mean
8 0 5 3.25

1 2 3 4 5
Frequency 1 2 1 2 2
% 12 25 12 25 25
------------------------------------------------------
q2 : The instructor communicated well.

n missing unique Mean
8 0 5 2.75

1 2 3 4 5
Frequency 3 1 1 1 2
% 38 12 12 12 25
------------------------------------------------------
q3 : The course materials were helpful.

n missing unique Mean
7 1 3 4.143

2 (1, 14%), 4 (3, 43%), 5 (3, 43%)
------------------------------------------------------
q4 : Overall, I found this workshop useful.

n missing unique Mean
8 0 4 3.25

1 (2, 25%), 3 (2, 25%), 4 (2, 25%), 5 (2, 25%)
------------------------------------------------------

As we see below, built-in functions such as summary ignore the labels.

> summary( mydata[ ,3:6] )

q1 q2 q3 q4
Min. :1.00 Min. :1.00 Min. :2.00 Min. :1.00
1st Qu.:2.00 1st Qu.:1.00 1st Qu.:4.00 1st Qu.:2.50
Median :3.50 Median :2.50 Median :4.00 Median :3.50
Mean :3.25 Mean :2.75 Mean :4.14 Mean :3.25
3rd Qu.:4.25 3rd Qu.:4.25 3rd Qu.:5.00 3rd Qu.:4.25
Max. :5.00 Max. :5.00 Max. :5.00 Max. :5.00

NA’s :1.00

11.2.2 Long Variable Names as Labels

You can use illegal variable names of any length by enclosing them in quotes.
This has the advantage of working with most R functions.

> names(mydata) <- c("Workshop","Gender",
+ "The instructor was well prepared.",
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+ "The instructor communicated well.",
+ "The course materials were helpful.",
+ "Overall, I found this workshop useful.")

Notice here that names like q1, q2,. . . do not exist now. The labels are the
variable names.

> names(mydata)

[1] "Workshop"
[2] "Gender"
[3] "The instructor was well prepared."
[4] "The instructor communicated well."
[5] "The course materials were helpful."
[6] "Overall, I found this workshop useful."

Now many R functions, even those built-in, will use the labels. Here we
select the variables by their numeric index values rather than their names:

> summary( mydata[ ,3:6] )
The instructor was well prepared.
Min. :1.00
1st Qu.:2.00
Median :3.50
Mean :3.25
3rd Qu.:4.25
Max. :5.00

The instructor communicated well.
Min. :1.00
1st Qu.:1.00
Median :2.50
Mean :2.75
3rd Qu.:4.25
Max. :5.00
...

You can still select variables by their names, but now typing the whole name
out is an absurd amount of work!

> summary( mydata["Overall, I found this workshop useful."] )

Overall, I found this workshop useful.
Min. :1.00
1st Qu.:2.50
Median :3.50
Mean :3.25
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3rd Qu.:4.25
Max. :5.00

In addition to selecting variables by their index number, it is also easy
to search for keywords in long variable names using the grep function. For
details, see Section 7.6, “Selecting Variables by String Search.” The grep func-
tion call below finds the two variable names containing the string “instructor”
in variables 3 and 4 and then stores their locations in a numeric index vector:

> myvars <- grep( ’instructor’, names(mydata) )

> myvars

[1] 3 4

Now we can use those indexes to analyze the selected variables:

> summary ( mydata[myvars] )

The instructor was well prepared.
Min. :1.00
1st Qu.:2.00
Median :3.50
Mean :3.25
3rd Qu.:4.25
Max. :5.00

The instructor communicated well.
Min. :1.00
1st Qu.:1.00
Median :2.50
Mean :2.75
3rd Qu.:4.25
Max. :5.00

Some important R functions, such as data.frame, convert the spaces in
the labels to periods.

> newdata <- data.frame( mydata )

> names( newdata[ ,3:6] )
[1] "The.instructor.was.well.prepared."
[2] "The.instructor.communicated.well."
[3] "The.course.materials.were.helpful."
[4] "Overall..I.found.this.workshop.useful."

To avoid this change, add the check.names=FALSE argument to the
data.frame function call.
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> newdata <- data.frame(mydata, check.names=FALSE)

> names( newdata[ ,3:6] )

[1] "The instructor was well prepared."
[2] "The instructor communicated well."
[3] "The course materials were helpful."
[4] "Overall, I found this workshop useful."

11.2.3 Other Packages That Support Variable Labels

There are at least two other packages that support variable labels. Unfortu-
nately, we have not had a chance to use them. Martin Elff’s memisc package
[10] offers a wide range of tools for survey research. Jim Lemon and Philippe
Grosjean’s prettyR package [30] stores variable labels as character variables.

11.2.4 Example Programs for Variable Labels

Stata Program for Variable Labels

* Filename: VarLabels.do

use c:\myRfolder\mydata, clear
label var q1 "The instructor was well prepared"
label var q2 "The instructor communicated well"
label var q3 "The course materials were helpful"
label var q4 "Overall, I found this workshop useful"

* summarize the q variables
sum q*

R Program for Variable Labels

# Filename: VarLabels.R

setwd("/myRfolder")
load(file="mydata.RData")
options(width=64)
mydata

# Using the Hmisc label attribute.
library("Hmisc")
label(mydata$q1) <- "The instructor was well prepared."
label(mydata$q2) <- "The instructor communicated well."
label(mydata$q3) <- "The course materials were helpful."
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label(mydata$q4) <-
"Overall, I found this workshop useful."

# Hmisc describe function uses the labels.
describe( mydata[ ,3:6] )

# Buit-in summary function ignores the labels.
summary( mydata[ ,3:6] )

#Assign long variable names to act as variable labels.
names(mydata) <- c("Workshop","Gender",
"The instructor was well prepared.",
"The instructor communicated well.",
"The course materials were helpful.",
"Overall, I found this workshop useful.")

names(mydata)

# Now summary uses the long names.
summary( mydata[ ,3:6] )

# You can still select variables by name.
summary( mydata["Overall, I found this workshop useful."] )

# Searching for strings in long variable names.
myvars <- grep(’instructor’,names(mydata))
myvars
summary ( mydata[myvars] )

# Data.frame replaces spaces with periods.
newdata <- data.frame( mydata )
names( newdata[ ,3:6] )

# Data.frame now keeps the spaces.
newdata <- data.frame( mydata, check.names=FALSE )
names( newdata[ ,3:6] )

11.3 Output for Word Processing and Web Pages

Hypertext Markup Language, or HTML, is the format used for displaying
results on web pages. Most word processors can also easily incorporate HTML
files. For technical writing, the popular LATEX document preparation system
and the LyX document processor share a common format for displaying tables
of results.
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In Stata, getting tabular results into your word processor or web page is
as easy as selecting it and choosing, Edit>Copy, Copy Table or Copy Table
as HTML. Then you just paste it where you need it. It also has specialized,
user-written commands like outreg2 and outtex.

In R, the output in the console is just text. It does not even have tabs
between columns. You can cut and paste it into a word processor, but it
would only appear in neat columns when displayed with a mono-spaced font
like Courier.

However, there are a number of packages and functions that enable you to
create nicely formatted results.

Table 11.1. Our practice data set printed in LATEX.

workshop gender q1 q2 q3 q4

1 R f 1.00 1.00 5.00 1.00
2 SAS f 2.00 1.00 4.00 1.00
3 R f 2.00 2.00 4.00 3.00
4 SAS 3.00 1.00 3.00
5 R m 4.00 5.00 2.00 4.00
6 SAS m 5.00 4.00 5.00 5.00
7 R m 5.00 3.00 4.00 4.00
8 SAS m 4.00 5.00 5.00 5.00

11.3.1 The xtable Package

David Dahl’s xtable package [8] can convert your R results into both HTML
and LATEX. The following is our practice data frame as it appears from the
print function.

> print(mydata)

workshop gender q1 q2 q3 q4
1 R f 1 1 5 1
2 SAS f 2 1 4 1
3 R f 2 2 4 3
4 SAS <NA> 3 1 NA 3
5 R m 4 5 2 4
6 SAS m 5 4 5 5
7 R m 5 3 4 4
8 SAS m 4 5 5 5

In Table 11.1, you can see mydata printed again after loading the xtable
package. How did we get such nice output? The following are the function
calls and output:
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> library("xtable")

> myXtable <- xtable(mydata)

> print(myXtable, type="latex")

% latex table generated in R 2.9.2 by xtable 1.5-5 package
% Sat Oct 17 11:55:58 2009
\begin{table}[ht]
\begin{center}
\begin{tabular}{rllrrrr}
\hline
& workshop & gender & q1 & q2 & q3 & q4 \\
\hline

1 & R & f & 1.00 & 1.00 & 5.00 & 1.00 \\
2 & SAS & f & 2.00 & 1.00 & 4.00 & 1.00 \\
3 & R & f & 2.00 & 2.00 & 4.00 & 3.00 \\
4 & SAS & & 3.00 & 1.00 & & 3.00 \\
5 & R & m & 4.00 & 5.00 & 2.00 & 4.00 \\
6 & SAS & m & 5.00 & 4.00 & 5.00 & 5.00 \\
7 & R & m & 5.00 & 3.00 & 4.00 & 4.00 \\
8 & SAS & m & 4.00 & 5.00 & 5.00 & 5.00 \\
\hline

\end{tabular}
\end{center}
\end{table}

Notice that the print command has a new method for handling objects
with a class of xtable, and a new type argument. The value, type="latex"
is the default, so we did not need to list it here. However, it makes it easy to
guess that type="html" is the way to get HTML output.

The LATEX output begins with the line “% latex table generated in R. . . .”
If you are not accustomed to the LATEX language, it may see quite odd, but
when we pasted it into this chapter, it came out looking nice.

If we had instead used type="html", we could have used the output on
web pages or in most any word processor.

The following is another example, this time using the output from a linear
model that we will examine later in Section 17.5, “Linear Regression.”

> mymodel <- lm( q4~q1+q2+q3, data=mydata)

> myXtable <- xtable(mymodel)

Before printing the result, let us add a label and caption to the result. If
this were an HTML file, these commands would add an anchor and a title,
respectively.
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> label(myXtable) <- c("xtableOutput")

> caption(myXtable) <-
+ c("Linear model results formatted by xtable.")

> print(myXtable,type="latex")

% latex table generated in R 2.9.2 by xtable 1.5-5 package
% Sat Oct 17 12:49:59 2009
\begin{table}[ht]
\begin{center}
\begin{tabular}{rrrrr}
\hline
& Estimate & Std. Error & t value & Pr($>$$|$t$|$) \\
\hline

(Intercept) & -1.3243 & 1.2877 & -1.03 & 0.3794 \\
q1 & 0.4297 & 0.2623 & 1.64 & 0.1999 \\
q2 & 0.6310 & 0.2503 & 2.52 & 0.0861 \\
q3 & 0.3150 & 0.2557 & 1.23 & 0.3058 \\
\hline

\end{tabular}
\caption{Linear model results formatted by xtable.}
\label{xtableOutput}
\end{center}
\end{table}

The caption and label appear near the bottom of the output. You can see
the nicely formatted table in Table 11.2. We cheated a bit on the previous
table by adding the caption manually.

Table 11.2. Linear model results formatted by xtable

Estimate Std. Error t value Pr(>|t|)
(Intercept) −1.3243 1.2877 −1.03 0.3794
q1 0.4297 0.2623 1.64 0.1999
q2 0.6310 0.2503 2.52 0.0861
q3 0.3150 0.2557 1.23 0.3058

11.3.2 Other Options for Formatting Output

There several other packages that can provide nicely formatted output. Roger
Koenker’s quantreg package [24] includes the latex.table function, which
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creates LATEX output. Eric Lecoutre’S R2HTML package [28] includes over a
dozen functions for writing output in HTML format.

Perhaps the most interesting options to get nice output are the Sweave
function and ODFweave package. Friedrich Leisch’s Sweave function [29] comes
with the main R installation. It allows you to “weave” your R program into
your LATEX or LyX file. When you compile your document, the R programming
code is replaced with R output! This means that you have a single document
that contains both your analysis and the resulting report.

The odfWeave package [26] by Max Kuhn and Steve Weaston works
similarly to Sweave but using the Open Document Format, or ODF. Many
word processors, including Microsoft Word and OpenOffice, can work with
ODF files.

11.3.3 Example Programs for Formatting Output

Stata Program for Creating Nice Output

* Filename: NiceOutput.do

use c:\myRfolder\mydata, list
regress q4 q1 q2 q3
outtex

R Program for Creating Nice Output

# Filename: NiceOutput.R

options(width=60)
setwd("/myRfolder")
load("mydata.RData")
attach(mydata)

library("xtable")

# Formatting a Data Frame

print(mydata)
myXtable <- xtable(mydata)
class(myXtable)

print(myXtable, type="html")
print(myXtable, type="latex")

# Formatting a Linear Model
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mymodel <- lm( q4~q1+q2+q3, data=mydata)
myXtable <- xtable(mymodel)

label(myXtable) <- c("xtableOutput")
caption(myXtable) <-
c("Linear model results formatted by xtable")

print(myXtable,type="html")
print(myXtable,type="latex")
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Generating Data

Stata can generate data in a number of ways. The simplest is by use of the
generate command. It can generate data in loops and through the use of
matrix operations as well.

Generating data is important to both R and Stata users. As we have seen,
many R functions are controlled by numeric, character, or logical vectors. You
can generate those vectors using the methods in this chapter, making quick
work of otherwise tedious tasks.

The following are some of the ways we have used vectors as arguments to
R functions.

• To create variable names that follow a pattern like q1, q2,. . . using the
paste function For an example, see Chap 7.

• To create a set of index values to select variables, as with mydata[ ,3:6].
Here the colon operator generates the simple values 3, 4, 5, 6. The methods
below can generate a much wider range of patterns.

• To generate sets of column widths when reading data from fixed-width text
files. Our example used a very small vector of value widths, but the meth-
ods in this chapter could generate long sets of patterns to read hundreds
of variables with a single command.

Generating data is also helpful in more general ways for situations similar
to those in other statistics packages.

• Generating data allows you to demonstrate various analytic methods, as
we are doing in this book. It is not easy to find one data set to use for all
of the methods you might like to use.

• Generating data lets you create very small examples that can help you
debug an otherwise complex problem. Debugging a problem on a large
data set often introduces added complexities and slows down each new at-
tempted execution. When you can demonstrate a problem with the small-
est possible set of data, it helps you focus on the exact nature of the
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problem. This is usually the best way to report a problem when request-
ing technical assistance. If possible, provide a small generated example
when you ask questions to the R-help e-mail support list.

• When you are designing an experiment, the levels of the experimental
variables usually follow simple repetitive patterns. You can generate those
and then add the measured outcome values to it manually. With such a
nice neat data set to start with, it is tempting to collect data in that order.
However, it is important to collect it in random order whenever possible
so that factors such as human fatigue or machine wear do not bias the
results of your study.

Some of our data generation examples use R’s random number generator.
It will give a different result each time you use it unless you use the set.seed
function before each function that generates random numbers.

12.1 Generating Numeric Sequences

R generates data using specialized functions. We have used the simplest one:
the colon operator. We can generate a simple sequence with

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

You can store the results of any of our data generation example in a vector
using the assignment operator. So we can create the id variable we used with

> id <- 1:8

> id

[1] 1 2 3 4 5 6 7 8

The seq function generates sequences like this too, and it offers more
flexibility. The following is an example:

> seq(from=1, to=10, by=1)

[1] 1 2 3 4 5 6 7 8 9 10

The seq function call above has three arguments.

1. The from argument tells it where to begin the sequence.
2. The to argument tells it where to stop.
3. The by argument tells it the increments to use between each number.

The following is an example that goes from 5 to 50 in increments of 5.
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> seq(from=5, to=50, by=5)

[1] 5 10 15 20 25 30 35 40 45 50

Of course, you do not need to name the arguments if you use them in order.
So you can do the above example using this form too.

> seq(5, 50, 5)

[1] 5 10 15 20 25 30 35 40 45 50

12.2 Generating Factors

The gl function generates levels of factors. The following is an example that
generates the series 1,2,1,2. . . :

> gl(n=2, k=1, length=8)

[1] 1 2 1 2 1 2 1 2

Levels: 1 2

The gl function call above has three arguments.

1. The n argument tells it how many levels your factor will have.
2. The k argument tells it how many of each level to repeat before incre-

menting to the next value.
3. The length argument is the total number of values generated. Although

this would usually be divisible by n*k, it does not have to be.

To generate our gender variable, we just need to change k to be 4.

> gl(n=2, k=4, length=8)

[1] 1 1 1 1 2 2 2 2

Levels: 1 2

There is also an optional label argument. Here we use it to generate
workshop and gender, complete with value labels.

> workshop <- gl(n=2, k=1, length=8, label=c("R","Stata") )

> workshop

[1] R Stata R Stata R Stata R Stata
Levels: R Stata
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> gender <- gl( n=2, k=4, length=8, label=c("f","m") )

> gender

[1] f f f f m m m m
Levels: f m

12.3 Generating Repetitious Patterns (Not Factors)

When you need to generate repetitious sequences of values, you are often
creating levels of factors, which is covered in the previous section. However,
sometimes you need similar patterns that are numeric, not factors. The rep
function generates these.

> gender <- rep(1:2, each=4, times=1)

> gender

[1] 1 1 1 1 2 2 2 2

The call to the rep function above has three simple arguments.

1. The set of numbers to repeat. We have used the colon operator to generate
the values 1 and 2. You could use the c function here to list any set of
numbers you need.

2. The each argument tells it often to repeat each number in the set. Here
we need four of each number.

3. The times argument tells it the number of times to repeat the (set by
each) combination. For this example, we only needed one.

Note that while we are generating the gender variable as an easy example,
rep did not create gender as a factor. To make it one, you would have to use
the factor function. You could instead generate it directly as a factor using
the more appropriate gl function.

Next, we generate the workshop variable by repeating each number in the
1:2 sequence only one time each but repeat that set four times.

> workshop <- rep(1:2, each=1, times=4)

> workshop

[1] 1 2 1 2 1 2 1 2

By comparing the way we generated gender and workshop, the meaning of
the rep function’s arguments should become clear.
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Now we come to the only example that we actually needed for the rep
function in this book. To generate a constant! We use a variation of this
in Chapter 15, Traditional Graphics, to generate a set of zeros to use on a
histogram.

> myZeros <- rep(0, each=8)

> myZeros

[1] 0 0 0 0 0 0 0 0

12.4 Generating Integer Measures

R’s ability to generate samples of integers is easy to use and is in some respects
similar to that of Stata. In other respects, as we will discover, they are quite
dissimilar. You provide a list of possible values and then use the sample
function to generate your data. First, we put the Likert scale values 1, 2, 3,
4, and 5 into myValues.

> myValues <- c(1, 2, 3, 4, 5)

Next, we set the random number seed using the set.seed function, so you
can see the same result when you run it.

> set.seed(1234) #Set random number seed.

Finally, we generate a random sample size of 1,000 from myValues using the
sample function. We are sampling with replacement so we can use the five
values repeatedly.

> q1 <- sample(myValues, size=1000, replace=TRUE)

Now we can check its mean and standard deviation.

> mean(q1)

[1] 3.029

> sd(q1)

[1] 1.412854

To generate a sample using the same numbers but with a roughly nor-
mal distribution, we can change the values to have more as you reach the
center.
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> myValues <- c(1, 2, 2, 3, 3, 3, 4, 4, 5)
> set.seed(1234)
> q2 <- sample( myValues, 1000, replace = TRUE)

> mean(q2)
[1] 3.012

> sd(q2)
[1] 1.169283

You can see from the bar plots in Fig. 12.1 that our first variable follows a
uniform distribution (left) and our second one follows a normal distribution
(right). Do not worry about how we created the plot; we will cover than that
in Chapter 15, “Traditional Graphics.”

We could have done the latter example more precisely by generating 1,000
samples from a normal distribution and then chopping it into 5 equally spaced
groups. We will cover generating samples from continuous samples in the next
section.

> barplot( table(q1) )
> barplot( table(q2) )

If you would like to generate two Likert-scale variables that have a mean
difference, you can do so by providing them with different sets of values from
which to sample. In the example below, we nest the call to the c function,
to generate a vector of values, within the call to the sample function. Notice
that the vector for q1 has no values greater than 3 and q2 has none less than
3. This difference will create the mean difference. Here we are only asking for
a sample size of 8.

> set.seed(1234)

1 2 3 4 5 1 2 3 4 5
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0
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Fig. 12.1. Barplots showing the distributions of our generated integer variables.
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> q1 <- sample( c(1, 2, 2, 3), size=8, replace = TRUE)

> mean(q1)
[1] 1.75

> set.seed(1234)

> q2 <- sample( c(3, 4, 4, 5), size=8, replace = TRUE)

> mean(q2)
[1] 3.75

12.5 Generating Continuous Measures

You can generate continuous random values from a uniform distribution using
the runif function.

> set.seed(1234)

> x1 <- runif(n=1000)

> mean(x1)
[1] 0.5072735

> sd(x1)
[1] 0.2912082

where the n argument is the number of values to generate. You can also
provide min and max arguments to set the lowest and highest possible values,
respectively. So you might generate 1,000 pseudo-test-scores that range from
60 to 100 with

> set.seed(1234)

> x2 <- runif(n=1000, min=60, max=100)

> mean(x2)
[1] 80.29094

> sd(x2)
[1] 11.64833

Normal distributions with a mean of 0 and standard deviation of 1 have
many uses. You can use the rnorm function to generate 1,000 values from such
a distribution with
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> set.seed(1234)

> x3 <- rnorm(n=1000)

> mean(x3)
[1] -0.0265972

> sd(x3)
[1] 0.9973377

You can specify other means and standard deviations as in the following
example:

> set.seed(1234)

> x4 <- rnorm(n=1000, mean=70, sd=5)

> mean(x4)
[1] 69.86701

> sd(x4)
[1] 4.986689

We can use the hist function to see what two of these distributions look
like, see Fig. 12.2.

> hist(x2)
> hist(x4)
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Fig. 12.2. Histograms showing the distributions of our continuous generated data.
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12.6 Generating a Data Frame

Putting all of the above ideas together, we can use the following function calls
to create a data frame similar to our practice data set, with a couple of test
scores added. We are not bothering to set the random number generator seed,
so each time you run this, you will get different results.

> id <- 1:8

> workshop <- gl( n=2, k=1,
+ length=8, label=c("R","Stata") )

> gender <- gl( n=2, k=4,
+ length=8, label=c("f","m") )

> q1 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)
> q2 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)
> q3 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)
> q4 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)

> pretest <- rnorm( n=8, mean=70, sd=5)
> posttest <- rnorm( n=8, mean=80, sd=5)

> myGenerated <- data.frame(id, gender, workshop,
+ q1, q2, q3, q4, pretest, posttest)

> myGenerated
id gender workshop q1 q2 q3 q4 pretest posttest

1 1 f R 1 5 2 3 67.77482 77.95827
2 2 f Stata 1 4 2 5 58.28944 78.11115
3 3 f R 2 3 2 4 68.60809 86.64183
4 4 f Stata 2 5 2 4 64.09098 83.58218
5 5 m R 1 5 3 4 70.16563 78.83855
6 6 m Stata 2 3 3 3 65.81141 73.86887
7 7 m R 2 4 3 4 69.41194 85.23769
8 8 m Stata 1 4 1 4 66.29239 72.81796

A more complex example is presented in Appendix D.

12.7 Example Programs for Generating Data

12.7.1 Stata Program for Generating Data

* Filename: GenerateData.do
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clear
set obs 8

* ID
gen byte id = _n

* workshop
gen byte workshop = mod(_n, 2)
replace workshop = 2 if workshop==0

* gender
gen gender = int(runiform()+.5)
label define gender 0 "f" 1 "m"
label values gender gender

* Q variables
forvalues i = 1/8 {
forvalues j = 1/4 {
cap gen q‘j’ = round(runiform() * ‘i’ *‘j’)+1
}

}

* Pretest and Posttest
gen pretest = int(normal(runiform())*100)
gen posttest = int(normal(runiform())*100)

list

12.7.2 R Program for Generating Data

# Filename: GenerateData.R

# Simple sequences.

1:10
seq(from=1,to=10,by=1)
seq(from=5,to=50,by=5)
seq(5,50,5)

# Generating our ID variable
id <- 1:8
id
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# gl function Generates Levels.

gl(n=2,k=1,length=8)
gl(n=2,k=5,length=8)

#Adding labels.

workshop <- gl(n=2,k=1,length=8,label=c("R","Stata"))
workshop

gender <- gl( n=2,k=4,length=8, label=c("f","m") )
gender

# The rep function.

# Simple sequences.

1:10
seq(from=1,to=10,by=1)
seq(from=5,to=50,by=5)
seq(5,50,5)

# Generating our ID variable
id <- 1:8
id

# gl function Generates Levels.

gl(n=2,k=1,length=8)
gl(n=2,k=5,length=8)

#Adding labels.

workshop <- gl(n=2,k=1,length=8,label=c("R","Stata"))
workshop

gender <- gl( n=2,k=4,length=8, label=c("f","m") )
gender

# Generating uniformly distributed Likert data

myValues <- c(1, 2, 3, 4, 5)
set.seed(1234)

# Simple sequences.
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1:10
seq(from=1, to=10, by=1)
seq(from=5, to=50, by=5)
seq(5, 50, 5)

# Generating our ID variable
id <- 1:8
id

# gl function Generates Levels.

gl(n=2,k=1,length=8)
gl(n=2,k=5,length=8)

#Adding labels.

workshop <- gl(n=2,k=1,length=8,label=c("R","Stata"))
workshop

gender <- gl( n=2,k=4,length=8, label=c("f","m") )
gender

# Generating repetitious Patterns (Not Factors).

gender <- rep(1:2, each=4, times=1)
gender

workshop <- rep(1:2, each=1, times=4)
workshop

myZeros <- rep(0, each=8)
myZeros

# Generating uniformly distributed Likert data

myValues <- c(1, 2, 3, 4, 5)
set.seed(1234)
q1 <- sample( myValues, size=1000, replace = TRUE)
mean(q1)
sd(q1)

# Generating normally distributed Likert data

myValues <- c(1, 2, 2, 3, 3, 3, 4, 4, 5)
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set.seed(1234)
q2 <- sample( myValues , size=1000, replace = TRUE)
mean(q2)
sd(q2)

# Plot details in Traditional Graphics chapter.
par( mar=c(2, 2, 2, 1)+0.1 )
par( mfrow=c(1, 2) )
barplot( table(q1) )
barplot( table(q2) )
# par( mfrow=c(1, 1) ) #Sets back to 1 plot per page.
# par( mar=c(5, 4, 4, 2)+0.1 )

# Two Likert scales with mean difference
set.seed(1234)
q1 <- sample( c(1, 2, 2, 3), size=8, replace = TRUE)
mean(q1)

set.seed(1234)
q2 <- sample( c(3, 4, 4, 5), size=8, replace = TRUE)
mean(q2)

# Generating continuous data

# From uniform distribution.
# mean=0.5
set.seed(1234)
x1 <- runif(n=1000)
mean(x1)
sd(x1)

# From a uniform distribution
# between 60 and 100
set.seed(1234)
x2 <- runif(n=1000, min=60, max=100)
mean(x2)
sd(x2)

# From a normal distribution.

set.seed(1234)
x3 <- rnorm(n=1000)
mean(x3)
sd(x3)
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set.seed(1234)
x4 <- rnorm(n=1000, mean=70, sd=5)
mean(x4)
sd(x4)

# Plot details are in Traditional Graphics chapter.
par( mar=c(2,2,2,1)+0.1 )
par( mfrow=c(1,2) )
hist(x2)
hist(x4)
# par( mfrow=c(1,1) ) #Sets back to 1 plot per page.
# par( mar=c(5,4,4,2)+0.1 )

# Generating a Data Frame.

id <- 1:8
workshop <- gl( n=2, k=1,
length=8, label=c("R","Stata") )

gender <- gl( n=2, k=4,
length=8, label=c("f","m") )

q1 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)
q2 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)
q3 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)
q4 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)
pretest <- rnorm( n=8, mean=70, sd=5)
posttest <- rnorm( n=8, mean=80, sd=5)

myGenerated <- data.frame(id, gender, workshop,
q1, q2, q3, q4, pretest, posttest)

myGenerated
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Managing Your Files and Workspace

Stata and R both have commands that replicate many of your computer’s
operating system functions such as listing names of objects, deleting them, set-
ting search paths, and so on. Learning how to use these commands is especially
important because, like Stata, R stores its data in your computer’s limited ran-
dom access memory. You need to make the most of your computer’s memory
when handling large data sets or when a command is highly iterative.

13.1 Loading and Listing Objects

You can see what objects are in your workspace with the ls function. To list
all objects such as data frames, vectors, and functions, use

ls()

The objects function does the same thing and its name is more descrip-
tive, but ls is more widely used since it is the same command that UNIX,
Linux, and MacOS X users can use to list the files in a particular directory
or folder (without the parentheses).

When you first start R, using the ls function will tell you there is nothing
in your workspace. How it does this is quite odd by Stata’s standards. It tells
you that the list of objects in memory is a character vector with zero values.

> ls()

character(0)

The file myall.RData contains all of the objects we created in Chapter 5,
“Programming Language Basics.” After loading that into our workspace using
the load function, ls will show us the objects that are available.

> load("myall.RData")

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 291
and Computing, DOI 10.1007/978-1-4419-1318-0 13,
© Springer Science+Business Media, LLC 2010
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> ls()

[1] "gender" "mydata" "mylist" "mymatrix" "q1"
[6] "q2" "q3" "q4" "workshop"

You can use the pattern argument to search for any regular expression. There-
fore, to get a list of all objects that begin with the string “my,” you can use
the following:

> ls(pattern="my")

[1] "mydata" "mylist" "mymatrix"

The ls function does not look inside data frames to see what they contain,
and it does not even tell you when an object is a data frame. You can use
many of the functions we have already covered to determine what an object
is and what it contains.

To review, typing its name or using the print function will show you the
whole object or at least something about it. What print shows you depends
on the class of the object. The head and tail functions will show you the top
or bottom few lines of vectors, matrices, tables, data frames, or functions.

The class function will tell you if an object is a data frame, list, or some
other object. The names function will show you object names within objects
such as data frames, lists, vectors, and matrices. The attributes function
will display all of the attributes that are stored in an object such as variable
names, the object’s class, and any labels that it may contain.

> attributes(mydata)

$names

[1] "id" "workshop" "gender" "q1" "q2" "q3" "q4"

$class

[1] "data.frame"

$row.names

[1] 1 2 3 4 5 6 7 8

The str function displays the structure of any R object in a compact form.

> str(mydata)

’data.frame’: 8 obs. of 6 variables:
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$ workshop: Factor w/ 4 levels "R","Stata","SPSS",..:
1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : num 1 2 2 3 4 5 5 4

$ q2 : num 1 1 2 1 5 4 3 5

$ q3 : num 5 4 4 NA 2 5 4 5

$ q4 : num 1 1 3 3 4 5 4 5

The str function works on functions too. The following is the structure it
shows for the lm function.

> str( lm )

function (formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE,

qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

The ls.str function applies the str function to every object in your
workspace. It is essentially a combination of the ls function and the str
function. The following is the structure of all of the objects we had in our
workspace as we wrote this paragraph.

> ls.str()

myCounts : ’table’ int [1:2, 1:2] 2 2 1 2

myCountsDF : ’data.frame’: 4 obs. of 3 variables:

$ gender : Factor w/ 2 levels "f","m": 1 2 1 2

$ workshop: Factor w/ 2 levels "R","Stata": 1 1 2 2

$ Freq : int 2 2 1 2

mydata : ’data.frame’: 8 obs. of 6 variables:

$ workshop: int 1 2 1 2 1 2 1 2
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$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : int 1 2 2 3 4 5 5 4

$ q2 : int 1 1 2 1 5 4 3 5

$ q3 : int 5 4 4 NA 2 5 4 5

$ q4 : int 1 1 3 3 4 5 4 5

Frank Harrell’s Hmisc package has a contents function that is modeled
after the SAS Contents procedure. It also lists names and other attributes as
shown below. However, it works only with data frames.

> library("Hmisc")

Attaching package: ’Hmisc’
...

> contents(mydata)

Data frame:mydata 8 observations and 7 variables
Maximum # NAs:1

Levels Storage NAs
id integer 0
workshop integer 0
gender 2 integer 1
q1 integer 0
q2 integer 0
q3 integer 1
q4 integer 0

+--------+------+
|Variable|Levels|
+--------+------+
| gender | f,m |
+--------+------+

13.2 Understanding Your Search Path

Once you have data in your workspace, where exactly is it? It is in an
environment called .GlobalEnv. The search function will show us where that
resides in R’s search path. Since the search path is affected by any packages
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or data files you load, we will start R with a clean workspace and load our
practice data frame, mydata.

> setwd("/myRfolder")

> load("mydata.RData")

> ls()

[1] "mydata"

Now let us examine R’s search path.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Since our workspace, .GlobalEnv, is in position 1, R will search it first.
By supplying no arguments to the ls function, we were asking for a listing of
objects in the first position of the search path. Let us see what happens if we
apply ls to different levels. We can either use the path position value, 1, 2,
3,. . . or their names.

> ls(1) #This uses position number.

[1] "mydata"

> ls(".GlobalEnv") #This uses name.

[1] "mydata"

The package:stats at level 2 contains some of R’s built-in statistical func-
tions. There are a lot of them, so let us use the head function to show us just
the top few results.

> head( ls(2) )

[1] "acf" "acf2AR" "add.scope" "add1"
[5] "addmargins" "aggregate"

> head( ls("package:stats") ) #Same result.

[1] "acf" "acf2AR" "add.scope" "add1"
[5] "addmargins" "aggregate"
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13.3 Attaching Data Frames

Understanding the search path is essential to understanding what the attach
function really does. We will attach mydata and see what happens.

> attach(mydata)

> search()

[1] ".GlobalEnv" "mydata"
[3] "package:stats" "package:graphics"
[5] "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods"
[9] "Autoloads" "package:base"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"
[6] "q4" "workshop"

You can see that attach has made virtual copies of the variables stored in
mydata and placed them in search position 2. When we refer to just “gender”
rather than “mydata$gender,” R looks for it in position 1 first. It does find
anything with just that simple name even though mydata$gender is in that
position. R then goes on to position 2 and finds it. This is the process that
makes it so easy to refer to variables by their simple component names. It
also makes them very confusing to work with if you create new variables! Let
us say we want to take the square root of q4:

> q4 <- sqrt(q4)

> q4

[1] 1.000000 1.000000 1.732051 1.732051 2.000000 2.236068
[7] 2.000000 2.236068

This looks like it worked fine. However, let us list the contents of search
positions 1 and 2 to see what really happened:

> ls(1)

[1] "mydata" "q4"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"
[6] "q4" "workshop"
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R created the new version of q4 as a separate vector in our main workspace.
The copy of q4 that the attach function put in position 2 was never changed!
Since search position 1 dominates, asking for q4 will cause R to show us the
one in our workspace. Asking for mydata$q4 will cause R to go inside the data
frame and show us the original, untransformed values.

There are two important lessons to learn from this:

1. If you want to create a new variable inside a data frame, either fully
specify the name using mydata$varname or mydata[ ,"varname"], or use
the tranform function described in Section 10.1, TransformingVariables.

2. When two objects have the same name, R will always choose the object
higher in the search path.

When the attach function places objects in position 2 of the search path
(a position you can change but rarely need to), those objects will block, or
mask, any others of the same name in lower positions (i.e., further toward the
end of the search list). In the following example, I started with a fresh launch
of R, loaded mydata, and attached it twice to see what happens.

> attach(mydata)
> attach(mydata)

The following object(s) are masked from mydata (position 3):
gender id q1 q2 q3 q4 workshop

> search()

[1] ".GlobalEnv" "mydata" "mydata"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

Note that above mydata is now in search positions 2 and 3. If you refer to
any variable or any object, R has to settle which one you mean (they do not
need to be identical, as in this example.) The message about masked objects
in position 3 tells us that the second attach brought in variables with those
names into position 2. The variables from the first attach were then moved to
position 3, and those with common names were masked (all of them in this
example). Therefore, we can no longer refer to them by their simple names;
those names are already in use somewhere higher in the search path. In this
case, the variables from the second attach went to position 2 and they will be
used. However, if objects with any of those names were in our main workspace
(not in a data frame), they would be used instead.

When we first learned about vectors, we created q1, q2, q3, and q4 as
vectors and then formed them into a data frame. If we had left them as
separate vectors in our main workspace, even the first attach would have given
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us a similar message. The vectors in position 1 would have blocked those with
the same names in positions 2 and 3.

This masking effect can block access to any object. In Section 2.2, “Loading
an Add-on Package,” we saw that when two packages share a function name,
the most recent one loaded from the library is the one R will use. You can
avoid getting the warning about masked objects by first detaching packages
or data frames you previously attached, before attaching the second.

13.4 Attaching Files

So far, we have only used the attach function with data frames. It can also
be very useful with R data files. If you load a file, it brings all objects into
your workspace. However, if you attach the file, you can bring in only what
you need and then detach it.

For example, let us create a variable x and then add only the vector q4 from
the file myall.RData, a file that contains the objects we created in Chapter 5,
“Programming Language Basics.” Recall that in that chapter, we created each
of our practice variables first as vectors and then converted them to factors,
a matrix, a data frame, and a list.

> x <- c(1,2,3,4,5,6,7,8)

> attach("myall.RData")

> search()

[1] ".GlobalEnv" "file:myall.RData" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

> q4 <- q4

The last statement looks quite odd! What is going on? The attach function
loaded myall.RData, but put it at position 2 in the search path. R will place
any variables you create in your workspace (position 1) and the attached copy
allows R to find q4 in position 2. So it copies it from there to your workspace.
Let us look at what we now have in both places.

> ls(1) # Your workspace.

[1] "q4" "x"

> ls(2) # The attached file.
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[1] "gender" "mydata" "mylist" "mymatrix" "q1"
[6] "q2" "q3" "q4" "workshop"

> detach(2)

So we have succeeded in copying a single vector, q4, from a data frame
into our workspace. The final detach removes "file:myall.RData" from the
search path.

13.5 Removing Objects from Your Workspace

To delete an object from your workspace, use the remove function or the
equivalent rm function as in

rm(mydata)

The rm function is one of the few functions that will accept multiple objects
separated by commas; that is, the names do not have to be in a single character
vector. In fact, the names cannot simply be placed into a single vector. We
will soon see why.

Let us load myall.RData, so we will have lots of objects to remove.

> load(file="myall.RData")

> ls()

[1] "mystats" "gender" "mydata" "mylist" "mymatrix"
[6] "q1" "q2" "q3" "q4" "workshop"

We do not need our vectors, workshop, gender, and the q variable since
they are in our dataframe, mydata. To remove these extraneous variables, we
can use

rm(workshop,gender,q1,q2,q3,q4)

If we had lots of variables, manually entering each name would get quite
tedious. We can instead use any of the shortcuts for creating sets of variable
names described in Chapter 7, “Selecting Variables.” Let us use the ls func-
tion with its pattern argument to find all of the objects that begin with the
letter “q.”

> myQvars <- ls(pattern="q")

> myQvars

[1] "q1" "q2" "q3" "q4"
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Now let us use the c function to combine workshop and gender with myQ-
vars:

> myDeleteItems <- c("workshop","gender",myQvars)

> myDeleteItems

[1] "workshop" "gender" "q1" "q2" "q3"
[6] "q4"

Note that myQvars is not enclosed in quotes in the first line. It is already
a character vector that we are adding to the character values of “workshop”
and “gender.”

Finally, we can delete them all at once by adding the list argument to
the rm function:

> rm(list=myDeleteItems)
>
> ls()
[1] "mydata" "myDeleteItems" "mylist" "mymatrix"
[5] "myQvars" "mystats"

Finally, we can remove myQvars and myDeleteItems.

> rm(myQvars,myDeleteItems)

> ls()

[1] "mydata" "mylist" "mymatrix" "mystats"

It may appear that a good way to delete the list of objects in myDeleteIt-
ems would be to use

rm(myDeleteItems)

or, equivalently,

rm( c("workshop","gender","q1","q2","q3","q4") )

However, that would delete only the list of item names, not the items them-
selves! That is why the rm function needs a list argument when dealing with
character vectors.

Once you are happy with the objects remaining in your workspace, you
can save them all with

save.image("myFavorites.RData")

If you want to delete all of the visible objects in your workspace, you can
do the following. Be careful, there is no “undo” function for this radical step!
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myDeleteItems <- ls()

rm( list=myDeleteItems )

Doing this in two steps makes it clear what is happening, but, of course,
you can nest these two functions. This approach looks quite cryptic at
first, but I hope the above steps make it much more obvious what is
occurring.

rm( list=ls() )

To conserve workspace by saving only the variables you need within a data
frame, see Section 10.8, “Keeping and Dropping Variables.” The rm function
cannot drop variables stored within a data frame.

13.6 Minimizing Your Workspace

Removing unneeded objects from your workspace is one important way to save
space. You can also use the cleanup.import function from Frank Harrell’s
Hmisc package. It automatically stores the variables in a data frame in their
most compact form. You use it as

library("Hmisc")

mydata <- cleanup.import(mydata)

If you have not installed Hmisc, see Chapter 2, “Installing R and Add-on
Packages,” for details.

13.7 Setting Your Working Directory

Your working directory is the location R uses to retrieve or store files, if you
do not otherwise specify the full path for filenames. On Windows, the default
working directory is My Documents. On Windows XP or earlier, that is
C:\Documents and Settings\username\My Documents. On Windows Vista or
later, that is C:\Users\Yourname\My Documents. On Macintosh, the default
working directory is /Users/username.

The getwd function will tell you the current location of your working
directory:

> getwd()

[1] "C:/Users/Muenchen/My Documents"
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Windows users can see and/or change their working directory by choosing
File>Change dir. . . . R will then display a window that you use to browse to
any folder you like.

On any operating system, you can change the working directory with the
setwd function. This is the equivalent to the Stata cd command. Simply
provide the full path between the quotes:

setwd("/myRfolder")

We discussed earlier that R uses the forward slash “/” even on computers
running Windows. That is because within strings, R uses “\t,” “\n” and “\\”
to represent the single characters tab, newline, and backslash, respectively. In
general, a backslash followed by another character may have a special meaning.
So when using R on Windows, always specify the paths with either a single
forward slash or two backslashes in a row. This book uses the single forward
slash because that works with R on all operating systems.

You can set your working directory automatically by putting it in your
.Rprofile. For details, see Appendix C, “Automating Your R Setup.”

13.8 Saving Your Workspace

Throughout this book we manually save the objects we create, naming them
as we do so. That is the way almost all other computer programs work. R also
has options for saving your workspace automatically when you exit.

13.8.1 Saving Your Workspace Manually

To save the entire contents of your workspace, you can use the save.image
function:

save.image(file="myWorkspace.RData")

This will save all your objects, data, functions, everything. Therefore, it is
usually good to remove unwanted objects first, using the rm function. See
Section 13.5, “Removing Objects from Your Workspace,” for details.
If you are a Windows user, R does not automatically append the .RData exten-
sion, as do most Windows programs, so make sure you enter it
yourself.

Later, when you start R, you can use File>Load Workspace to load it from
the hard drive back into the computer’s memory. You can also restore them
using the load function.

load(file="myWorkspace.RData")

If you want to save only a subset of your workspace, the save function
allows you to list the objects to save, separated by commas, before the file
argument:
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save(mydata, file="mydata.RData")

This is one of the few functions that can accept many objects separated by
commas, so might save three as in the example below.

save(mydata, mylist, mymatrix, file="myExamples.RData")

It also has a list argument that lets you specify a character vector of objects
to save.

You exit R by choosing File>Exit or by entering the function call quit()
or just q(). R will then offer to save your workspace. If you have used either
the save or the save.image functions recommended above, you should say
“No.”

13.8.2 Saving Your Workspace Automatically

Every time you exit R, it offers to save your workspace for you automatically.
If you click “Yes,” it stores it in a file named “.RData” in your working
directory (see how to set that in the Section 13.7. The next time you start
R from the same working directory, it automatically loads that file back into
memory, and you can continue working.

While this method saves a little time, it also has problems. The name
.RData is an odd choice, because most operating systems hide files that begin
with a period. So, initially, you cannot copy or rename your project files! That
is true on Windows, Macintosh, and Linux/UNIX systems. Of course, you can
tell your operating system to show you such files (shown below).

Since all your projects end up in a file with the same name, it is harder to
find the one you need via search engines or backup systems. If you accidentally
moved an .RData file to another folder, you would not know which project it
contained without first loading it into R.

13.9 Getting Operating Systems to Show You “.RData”
Files

While the default workspace file, “.RData,” is hidden on most operating sys-
tem, you can tell them to show you those files.

To get Windows XP to show you .RData, in Windows Explorer uncheck
the option below and uncheck the option Tools> Folder Options> View>
Hide extensions to known file types. Then click Apply to all folders. Then
click OK.

In Windows Vista, use the following selection: Start>Control Panel>
Appearance and Personalization> Folder Options> View> Show hidden files
and folders. Then click OK.

In Windows 7 or later, start File Explorer, then follow this menu path,
and uncheck the option Organize> Folder and search options> View> Hide
extensions for known file types. Then click OK.
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Note that this will still not allow you to click on a filename like myPro-
ject.RData and rename it to just .RData. The Windows Rename message box
will tell you “You must type a filename.”

Linux/UNIX users can see files named .RData with the command
“ls -a.”

Macintosh users can see files named .RData by starting a terminal window
with Applications> Utilities> Terminal. In the terminal window, enter

defaults write com.apple.finder AppleShowAllFiles TRUE
killall Finder

To revert back to normal file view, simply type the same thing, but with
“FALSE” instead of “TRUE.”

13.10 Organizing Projects with Windows Shortcuts

If you are a Windows user and like using shortcuts, there is another way to
keep your various projects organized. You can create an R shortcut for each of
your analysis projects. Then you right-click the shortcut, choose Properties,
and set the Start in folder to a unique folder. When you use that shortcut to
start R, on exit it will store the .RData file for that project. Although neatly
organized into separate folders, each project workspace will still be in a file
named .RData.

13.11 Saving Your Programs and Output

R users who prefer the graphical user interface can easily save programs,
called scripts, and output to files in the usual way. Just click anywhere on
the window you wish to save, choose File>Save as, and supply a name. The
standard extension for R programs is “.R” and for output is simply “.txt”.
You can also save bits of output to your word processor using the typical
cut/paste steps.

On Windows, R will not automatically append “.R” to each filename. You
must specify that yourself. When you forget this, and you will, later choosing
File>Open script will not let you see the file! You will have to specify “*.*”
as the filename to get the file to appear.

R users who prefer to use the command-line interface often use text edi-
tors such as Emacs, or the one in JGR, that will check their R syntax for
errors. Those files are no different from any other file created in a given
editor.

Windows and Macintosh users can cut and paste graphics output into
their word processors or other applications. Users of any operating system
can rerun graphs, directing their output to a file. See Chapter 14, “Graphics
Overview” for details.
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13.12 Saving Your History

The R console displays function calls you enter (or that menus enter for you)
and their output. It is a good idea to submit function calls from a script
window (program editor), but sometimes you enter them directly into the
console and then later realize that you need to save the program. You could
save the input and output in the console window, but you would need to edit
out the output to create a usable program.

R has a history file that saves all of the function calls in a given ses-
sion. This is similar to the Stata LOG file. However, unlike Stata, the history
file is not cumulative on Windows computers. It is cumulative on Linux and
Macintosh, however.

You can save the current session’s history to a file in your working directory
with the savehistory function. To route the history to a different folder, use
the setwd function to change it before using savehistory, or simply specify
the file’s full path in the file= argument.

savehistory(file="myHistory.Rhistory")

You can later recall it using the loadhistory function.

loadhistory(file="myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you
do not provide one. We prefer to save a cumulative history file automatically.
It takes little disk space and you never know when it will help you recover
work that you thought you would never need. For details, see Appendix C,
“Automating Your R Setup.”

All of the file and workspace functions we have discussed are summarized
in Table 13.1.

13.13 Large Data Set Considerations

All of the topics we have covered in this chapter are helpful for managing
the amount of free space you have available in your workspace. Since R, like
Stata, stores its data in your computer’s random access memory, R cannot
analyze huge data sets.

An exception to this is Thomas Lumley’s biglm package [31], which pro-
cesses data in “chunks” for some linear and generalized linear models.

When the physical memory in your computer fills up, it is possible to use
use your computer’s hard drive to simulate more memory (known as virtual
memory), but it is extremely inefficient and time-consuming. Given the low
cost of memory today this is much less of a problem than you might think. R
can handle hundreds of thousands of records on a computer with 2 gigabytes of
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Table 13.1. Workspace management functions

Function to perform Example

List object names, including
.First, .Last

objects(all.names=TRUE)

List object names, of most
objects

ls() or objects()

List object attributes attributes(mydata)

Load workspace load(file="myWorkspace.RData")

Remove a variable from
a data frame

mydata$myvar <- NULL

Remove all objects
(non hidden ones)

rm( list=ls() )

Remove an object rm(mydata)

Remove several objects rm(mydata, mymatrix, mylist)

Save all objects save.image(file="myWorkspace.RData")

Save some objects save(x,y,z,file="myObjects.RData)

Show structure of all objects ls.str( all.names=TRUE )

Show structure of most objects ls.str()

Show structure of data frame
only (requires Hmisc)

contents(mydata)

Show structure of objects
by name

str(mydata), str(lm)

Store data efficiently
(requires Hmisc)

mydata <- cleanup.import(mydata)

Working directory, getting getwd ()

Working directory, setting setwd("/mypath/myfolder")

Even Windows uses forward slashes,

memory available to R. That is the current memory limit for a single process
or program in 32-bit operating systems. To have 2 gigabytes free just for R,
you would you would want to have perhaps 3 gigabytes of total memory so
that your operating system would have the room it needs.

Operating systems capable of 64-bit memory spaces are the norm on newer
systems. The huge amounts of memory they can handle mitigate this problem.

Another way around the limitation is to store your data in a relational
database and use its facilities to generate a sample to analyze. A sample size
of a few thousand is sufficient for many analyses.

However, if you need to ensure that certain small groups (e.g., those who
have a rare disease, the small proportion that defaulted on a loan) then you
may end up taking a complex sample, which complicates your analysis con-
siderably. R has specialized packages to help analyze such samples, including
pps, sampfling, sampling, spsurvey, and survey. See CRAN at http://
cran.r-project.org/ for details.

An alternative for R users is to purchase S-PLUS, a commercial package
that has an almost identical language to R. S-PLUS has functions to handle
what it calls “big data.” It solves the problem in a way similar to that used

http://cran.r-project.org/
http://cran.r-project.org/
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in packages such as SAS and SPSS. However, while S-PLUS can run many R
programs written using R’s core functions, it cannot run R’s add-on packages.

13.14 Example R Program for Managing Files
and Workspace

Most chapters in this book end with the Stata and R programs that summarize
the topics in the chapter. However this chapter has been very specific to R.
Therefore, we present only the R program below.

# Filename: ManagingFilesWorkspace.R

ls()

setwd("/myRfolder")
load("myall.RData")
ls()

# List objects that begin with "my".
ls(pattern="my")

# Get attributes and structure of mydata.
attributes(mydata)
str(mydata)

# Get structure of the lm function.
str( lm )

# List all objects’ structure.
ls.str()

# Use the Hmisc contents function.
install.packages("Hmisc")
library("Hmisc")
contents(mydata)

# ---Understanding Search Paths---
# After restarting R to purge it of
# packages added by loading Hmisc...

setwd("/myRfolder")
load("mydata.RData")
ls()
search()
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ls(1) #This uses position number.
ls(".GlobalEnv") # This does the same using name.

head( ls(2) )
head( ls("package:stats") ) #Same result.

# See how attaching mydata change the path.
attach(mydata)
search()
ls(2)

# Create a new variable.
q4 <- sqrt(q4)
q4
ls(1)
ls(2)

# Attaching data frames.
detach(mydata)
attach(mydata)
attach(mydata)
search()

# Clean up for next example,
# or restart R with an empty workspace.
detach(mydata)
detach(mydata)
rm( list=ls() )

# Attaching files.
x <- c(1,2,3,4,5,6,7,8)
attach("myall.RData")
search()
q4 <- q4

ls(1) # Your workspace.
ls(2) # The attached file.
detach(2)

# Removing objects.
rm(mydata)
load(file="myall.RData")
ls()
# Example not run:
# rm(workshop,gender,q1,q2,q3,q4)
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myQvars <- ls(pattern="q")
myQvars

myDeleteItems <- c("workshop","gender",myQvars)
myDeleteItems

myDeleteItems
rm( list=myDeleteItems )

ls()
rm( myQvars, myDeleteItems )
ls()

# Wrong!
rm(myDeleteItems)
rm( c("workshop","gender","q1","q2","q3","q4") )

save.image("myFavorites.RData")

# Removing all workspace items.
# The clear approach:

myDeleteItems <- ls()
myDeleteItems
rm( list=myDeleteItems )

# The usual approach:
rm( list=ls() )

# Setting your working directory.

getwd()
setwd("/myRfolder")

# Saving your workspace.

load(file="myall.RData")

# Save everything.
save.image(file="myPractice1.RData")

# Save some objects.
save(mydata,file="myPractice2.RData")
save(mydata,mylist,mymatrix,file="myPractice3.RData")
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# Remove all objects and reload myPractice3.
rm( list=ls() )
load("myPractice3.RData")
ls()

# Save and load history.
savehistory(file="myHistory.Rhistory")
loadhistory(file="myHistory.Rhistory")
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Graphics Overview

Graphics is perhaps the most difficult topic to compare between Stata and R.
Both packages contains at least two graphical approaches, each with dozens of
options and each with entire books devoted to them. Therefore, we will focus
on only two main approaches in R, and we will discuss many more examples in
R than in Stata. This chapter focuses on a broad, high-level comparison. The
next chapter focuses on R’s traditional graphics. The one after that focuses
just on the grammar of graphics approaches used in both R and Stata.

Dynamic visualization allows you explore your data by interacting with
plots. Selections you make in one graph, such as the females in a bar chart, are
reflected in all graphs. Although dynamic visualization is outside our scope, R
has this capability through two excellent packages that we will review briefly.

The iplots package [49] offers a wide array of interactive plots. These
include histograms, bar charts, scatter plots, box plots, fluctuation diagrams,
parallel coordinates plots, and spine plots. They all include interactive abilities
such as linked highlighting and color brushing. The package was developed by
Simon Urbanek, Tobias Wichtrey, Alex Gouberman, and Martin Theus.

R can also link to a separate interactive graphics package, GGobi [47],
available for free at http://www.ggobi.org/. GGobi’s plots include scatter
plots, bar charts, and parallel coordinates plots. One of its most interesting
features is called projection pursuit. This approach displays a 3-dimensional
scatter plot, which it rotates as it searches for your goal in the data. For ex-
ample, searching for “holes” might help you find clusters of observations in
your data. This helpful software was written by Deborah F. Swayne, Duncan
Temple Lang, Andreas Buja, and Dianne Cook.

You can link to GGobi very easily from Graham Williams’ rattle graph-
ical user interface for data mining, discussed in Section 3.6.2.

You can also link to GGobi from within R using function calls provided
by the rggobi package [27]. The rggobi package was developed by Duncan
Temple Lang, Debby Swayne, Hadley Wickham, and Michael Lawrence. It is
available with all other R packages on the Comprensive R Archive Network,
but you also need to install GGobi itself separately.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 311
and Computing, DOI 10.1007/978-1-4419-1318-0 14,
© Springer Science+Business Media, LLC 2010
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14.1 Stata Graphics

Stata’s graphics come as part of the package. It is not an add-on and it is
not written as open source code. Nearly all of Stata’s graphic commands and
functions are hard-coded in C into the Stata executable. However, beginning
with Stata version 10, Stata provides users with a host of graphic primitives
that they can use to construct and develop new types of graphics. Version 10
also comes with a graphics editor, which can be used to annotate a produced
graph in a number of ways. Stata comes with built-in capabilities to construct
most every variety of two-dimensional graph. Its built-in three-dimensional
graphic capabilities are limited, although it is possible for a knowledgeable
user to create these types of graphs.

Stata comes with a 618-page reference manual completely devoted to
graphics. Stata’s publishing company, called Stata Press, has a volume specif-
ically aimed at helping Stata users to better understand and create graphs.
Authored by Michael N. Mitchell, A Visual Guide to Stata Graphics [33], is
a 471-page text covering most every aspect of Stata graphics, including the
handling of various primitives.

14.2 R Graphics

R offers three main types of graphics: traditional, lattice [41], and ggplot2
[54].

R’s traditional graphics functions (also called base graphics) come with the
main R installation. Traditional graphics include high-level functions such as
bar plots, histograms, and scatter plots. These functions are brief and the
default settings are good.

While Stata requires you specify your complete plot in advance, R’s tradi-
tional graphics allow you to plot repeatedly on the same graph. For example,
you might start with a scatter plot and then add a regression line. As you add
new features, each writes on top of the previous ones, so the order of func-
tion calls is important. Once written, a particular feature cannot be changed
without starting the plot over from the beginning.

R’s traditional graphics also includes low-level functions for drawing things
like points, lines, and axes. These provide flexibility and control that people
can use to invent new types of graphs. Their use has resulted in many add-on
graphics packages for R. The level of control is so fine that you can even use
it for artistic graphics that have nothing to do with data. See Paul Murrell’s
book R Graphics [35] for examples.

The second major graphics package added to R was lattice, written by
Deepayan Sarkar [41]. It implements W. S. Cleveland’s Trellis graphics system
[6]. Now as part of the base R distribution, it does an excellent job of creating
multiframe plots. A good book on that package is Deepayan Sarkar’s Lattice:
Multivariate Data Visualization with R [40]. We will not examine lattice
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Table 14.1. A comparison of R’s three main graphics packages

Traditional
(or base)

lattice ggplot2

Automatic output for different objects Yes No No
Automatic legends No Sometimes Yes
Easily repeats plots for different groups No Yes Yes
Easy to use with multiple data sources Yes No Yes
Allows you to build plots piece-by-piece Yes No Yes
Allows you to replace pieces after creation No No Yes
Consistent functions No No Yes
Attractiveness of default settings Good Good Excellent
Can do mosaic plots Yes Yes No
Control extends beyond data graphics Yes No No
Underlying graphics system Traditional Grid Grid

graphics, as the next system covers most of its abilities and offers additional
advantages.

The third major package, ggplot2 [54], written by Hadley Wickham, is
based on the grammar of graphics described in the next section. It offers an
excellent balance between power and ease of use.

We will cover ggplot2 in Chapter 16 Although ggplot2 has advantages
over lattice, most of our ggplot2 examples can be created as well in the
lattice package. A comparison of these three main packages is given in
Table 14.1.

14.3 The Grammar of Graphics

Leland Wilkinson’s watershed work, The Grammar of Graphics [56], forms the
foundation of Hadley Wickham’s ggplot2 package, as well as the graphics in
the SPSS Statistics package. Wilkinson’s key insight was the realization that
general principals form the foundation of all data graphics. Once you design
a graphics language to follow those principals, the language should then be
able to do any existing data graphics as well as variations that people had not
previously considered.

An example is a stacked bar chart that shows how many students took
each workshop (i.e., one divided bar). This not a popular graph, but if you
change its coordinate system from rectangular to circular (Cartesian to polar),
it becomes a pie chart. So rather than requiring separate procedures, you
can have one that includes changing coordinates. That type of generalization
applies to various other graphical elements as well.

A much more interesting example is Charles Joseph Minard’s famous plot
of Napoleon’s march to Moscow and back in 1812 (Fig. 14.1). The light gray
line shows the army’s advance toward Moscow, and the dark grey line shows
its retreat. The thickness of the line reflects the size of the army. Through
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a very substantial effort, you can get many graphics packages to create this
graph, including R’s traditional graphics. However, R’s ggplot2 package can
do it easily using the same general concepts that it uses for any other plots.

It may seem that people are unlikely to use this type of plot again, but
minor variations of it are used to diagram computer network throughput,
the transmission of disease, and the communication of product awareness in
marketing.

The point is that ggplot2 gives you the broadest range of graphical options
that R offers. The ggplot2 web site has many interesting examples of the
range of plots that this package can create.

14.4 Other Graphics Packages

There are many other graphics packages that we will not have space to ex-
amine. Two notable ones are the maps package [2] for creating geographic
maps and the vcd package [32] for visualizing categorical data. The latter was
written by David Meyer, Achim Zeileis, and Kurt Hornik and was inspired
by Michael Friendly’s book Visualizing Categorical Data [15]. That book de-
scribes how to do its plots using SAS macros. The fact that plots initially
implemented in SAS were also possible to add to R is testament to R’s graph-
ical flexibility.

There are comprehensive collections of graphs and the R programs to make
them at the R Graph Gallery at http://addictedtor.free.fr/graphiques/
and the Image Browser at http://bg9.imslab.co.jp/Rhelp/. You can also
use the demo function in R to have it show you a sample of what it can do.
Enter the demo function calls below in the R console, and each will generate
several example plots.

demo(graphics)
demo(persp)
library("lattice")
demo(lattice)

14.5 Graphics Procedures and Graphics Systems

R has many add-on packages that contain similar high-level graphics func-
tions.

At a lower level are graphics systems. This is where a function call to
do something like a scatter plot is turned into the precise combinations of
lines and points needed. Controlling the graphics system allows you to change
settings that affect all graphs, like text fonts, fill patterns, and line or point
types. In Stata, you can find out how to control these settings using the sym-
bolstyle and linestyle options. A Stata user may also access information using

http://addictedtor.free.fr/graphiques/
http://bg9.imslab.co.jp/Rhelp/
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the menu system–for example Graphics> Manage Graphs> Query styles and
schemes or Graphics> Change scheme/size. Stata also allows you to control
these settings when you create a template to apply to future graphs.

Graphics systems are more visible in R because there are two of them.
The traditional graphics system controls the high-level traditional graphics
functions such as plot, barplot, and pie as well as some add-on packages
such as maps. It also controls low-level traditional graphics functions that do
things like draw lines or rectangles.

The packages lattice and ggplot2 instead use the grid graphics system.
The implications of this will become much more obvious as we look at exam-
ples. The grid graphics system was written by Paul Murrell and is documented
in his book R Graphics [35]. That book is a good reference for both graphics
systems as well as high-level traditional graphics procedures. It also gives an
introduction to lattice graphics.

14.6 Graphics Devices

At the lowest level of graphics control is the graphics device itself. Regardless
of the graphics package or system in R you use, the way you see or save the
result is the same: the graphics device.

By default, R writes to your screen, each plot taking the place of the
previous one. Windows users can buffer the plots for viewing with the Page
Up/Page Down keys, by choosing History> Recording in your plot window.

R has functions named for the various graphics devices. So to write a plot
to an encapsulated postscript file, you could use

postscript( file="myPlot.eps",
paper="special",
width=4,
height=3.5) #Opens the device.

plot(pretest,posttest) #Does the plot.

dev.off() #Closes the device.

The paper="special" argument lets you set the size of the plot using the
width and height arguments. Measurements are in inches.
The last command, dev.off(), is optional, since R will close the device when
you exit R. However, any additional plots you create will go to that file until
you either call the dev.off() function or explicitly choose to use the screen
device again.

Although bitmap file formats are generally lower-resolution than postscript
or PDF, in some cases you may need one. For example, this book was written
in a version of the LATEXdocument preparation system that prefers encapsu-
lated postscript files. Although that is a high-resolution format, it does not
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support transparency used by some plots. So we switched to a high-resolution
Portable Network Graphics (PNG) file for the plots that used transparency.
The following is the format we used:

png(file="transparencyDemo.png",
res=600,
width=2400,
height=2100)

plot(pretest, posttest)

dev.off()

The png function measures width and height in dots–per–inch (dpi) of reso-
lution. So at 600 dpi, 2400 by 2100 yields a 4 by 3.5 inch plot.

Screen device functions are windows(), quartz(), and x11() for Mi-
crosoft Windows, Macintosh OS X, and UNIX or Linux, respectively. Other
popular device functions include jpeg, pdf, pictex (for LATEX), png, and
win.metafile for Microsoft Windows. The JPG file format is popular for
photographs but is best avoided for most data graphics as its compression
blurs the sharp boundaries that make up lines, points, and numbers.

Multiple plots can go to the file in the above example because Postscript
(and PDF) support multiple pages. Other formats like Microsoft Windows
Metafile do not. For that type of format you can send multiple plots to separate
files, using the following form. The part of the filename “%03d” tells R to
append 1, 2,. . . to the end of each filename. The numbers are padded by
blanks or zeros depending on the operating system.

win.metafile( file="myPlot%03d.wmf" )

barplot( table(workshop) ) #1st plot goes to myPlot 1.wmf

hist(posttest) #2nd plot goes to myPlot 2.wmf

plot(pretest,posttest) #2rd plot goes to myPlot 3.wmf

dev.off()

The ggplot2 package has its own ggsave function to save its plots to files.
For details, see Chapter 16, “Graphics with ggplot2.”

ggsave(file = "march.jpeg", width=16, height=4)

For much greater depth on these and many other graphics subjects, see R
Graphics [35].
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14.7 Practice Data: mydata100

The following examples use a longer version of our practice data set called
mydata100. It has 100 observations, includes people who have taken all 4
workshops, and adds test scores taken before and after the workshops (pretest
and posttest). The file also contains full variable and value labels. It is also
attached, so all of the examples use short variable names. The following is the
top part of the data.

> head(mydata100)

gender workshop q1 q2 q3 q4 pretest posttest
1 Female R 4 3 4 5 77 76
2 Male SPSS 3 4 3 4 75 78
3 Female SPSS 3 2 3 3 79 81
4 Female SPSS 5 4 5 3 85 85
5 Female Stata 4 4 3 4 80 84
6 Female SPSS 5 4 3 5 77 80
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Traditional Graphics

In the previous chapter, we discussed the various graphics packages in R and
Stata. Now we will delve into R’s traditional, or base, graphics.

15.1 Bar Plots

Bar plots using R’s traditional graphics are easy to do, but they use a method
quite different from Stata. While Stata assumes that your data need summa-
rizing and requires options to tell it when they are presummarized, many of
R’s base graphics functions assume just the opposite. We will first look at bar
plots of counts, then grouped counts, and, finally, various types of bar plots
for means.

15.1.1 Bar Plots of Counts

The barplot function call below makes a plot with just two bars: one for each
value (Fig. 15.1). They could be counts, means, or any other measure. The
main point is that we get a bar for every observation. We are ignoring options
for the moment, so the plot lacks labels and its axis values are tiny.

barplot( c(40,60) )

If we apply the same function to variable q4, we get a bar representing
each observation in the data frame (Fig. 15.2).

barplot( q4 ) # Not good.

Notice that the y-axis is labeled 1 through 5. It is displaying the raw
values for every observation rather than summarizing them. That is not a
very helpful plot!

Recall that the table function gets frequency counts.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 319
and Computing, DOI 10.1007/978-1-4419-1318-0 15,
© Springer Science+Business Media, LLC 2010
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Fig. 15.1. Unlabeled bar plot using traditional graphics.
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Fig. 15.2. Bad bar plot of unsummarized variable q4.



15.1 Bar Plots 321

> table(q4)

q4

1 2 3 4 5
6 14 34 26 20

Since the table function gets the data in the form we need for a bar plot,
we can simply nest one function within the other to finally get a reasonable
plot (Fig. 15.3).

> barplot( table(q4) )
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Fig. 15.3. A more reasonable bar plot for variable q4, this time summarized first.

When we make that same mistake with a bar plot on gender, we see a
different message.

> barplot(gender)

Error in bar plot.default(gender) :
’height’ must be a vector or a matrix

If gender was coded 1 or 2 and was not stored as a factor, it would have
created one bar for every subject, each with a height of 1 or 2. However,
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Fig. 15.4. A bar plot of gender.

because gender is a factor, the message is telling us that barplot accepts
only a vector or matrix. The solution is the same as before: count the genders
before plotting (Fig. 15.4).

barplot( table(gender) )

We can use the horiz=TRUE argument to turn the graph sideways (Fig. 15.5).

> barplot( table(workshop), horiz=TRUE )

If we are interested in viewing groups as a proportion of the total, we
can stack the bars into a single one (Fig. 15.6). As we will see in the
next chapter, this is essentially a pie chart in rectangular Cartesian co-
ordinates, rather than circular polar coordinates. To do this, we use the
as.matrix function to convert the table into the form we need and use
the beside=FALSE argument to prevent the bars from appearing beside each
other.

barplot( as.matrix( table(workshop) ),
beside = FALSE)
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Fig. 15.5. A horizontal bar plot of workshop flipped using horiz=TRUE.
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Fig. 15.6. An unlabeled stacked bar plot of workshop.
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15.1.2 Bar Plots for Subgroups of Counts

Recall that the table function can handle two variables. Nested within the
barplot function, this results in a clustered bar chart (Fig. 15.7).

R SAS SPSS Stata
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Fig. 15.7. A stacked bar plot of workshop with bars split by gender (lacking legend).

> barplot( table(gender,workshop) )

The plot function is generic, so it does something different depending on
the variables you give it. If we give it two factors, it will create a plot similar
to the one above (Fig. 15.8).

> plot( workshop,gender )

The difference is that the bars fill the plot vertically so the shading gives
us proportions instead of counts. Also, the width of each bar varies, reflecting
the marginal proportion of observations in each workshop. This is called a
spine plot. Notice that we did not need to summarize the data with the table
function. The plot function takes care of that for us.

The mosaicplot function does something similar (Fig. 15.9).

> mosaicplot( table(workshop,gender) )
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Fig. 15.8. A mosaic plot of workshop by gender, done using the plot function.
Gender is labeled automatically.
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Fig. 15.9. A mosaic plot of workshop by gender, done using the mosaicplot

function.
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However, the mosaicplot function can handle the complexity of a third
factor. We do not have one, so let us use an example from the mosaicplot
help file.

> mosaicplot( ~ Sex + Age + Survived,
+ data = Titanic, color = TRUE)

In Fig. 15.10, we see that not only are the marginal proportions of sex
and age reflected, but the third variable of survival is reflected as well. It is
essentially four bar charts within a 2 by 2 cross-tabulation.

Titanic
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A
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No Yes No Yes

Fig. 15.10. A mosaic plot of Titanic survivors demonstrating the display of three
factors at once.

15.1.3 Bar Plots of Means

The table function counted for us. Now let us use the mean function, along
with the tapply function to get a similar table of means. To make it easier to
read, we will store the table of means in myMeans and then plot it (Fig. 15.11).
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Fig. 15.11. A bar plot of means.

> myMeans <- tapply(q1, gender, mean, na.rm=TRUE)

> barplot(myMeans)

Adding workshop to the tapply function is easy, but you must combine
gender and workshop into a list first, using the list function (Fig. 15.12).

> myMeans <- tapply(q1,
+ list(workshop,gender), mean,na.rm=TRUE)

> barplot(myMeans, beside=TRUE)

Many of the variations we used with bar plots of counts will work with
means, of course. For example, the horiz=TRUE argument will flip any of the
above examples on their sides.

15.2 Adding Titles, Labels, Colors, and Legends

So far our graphs have been fairly bland. Worse than that, without a legend,
some of the above bar charts are essentially worthless. Let us now polish
them up. Although we are using bar plots, these steps apply to many of R’s
traditional graphics functions (Fig. 15.13).
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Fig. 15.12. A bar plot of q1 means by workshop (unlabeled) and gender.
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Fig. 15.13. A bar plot with a manually added title, legend, and shades of gray.
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> barplot( table(gender,workshop),
+ beside=TRUE,
+ col=c("gray90","gray60"),
+ main="Number of males and females \nin each workshop" )

> legend( "topright",
+ c("Female","Male"),
+ fill=c("gray90","gray60") )

The barplot function call above has four arguments.

1. The table(gender,workshop) argument generates a two-way table of
counts.

2. The beside=TRUE argument places the workshop bars side-by-side instead
of stacking them on top of each other. That is better for perceiving the
count per workshop. Leaving it off would result in a stacked bar chart that
might be better for estimating relative total attendance of each workshop
rather than absolute counts.

3. The col=c("gray90","gray60") argument supplies the colors (well,
shades of gray in this case) for the bars in order of the factor levels in
gender. To get a complete list of colors, enter the function colors().

4. The main argument lists the plot’s title. The “\n” indicates where the
title should skip new a new line. R uses this backslash character, “\,” to
introduce control characters. The “n” represents new line.

Until the legend function ran, the plot had no legend. It appeared after
the fact.

The legend function call above has three arguments.

1. The first argument positions the legend itself. This can be the values
“topleft,” “topright,” “bottomleft,” “bottomright,” “right,” and “center”.
It can also be a pair of x, y values such as 10, 15. The 15 is a value of the
y-axis, but the value of 10 for the x -axis was determined by the barplot
function. You can query the settings with par("usr"), which will return
the start and end of the x -axis followed by the same figures for the y-axis.
Those figures for this graph are 0.56, 12.44, −0.17, 17.00. So we see that
the x -axis goes from 0.56 to 12.44 and the y-axis goes from −0.17 to 17.00.

2. The c("Female","Male") argument supplies the value labels to print in
the legend. It is up to you to match them to the values of the factor
gender, so be careful!

3. The fill=c("gray90","gray60") argument supplies colors to match the
col argument in the barplot function. Again, it is up to you to make
these match the labels as well as the graph itself! The ggplot2 package
covered in the next chapter does this for you autotmatically.

This was a lot of work for a legend. R’s traditional graphics trades off ease
of use for power. We are only skimming the surface of R’s traditional graphics
flexibility.
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15.3 Graphics Parameters and Multiple Plots on a Page

R’s traditional graphics make it very easy to place multiple graphs on a page.
You could also use your word processor to create a table and insert graphs into
the cells, but then you would have to do extra work to make them all of the
proper size and position, especially if their axes should line up for comparison.
You still have to specify the axes’ ranges to ensure compatibility, but then R
would size and position them properly. The built-in lattice package and the
ggplot2 package will also standardize the axes automatically.

Another problem with using word processors to place multiple graphs on
a page is that text can shrink so small as to be illegible. Using R to create
multiframe plots will solve these problems.

There are three different approaches to creating multiframe plots in R. We
will discuss the approach that uses the par function. The name par is short
for graphics parameters. It is easy to use but is limited to equal-sized plots.

If you need to create more complex multiframe plots, see the help files for
either the layout function or the split.screen function.

R also has some functions, such as coplot and pairs, that create mul-
tiframe plots themselves. Those plots cannot be one piece of an even larger
multiframe plot. Even if R could do it, it would be quite a mess!

In traditional graphics, you use the par function to set or query graphic
parameter settings. Entering simply par() will display all 71 parameters and
how they are set. That is a lot, so we will use the head function to print just
the top few parameters. Tables 15.1 through 15.4 show all of the graphics
parameters and functions we use to embellish traditional plots.

> head( par() )

$xlog
[1] FALSE

$ylog
[1] FALSE

$adj
[1] 0.5

$ann
[1] TRUE

$ask
[1] FALSE

$bg
[1] "transparent"
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We can see above that the xlog parameter is set to FALSE, meaning that
the x -axis will not be scaled via the logarithm. The ask parameter is also
FALSE, telling us that if R wants to display multiple graph pages, it will not
pause to ask you to click your mouse (or Enter key) to continue. Entering the
following will change that setting. However, if you are already running graphs
one at a time, this setting can get irritating. Setting it back to FALSE will
turn it off and plots will automatically replace one another again.

> par(ask=TRUE)

Notice that there is no verification of this for the moment. If we wish to
query the setting of any particular parameter, we can enter it in quotes, as
we do below.

> par( "mfrow" )
[1] 1 1

The mfrow parameter sets how many rows and columns of graphs appear
on one multiframe plot. The setting 1,1 means that only one graph will appear
(one row and one column). Let us change that to 2,2 so we can see four graphs
on a page. We will create four different bar charts of counts to see the impact
of the argument, beside=TRUE (the default value is FALSE). The graphs will
appear as we read words: left to right and top to bottom (Fig. 15.14).

> par( mfrow=c(2,2) ) #set to 2 rows, 2 columns of graphs.
>
> barplot( table(gender,workshop) ) #top left
> barplot( table(workshop,gender) ) #top right
> barplot( table(gender,workshop), beside=TRUE ) #bot left
> barplot( table(workshop,gender), beside=TRUE ) #bot right
>
> par( mfrow=c(1,1) ) #set back to 1 graph per page.

15.4 Pie Charts

As the R help file for the pie function says, “Pie charts are a very bad way
of displaying information. The eye is good at judging linear measures and
bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.”

The pie function works much in the same way as the barplot function
(Fig. 15.15).

> pie( table(workshop),
+ col=c("white","gray90","gray60","black" ),
+ main="Piechart of Workshop Attendance" )
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Fig. 15.14. Bar plots of counts by workshop and gender. The top two use the
default argument, beside=FALSE; the bottom two specify beside=TRUE. The left
two tabulated (gender,workshop); the right two tabulated (workshop,gender).
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Fig. 15.15. A pie chart of workshop.
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15.5 Dot Charts

William Cleveland popularized the dot chart in his book Visualizing Data [6].
Based on research that showed people excel at determining the length of a
line, he reduced the bar chart to just dots on lines. R makes it very easy to
do (Fig. 15.16). The arguments to the dotchart function are essentially the
same as those for the barplot function. The dots in the dot chart do not
show up well in the small image below, so I have added cex=1.5 for character
expansion.
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Dotchart of Workshop Attendance

Fig. 15.16. A dot chart of workshop within gender.

> dotchart( table(workshop,gender),
+ main="Dotchart of Workshop Attendance",
+ cex=1.5)

15.6 Histograms

Many statistical methods make assumptions about the distribution of your
data. As long as you have enough data, say 30 or more data points, his-
tograms are a good way to examine those assumptions. We will start with
basic histograms and then examine a few variations.
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15.6.1 Basic Histograms

To get a histogram of our posttest score, all we need to do is enter a call to
the hist function (Fig. 15.17).

Histogram of posttest
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Fig. 15.17. A histogram of posttest.

> hist(posttest)

One of the problems with histograms is that they break continuous data
into artificial bins. Trying a different number of bins to see how that changes
the view of the distribution is a good idea.

In Fig. 15.18, we use the breaks=20 argument to get far more bars
than we saw in the default plot. The argument probability=TRUE causes
the y-axis to display probability instead of counts. That does not change
the overall look of the histogram, but it does allow us to add a kernel
density fit with a combination of the lines function and the density
function.

> hist(posttest, breaks=20, probability=TRUE)

The lines function draws the smooth kernel density calculated by the
call to the density function. You can vary the amount of smoothness in this
function with the adjust argument. See the help file for details.

> lines( density(posttest) )
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Fig. 15.18. A histogram of posttest with breaks=20, a kernel density curve and
tick-marks for every data point on the x -axis.

Finally, we can add tick marks to the x -axis to show the exact data points.
We can do that with the points function, which adds a series of x, y points
anywhere on a plot. We already have the x values in our posttest variable. If
we want ticks on the y-axis, we need a vector of zeros that is the same length
as our posttest score. The rep function makes quick work of it by repeating
the value zero to match the length of the posttest variable.

> myZeros <- rep(0, length(posttest) )

> myZeros
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[30] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[59] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[88] 0 0 0 0 0 0 0 0 0 0 0 0 0

> points( posttest, myZeros, pch="|" )

Now let us get a histogram of just the males. Recall from Chapter 8,
“Selecting Observations,” that posttest[gender=="Male"] will make the se-
lection we need. We will also add the argument col=gray60 to give the bars
a “color” of gray (Fig. 15.19).

> hist(posttest[ which(gender=="Male") ], col="gray60")
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Fig. 15.19. A histogram of posttest for only the males.

15.6.2 Histograms Stacked

If we want to compare two plots more directly, we can put them onto a
multiframe plot (Fig. 15.20) with the graphic parameter function

par( mfrow=c(2,1) )

To make them more comparable, we will ensure that they break the data
into bars at the same spots using the breaks argument.

> par( mfrow=c(2,1) ) # multiframe plot, 2 rows, 1 column

> hist(posttest, col="gray90",
+ breaks=c(50,55,60,65,70,75,80,85,90,95,100) )

> hist(posttest[gender=="Male"], col="gray60",
+ breaks=c(50,55,60,65,70,75,80,85,90,95,100) )

> par( mfrow=c(1,1) ) # back to 1 graph per plot

I entered all of the break points to make it clear for beginners. Once you
get more used to R, it will be much easier to specify sequences of numbers
using the seq function:

...breaks = seq(10, 100, by=50)
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Fig. 15.20. Multiframe plot of posttest histograms for whole data set (top) and
just the males (bottom).

See Chapter 12, “Generating Data” for more ways to generate values like
this.

15.6.3 Histograms Overlaid

That looks nice, but we could get a bit fancier and plot the two graphs
right on top of one another. The next few examples start slow and end up
rather complicated compared to similar plots in Stata. In the next chapter,
the same plot will be much simpler. However, this is an important exam-
ple because it helps you learn the type of information held inside a graphics
object.
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Our entire data set contains males and females, so a histogram of both
will have taller bars than a histogram for just the males. Therefore, we
can overlay a histogram for males on top of one for both genders; see
Fig. 15.21.
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Fig. 15.21. A histogram of posttest for all data (tall bars) overlaid with just the
males. The difference between the two represents the females.

The add=TRUE argument is what tells the hist function to add the second
histogram on top of the first. Notice below that we also use the seq function
to generate the numbers 50, 55,. . . ,100 without having to write them all out
as we did in the previous example.

> hist(posttest, col="gray90",
+ breaks=seq(from=50, to=100, by=5) )

> hist(posttest[gender=="Male"], col="gray60",
+ breaks=seq(from=50, to=100, by=5),
+ add=TRUE )

> legend( "topright", c("Female","Male"),
+ fill=c("gray90","gray60") )
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This looks good, but we did have to manually decide what the breaks should
be. In a more general-purpose program, we may want R to choose the break-
points in the first plot and then apply them to the second automatically. We
can do that by saving the first graph to an object called, say, myHistogram.

> myHistogram <- hist(posttest, col="gray90")

Now let us use the names function to see the names of its components.

> names(myHistogram)

[1] "breaks" "counts" "intensities" "density"
[5] "mids" "xname" "equidist"

One part of this object, myHistogram$breaks, stores the breakpoints that
we will use in the second histogram. The graph of all of the data appears at
this point and we can print the contents of myHistogram$breaks. Notice that
R has decided that our manually selected breakpoint of 50 was not needed.

> myHistogram$breaks

[1] 55 60 65 70 75 80 85 90 95 100

Let us now do the histogram for males again, but this time with the
argument,

breaks=myHistogram$breaks

so the break points for males will be the same as those automatically chosen
for the whole sample (Fig. 15.22).

> hist(posttest[gender=="Male"], col=’gray60’,
+ add=TRUE, breaks=myHistogram$breaks)

> legend( "topright", c("Female","Male"),
+ fill=c("gray90","gray60") )

This is essentially the same as the previous graph, but the axis fits better
by not extending all the way down to 50. Of course, we could have noticed
that and fixed it manually if we had wanted. To see what else a histogram
class object contains, simply enter its name. You see the breaks listed as its
first element.

> myHistogram
$breaks
[1] 55 60 65 70 75 80 85 90 95 100

$counts
[1] 1 0 3 9 26 29 24 6 2



340 15 Traditional Graphics

Histogram of posttest

posttest

F
re

qu
en

cy

50 60 70 80 90 100

15
10

5
0

20
25

30

Female
Male

Fig. 15.22. Same histogram as in Fig. 15.21 but now bar breakpoints are chosen
from the whole data set and then applied to males.

$intensities
[1] 0.002 0.000 0.006 0.018 0.052 0.058 0.048 0.012 0.004

$density
[1] 0.002 0.000 0.006 0.018 0.052 0.058 0.048 0.012 0.004

$mids
[1] 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5

$xname
[1] "posttest"

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

Now that the plot is saved in myHistogram, we can display it any time
with

plot(myHistogram)
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You can change the plot object using standard R programming methods;
you are not restricted to modifying it with the function that created it. That
is a tricky way to work, but you can see how someone working to develop a
new type of graph would revel in this extreme flexibility.

15.7 Normal QQ Plots

A normal QQ plot plots the quantiles of each data point against the quantiles
that each point would get if the data were normally distributed. If these points
fall on a straight line, they are likely to be from a normal distribution.

Histograms give you a nice view of a variable’s distribution, but if you
have fewer than 30 or so points, the resulting histogram is often impossible to
interpret. Another problem with histograms is that they break the data into
artificial bins, so unless you fiddle with bin size, you might miss an interesting
pattern in your data. A QQ plot has neither of these limitations.

So why use histograms at all? Because they are easy to interpret. At a
statistical meeting I attended, the speaker displayed a QQ plot and asked the
audience, all statisticians, what the distribution looked like. It was clearly not
normal and people offered quite an amusing array of responses! When the
shape is not a straight line, it takes time to learn how the line’s shape reflects
the underlying distribution. To make matters worse, some software reverses
the roles of the two axes! The plot shown in Fig. 15.23, created using the
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Fig. 15.23. A normal quantile plot of posttest using qq.plot from the car package.
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qq.plot function from John Fox’s car package, has the theoretical quantiles
on the x -axis, like Stata.

> library("car")

> qq.plot(posttest,
+ labels=row.names(mydata100),
+ col="black" )

> detach("package:car")

The call to the qq.plot function above has three arguments.

1. The variable to plot.
2. labels=row.names(mydata100) allows you to interactively identify any

point you wish and label it according by the values you request. Your
cursor will become a cross-hair and when you click on (or near) a point,
its label will appear. The escape key will end this interactive mode.

3. col="black" sets the color, which is red by default.

R also has a built-in function for QQ plots called qqnorm. However, it lacks
confidence intervals. It also does not let you identify points without calling
the identify function (graph not shown).

myQQ <- qqnorm(posttest)

identify(myQQ)

15.8 Strip Charts

Strip charts are scatter plots for one variable. Since they plot each data
point, you might see clusters of points that would be lost in a box plot or
error bar plot. The first stripchart function call below uses “jitter” or ran-
dom noise added to help you see points that would otherwise be obscured
by falling on top of other point(s) at the same location. The second one uses
method="stack" to stack the points like little histograms instead (Fig. 15.24).
Here we do both types in a single multiframe plot. For details, see Section 15.3,
“Graphics Parameters and Multiple Plots on a Page.”

> par( mfrow=c(2,1) ) #set up 2 columns, 1 row multiplot

> stripchart(posttest, method="jitter",
+ main="Stripchart with Jitter")

> stripchart(posttest, method="stack",
+ main="Stripchart with Stacking")

> par( mfrow=c(1,1) ) # restore to 1 plot
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Stripchart with Jitter

60 70 80 90

60 70 80 90

Stripchart with Stacking

Fig. 15.24. Strip chart demonstrating the methods jitter and stack.

Let us now compare groups using strip charts (Fig. 15.25). Notice the use
of the formula posttest~workshop to compare the workshop groups. You can
reverse the order of those two variables to flip the scatter vertically, but you
would lose the automated labels for the factor levels.

> par( las=2, mar=c(4,8,4,1)+0.1 )

> stripchart(posttest ~ workshop, method="jitter")

The par function here is optional. I use it just to angle the workshop value
labels so that they are easier to read. Turned that way, they need more space
on the left of the chart. The par function call above uses two arguments to
accomplish this.
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Fig. 15.25. A strip chart of posttest scores by workshop.

1. The las=2 argument changes the label angle setting of the text to be
perpendicular to the y-axis. For more settings, see Table 15.1, “Graphics
arguments for use with traditional high-level graphics functions.”

2. The mar=c(4,8,4,1)0.1+ argument sets the size of the margins at the
bottom, left, top, and right sides, respectively. The point of this was to
make the left side much wider so that we could fit the labels turned on

Table 15.1. Graphics arguments for use with traditional high-level
graphics functions.

main Supplies the text to the main title.
E.g. plot(pretest,posttest,main="My Scatter plot")

sub Supplies the text to the sub-title.
E.g. plot(pretest,posttest...sub="My Scatter plot")

xlab An argument that supplies the x -axis label (variable labels from Hmisc

package are ignored).
E.g. plot(pretest,posttest...xlab="Score Before Training")

xlim An argument that specifies the lower and upper limits of the x -axis.
E.g. plot(pretest, posttest, xlim=c(50,100) )

ylab An argument that supplies the y-axis label (variable labels from Hmisc

package are ignored).
E.g. plot(pretest,posttest...ylab="Score After Training")

ylim An argument that specifies the lower and upper limits of the y-axis.
E.g. plot(pretest, posttest, ylim=c(50,100) )
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Table 15.2. Graphics parameters to set or query using only par().

ask par(ask=TRUE) causes R to prompt you before showing a new graphic.
The default setting of FALSE causes it to automatically replace any
existing plot with a new one. If you run a program in batch mode, you
should set this to FALSE!

family Sets font family for text.
par(family="sans"), the default, requests Helvetica or Arial.
par(family="serif") requests a serif font like Times Roman;
par(family="mono") requests a monospaced font like Courier;
par(family="symbol") requests math and greek Greek symbols.

mar Sets margin size in number of lines. The default setting is
par( mar=c(5,4,4,2)+0.1 )

which sets number of margin lines in order (bottom, left, top, right).
For graphs that lack labels, you may want to decrease the margins to
eliminate superfluous white space. An example that sets label angle
style to perpendicular and provides eight lines on the left side is
par( las=2, mar=c(4,8,4,1)+0.1 )

mfrow Sets up a multif rame plot to contain several other plots. R will plot
to them left to right, top to bottom. This example yields three rows of
two plots.
par( mfrow=c(3,2) ) This returns it to a single plot:
par( mfrow=c(1,1) )

mfcol Sets up a multif rame plot like mfrow, but writes plots in columns from
top to bottom, left to right.

new Setting par(new=TRUE) tells R that a new plot has already been started
so that it will not erase what is there before adding to it.

par() Will display all traditional graphics parameters.
ps Sets the point size of text. For example, to select 12-point text:

par(ps=12)

usr Shows you the coordinates of a plot in the form x -start, x -stop, y-start,
y-stop.

xlog Setting par(xlog=TRUE), requests a logarithm-transformed x -axis,
including tick-marks.

ylog Setting par(ylog=TRUE), requests a logarithm-transformed y-axis,
including tick-marks.

their sides. For details, see Table 15.2, “Graphics parameters to set or
query using only par().”

The stripchart function call above contains two arguments.

1. The formula posttest~workshop, which asks for a strip chart of posttest
for every value of workshop.

2. The method="jitter" argument that tells it to add random noise to help
us see the points that would otherwise be plotted on top of others.
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Table 15.3. Graphics parameters for both par and graphics functions.

adj Sets justification of text with 0=left, 0.5=center, 1=right.
cex Sets character expansion size of text as a multiplication factor. For

example, cex=1.5 would make all of the text in a plot 50% larger. You
can control individual elements via the following:
axis: cex.axis, axis labels: cex.lab, main title: cex.main,
subtitles: cex.sub.

col Sets color of bars, lines, and points. Enter colors() to see them all.
You can control individual elements with the following:
axis: col.axis, axis labels: col.lab, main titles: col.main,
subtitles: col.sub.
E.g. barplot( table(gender), col=c("gray90","gray60") )

font Sets font for text elements. You can control individual elements with
the following:
axes: font.axis, labels: font.lab, main title: font.main,
subtitles: font.sub.
The levels are: 1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol.
E.g. plot(x,y...font.main=3,main="My Italic Title")

las Performs label angle setting in margins. Levels are the following:
0=text parallel to its axis, 1=horizontal,
2=text perpendicular to its axis, 3=vertical.
E.g. par( las=2 )

lty The l ine type argument applies to functions that create lines such as the
functions such as abline and lines as well as to the par and legend

functions. The types of lines you can request are as follows:
0=blank, 1=solid, 2=dashed, 3=dotted,
4=dot-dash, 5=long dash, 6=two dashes.
E.g. lines( lowess(posttest ~ pretest), lty=3 )

lwd Determines l ine w idth. The default value is 1 and the resulting width
varies by graphics device.
E.g. lines( lowess(posttest ~ pretest), lwd=2 )

mtext A function that adds text to the margins of a plot. Its arguments are
the line of text from 0 to N, the side of the margin (1=bottom, 2=left,
3=top, 4=right) and the “at” value, which is in terms of the axis scale
itself. E.g. mtext("line=2", side=2, line=2, at=65 )

pch An argument to function that plot point characters like a scatter plot.
“.”=tiny dot, 1=circle, 2=triangle up, 3=+, 4=X, 5=diamond,
6=triangle pointing down. see help(points) for more.
E.g. plot(pretest,posttest,pch=2)

srt Sets rotation of text in plot region.
E.g. text at 45°: text(65,85,"My Tilted Text", srt=45)
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Table 15.4. Graphics functions to add elements to existing plots.

abline A function that adds straight line(s) to an existing plot in the form
y=a+bx. Example of intercept 0, slope 1: abline(a=0, b=1, lty=5)

E.g. linear model line:
abline( lm(posttest ~ pretest), lty=1 )

arrows A function that draws an arrow with the arguments (from–x, from–
y, to–x, to–y). The optional length argument sets the length of the
arrowhead lines.
E.g. arrows(65,85,58.5,60.5, length=0.1)

axis A function that adds an axis to an existing plot. E.g. axis(4) adds it
to the right side (1=bottom, 2=left, 3=top, 4=right).

box A function that adds a box around an exsisting plot. E.g. box()
grid A function that adds a set of vertical and horizontal lines to an exsisting

plot. E.g. grid()
lines A function that adds line(s) to an existing plot (need not be straight).

E.g. lowess fit: lines( lowess(posttest ~ pretest), lty=3 )

text A function that adds text to an existing plot. Its arguments are the
x,y position of the plot, the text, and the position of the text. Its pos

argument positions text relative to x,y values with 1=bottom, 2=left,
3=top, 4=right.
E.g. text (65,85,"Fit is linear", pos=3)

15.9 Scatter Plots and Line Plots

Scatter plots are helpful in many ways. They show the nature of a relationship
between two variables. Is it a line? Is it a curve? Is the variability in one
variable the same at different levels of the other? Is there an outlier now
visible that did not show up when checking minimum and maximum values
one variable at a time? A scatter plot can answer all of these questions.

The plot function takes advantage of R’s object orientation by being
generic.; that is, it looks at the class of objects you provide it and takes the
appropriate action. For example, when you give it two continuous variables,
it does a scatter plot (Fig. 15.26).

> plot(pretest, posttest)

Note the “92” on the lower left point. That did not appear on the graph at
first. We wanted to find which observation that was, so we used the identify
function.

> identify(pretest,posttest)

[1] 92

The identify function lets label points by clicking on them. You list the x
and y variables in your plot and optionally provide a label= argument to
specify an ID variable, with the row names as the default. The function will
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Fig. 15.26. A scatter plot of pretest and posttest. Observation 92 (lower left) was
identified after the plot was created.

label the point you click on or near. Unfortunately, it does not let you draw
a box around a set of points. You must click on each one, which can get a
bit tedious. When finished, users can right-click and choose “stop” (or press
the Esc key on Windows). It will then print out the values you chose. If you
assigned the result to a vector as in

myPoints <- identify(pretest,posttest)

then that vector would contain all your selected points. You could then use
logic like

summary( mydata100[!myPoints, ] )

(not myPoints) to exclude the selected points and see how it changes your
analysis. Below, I use a logical selection to verify that it is indeed observation
92 that has the low score.

> mydata100[pretest<60, ]

gender workshop q1 q2 q3 q4 pretest posttest
92 Male Stata 3 4 4 4 58 59
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Back to the scatter plot, you can specify the type argument to change how
the points are displayed. The values use the letter “p” for points, the letter
“l” for lines, “b” for both points and lines, and “h” for histogram-like lines
that rise vertically from the x -axis. Connecting the points using either “l” or
“b” makes sense only when the points are collected in a certain order, such
as time series data. As you can see in Fig. 15.27, that is not the case with our
data, so those appear as a jumbled nest of lines.
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Fig. 15.27. Various scatter plots demonstrating the effect of the type argument.

> par( mfrow=c(2,2) ) # set up a 2x2 multiframe plot

> plot( pretest, posttest, type="p", main="type=p" )
> plot( pretest, posttest, type="l", main="type=l" )
> plot( pretest, posttest, type="b", main="type=b" )
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> plot( pretest, posttest, type="h", main="type=h" )

> par( mfrow=c(1,1) ) # set parameter back to 1 plot

15.9.1 Scatter plots with Jitter

The more points you have in a scatter plot, the more likely you are to have
them overlap, potentially hiding the true structure of the data. This is a
particularly bad problem with Likert-scale data since it only uses the values 1
through 5. This data is typically averaged into scales that are more continuous,
but we will look at an example with just two Likert measures: q1 and q4.

Jitter is simply some random variation added to the data to prevent over-
lap. You will see the jitter function in the second plot in Fig. 15.28. Its
arguments are the variable to jitter and a value “3” for the amount of jitter.
That was derived from trial and error. The larger the number, the greater the
jitter.
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Fig. 15.28. Scatter plots demonstrating the impact of jitter on five-point Likert-
scale data.

> par( mfrow=c(1,2) ) # set up 1x2 multiframe plot

> plot( q1,q4,
+ main="Likert Scale Without Jitter")

> plot( jitter(q1,3), jitter(q4,3),
+ main="Likert Scale With Jitter")

> par( mfrow=c(1,1) ) # reset to single plot

15.9.2 Scatter plots with Large Data Sets

The larger your data set, the more likely that it is some points will be hidden
by others. That makes jitter, described in the previous subsection, particularly
useful. It is also helpful to use the smallest point character with pch=".".
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Fig. 15.29. Scatter plots showing how to handle large data sets. The plot on the
left using default settings leaves many points obscured. The one on the right uses
much smaller points and jitters them, allowing us to see more points.

The following is an example using 5,000 points (Fig. 15.29). The R code that
generated pretest2 and posttest2 is included in the program at the end of this
chapter.

> plot( jitter(pretest2,4), jitter(posttest2,4), pch=".",
+ main="5,000 Points Using pch=’.’ \nand Jitter")

Another way of plotting large amounts of data is a hexbin plot (Fig. 15.30).
This is provided via the hexbin package, written by Dan Carr and ported by
Nicholas Lewvin-Koh and Martin Maechler [4]. Note that hexbin uses the
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Fig. 15.30. A hexbin plot that divides large amounts of data into hexagonal bins
to show structure in large data sets. Each bin can represent many original points.
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lattice package, which in turn uses the grid graphics system. That means
that you cannot put multiple graphs on a page nor set any other parameters
using the par function.

> library("hexbin")

Loading required package: grid
Loading required package: lattice

> plot( hexbin(pretest2,posttest2),
+ main="5,000 Points Using Hexbin")

> detach("package:hexbin")

15.9.3 Scatter plots with Lines

You can add straight lines to your plots with the abline function. It has
several different types of arguments. Let us start with a scatter plot with only
points on it (Fig 15.31).
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Fig. 15.31. A scatter plot demonstrating how to add various types of lines, as well
as a legend and title.
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> plot(posttest ~ pretest)

Now let us add a horizontal line and a vertical line at the value 75. You might
do this if there were a cutoff below which students were not allowed to take
the next workshop.

> abline( h=75, v=75 )

The abline function exists to add straight lines to the last plot you did,
so there is no add=TRUE argument. Next, let us draw a diagonal line that has
pretest equal to posttest. If the workshop training had no effect, the scatter
would lie on this line. This line would have a y-intercept of 0 and a slope of
1. The abline function does formulas in the form y = a + bx, so we want to
specify a = 0 and b = 1. We will also set the l inetype to dashed with lty=5.

> abline( a=0, b=1, lty=5 )

Next, let us add a regression fit using the lm function within abline. The
abline function draws straight lines, so let us use the lines function along
with the lowess function to draw smoothly fitting lowess curve. The legend
function allows you to choose the order of the labels, so I have listed them as
they appear from top to bottom in the upper left corner of the plot.

> abline( lm( posttest ~ pretest ), lty=1 )

> lines( lowess( posttest ~ pretest ), lty=3 )

> legend( 60, 95,
+ c( "Regression", "Lowess", "Posttest=Pretest" ),
+ lty=c(1,3,5) )

15.9.4 Scatter plots with Linear Fit by Group

As we saw in the last subsection, it is easy to add regression lines to plots
using R’s traditional graphics. Let us now turn our attention to fitting a
regression line separately for each group (Fig. 15.32). First, we will use the
plot function to display the scatter, using the pch argument to set the point
characters based on gender. Gender is a factor, which cannot be used directly
to set the point characters. Therefore, we are using the as.numeric function
to convert it on the fly. That will cause it to use two symbols. If we used the
as.character function instead, it would plot the actual characters M and F.

> plot(posttest~pretest,
+ pch=as.numeric(gender) )

Next, we simply use the abline function as we did earlier, but basing our
regression on the males and females separately. For details about selecting
observations based on group membership, see Chapter 8, “Selecting Observa-
tions.”
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Fig. 15.32. A plot that displays different point symbols and regression lines for
each gender.

> abline( lm( posttest[ which(gender=="Male") ]
+ ~ pretest[ which(gender=="Male") ] ),
+ lty=1 )

> abline( lm( posttest[ which(gender=="Female") ]
+ ~ pretest[ which(gender=="Female") ] ),
+ lty=2 )

> legend( "topleft", c("Male","Female"),
+ lty=c(1,2), pch=c(2,1) )

15.9.5 Scatter plots by Group or Level (Coplots)

Coplots are scatter plots conditioned on the levels of a third variable. For
example, to get a scatter plot for each workshop is very easy. In Fig. 15.33,
the box above the scatter plots indicates which plot is which. The bottom
left is for R, the bottom right is for SAS, the top left is for SPSS, and the
top right is for Stata. This is a rather odd layout for what could have been a
simple 2 by 2 table of labels, but it makes more sense when the third variable
is continuous. Both the lattice and ggplot2 packages do a better job of
labeling such plots. The coplot function is easy to use. Simply specify a
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Fig. 15.33. A set of scatter plots for each workshop created using the coplot

function. The bars in the top frame show which workshop each plot represents, from
left to right, starting on the bottom row.

formula in the form y~x and list your conditioning variable after a vertical
bar, “|”.

> coplot( posttest ~ pretest | workshop)

The next plot, Fig. 15.34, is conditioned on the levels of q1. Now the length
of the bars and their overlap do an excellent job of showing the values of q1
that apply to each plot. The values of q1 in each plot overlap to prevent you
from missing an important change that occurs at a single value of q1.

> coplot( posttest ~ pretest | q1)

The functions that modify plots apply to plots you create one at a time.
That is true even when you build a multiframe plot one plot at a time. How-
ever, when you use a single R function that creates its own multiframe plot,
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Fig. 15.34. A set of scatter plots for various levels of q1. The bars in the top frame
show the values of q1 for each plot and how they overlap. Going left to right and
from bottom to top, the values of q1 increase.

such as coplot, you can no longer use those functions. See the help file for
ways to modify coplots.

15.9.6 Scatter plots with Confidence Ellipse

Confidence ellipses help visualize the strength of a correlation as well as pro-
vide a guide for identifying outliers. The data.ellipse function in John Fox’s
car package makes these quite easy to plot (Fig. 15.35). It works much like
the plot function, with the first two arguments being your x and y variables,
respectively. The levels argument lets you specify one confidence limit as
shown below or you could specify a set in the usual way, for example:

levels=c(.25, .50, .75)



15.9 Scatter Plots and Line Plots 357

60 65 70 75 80 85

60
70

80
90

pretest

po
st

te
st

Fig. 15.35. A scatter plot with 95% confidence ellipse.

If you leave the col="black" argument off, it will display in its default color
of red.

> library("car")

> data.ellipse(pretest, posttest,
+ levels=.95,
+ col="black")

> detach("package:car")

15.9.7 Scatter plots with Confidence and Prediction Intervals

As we saw previously, adding a regression line to a scatter plot is easy. How-
ever, adding confidence intervals is somewhat complicated. The ggplot2 pack-
age, covered in the next chapter, makes getting a line and 95% confidence band
about the line easy, but getting confidence limits about the predicted points
is complicated even with it.

Let us start with a simple example. We will create a vector x and three
vectors y1, y2, and y3. The three y’s will represent a lower confidence limit,
the prediction line, and the upper confidence limit, respectively.
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> x <- c(1,2,3,4)

> y1 <- c(1,2,3,4)

> y2 <- c(2,3,4,5)

> y3 <- c(3,4,5,6)

> yMatrix <- cbind(y1,y2,y3)

> yMatrix

y1 y2 y3
[1,] 1 2 3
[2,] 2 3 4
[3,] 3 4 5
[4,] 4 5 6

Now we will use the plot function to plot x against y2 (Fig. 15.36). We
will specify the xlim and ylim arguments to ensure that the axes will be big
enough to hold the other y variables. The result is rather dull! We have used
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Fig. 15.36. A scatter plot of just four points on a straight line, a simple foundation
to build on.
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the cex=1.5 argument to do plot character expansion of 50% to make it easier
to see in this small size.

> plot(x,y2, xlim=c(1,4), ylim=c(1,6), cex=1.5)

Next, we will use the matlines function (Fig. 15.37). It can plot a vector
against every column of a matrix. We will use the lty argument to specify
line types of dashed, solid, dashed for y1, y2, and y3, respectively. Finally,
we will specify the line color as col="black" to prevent it from providing a
different color for each line as it does by default.

> matlines( x, yMatrix, lty=c(2,1,2), col="black" )

> rm( x, y1, y2, y3, yMatrix)
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Fig. 15.37. A scatter plot that demonstrates the basic idea of a regression line with
confidence intervals. With a more realistic example, the confidence bands would be
curved.

This plot represents the essence of our goal. Now let us fill in the details.
First, we need to create a new data frame that will hold a “well-designed”
version of the pretest score. We want one that covers the range of possible val-
ues evenly. That will not be important for linear regression, since the spacing
of points will not change the line, but we want to use a method that would
work even if we were fitting a polynomial regression.
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> myIntervals <-
data.frame( pretest=seq(from=60, to=100, by=5) )

> myIntervals

pretest
1 60
2 65
3 70
4 75
5 80
6 85
7 90
8 95
9 100

Now let us create a regression model using the lm function and store it in
myModel. Note that we have attached the “real” data set, mydata100, so the
model is based on its pretest and posttest scores.

> myModel <- lm( posttest ~ pretest )

Next, we will use the predict function to apply myModel to the myInter-
vals data frame we just created. There are two types of intervals you might
wish to plot around a regression line. The 95% prediction interval (also called
tolerance interval) is the wider of the two and is for predicted values of Y for
new values of X (interval="prediction"). The 95% confidence interval is
for the mean of the Y values at a given value of X (interval="confidence").
We will run the predict function twice to get both types of intervals and then
look at the data. Notice that the newdata argument tells the predict function
which data set to use.

> myIntervals$pp <- predict( myModel,
+ interval="prediction", newdata=myIntervals)

> myIntervals$pc <- predict( myModel,
+ interval="confidence", newdata=myIntervals)

> myIntervals

pretest pp.fit pp.lwr pp.upr pc.fit pc.lwr pc.upr
1 60 69.401 59.330 79.472 69.401 66.497 72.305
2 65 73.629 63.768 83.491 73.629 71.566 75.693
3 70 77.857 68.124 87.591 77.857 76.532 79.183
4 75 82.085 72.394 91.776 82.085 81.121 83.050
5 80 86.313 76.579 96.048 86.313 84.980 87.646
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6 85 90.541 80.678 100.405 90.541 88.468 92.615
7 90 94.770 84.696 104.843 94.770 91.855 97.684
8 95 98.998 88.636 109.359 98.998 95.207 102.788
9 100 103.226 92.507 113.945 103.226 98.545 107.906

Now we have all of the data we need. Look at the names pp.fit, pp.lwr, and
pp.upr. They are the fit and lower/upper prediction confidence intervals. The
three variables whose names begin with “pc” are the same variables for the
line’s narrower confidence interval. But why the funny names? Let us check
the class of just “pp”.

> class( myIntervals$pp )

[1] "matrix"

> myIntervals$pp

fit lwr upr
1 69.401 59.330 79.472
2 73.629 63.768 83.491
3 77.857 68.124 87.591
4 82.085 72.394 91.776
5 86.313 76.579 96.048
6 90.541 80.678 100.405
7 94.770 84.696 104.843
8 98.998 88.636 109.359
9 103.226 92.507 113.945

The predict function has added two matrices to the myIntervals data
frame. Since the matlines function can plot all columns of a matrix at
once, this is particularly helpful. Now let us use this information to com-
plete our plot with both types of confidence intervals. The only argument
that is new is setting the limits of the y-axis using the range function. I did
that to ensure that the y-axis was wide enough to hold both the pretest
scores and the wider prediction interval, pp. Finally, we see the plot in
Fig. 15.38.

> plot( pretest, posttest,
+ ylim=range( myIntervals$pretest,
+ myIntervals$pp, na.rm=TRUE),
+ main="Regression Fit with Confidence Intervals" )

> matlines(myIntervals$pretest, myIntervals$pc,
+ lty=c(1,2,2), col="black" )

> matlines(myIntervals$pretest, myIntervals$pp,
+ lty=c(1,3,3), col="black" )
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Fig. 15.38. Here we finally see the complete plot with both types of confidence
intervals using our practice data set.

15.9.8 Plotting Labels Instead of Points

When you do not have too much data, it is often useful to plot labels instead of
symbols (Fig. 15.39). If your label is a single character, you can do this using
the pch argument. If you have a character variable, pch will accept it directly.
In our case, gender is a factor, so we will use the as.character function to
convert it on the fly.

> plot(pretest, posttest,
+ pch=as.character(gender) )

If you provide the pch function a longer label, it will plot only the first
character. To see the whole label, you must first plot an empty graph with
type="n", for no points, and then add to it with the text function. The
text function works just like the plot function, but it plots labels instead of
points. In Fig. 15.40, we are using the row.names function to provide labels.
If we had wanted to plot the workshop value instead, we could have used
label=as.character(workshop).
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Fig. 15.39. A scatter plot using gender as its point symbol. This method only works
with a single character.
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Fig. 15.40. A scatter plot with row.names as labels. This used the text function
because it can handle labels longer than one character.
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> plot(pretest, posttest, type="n" )

> text(pretest, posttest,
+ label=row.names(mydata100) )

15.9.9 Scatter plot Matrices

When you have many variables to study it can be helpful to get pairwise
scatter plots of them all (Fig. 15.41). This is easy to do with the plot function.
The first one below will suffice, but it inserts gaps between each pair of graphs.
The second one removes those gaps and shrinks the size of the labels by 10%.
The second plot is the only one shown.

> plot(mydata100) #Not shown.

> plot(mydata100, gap=0, cex.labels=0.9)
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Fig. 15.41. A scatter plot matrix shows small plots for every combination of
variables. This was created using the plot function.
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You can use the entire data frame in this type of plot and it will convert
factors to numeric and give you the following warning. The plots involving
factors would appear as strip plots.

Warning message:
In data.matrix(x) : class information lost
from one or more columns

As with any generic function, you can see what other functions plot will
call given different classes of data. The methods function will show you the
following:

> methods(plot)

[1] plot.acf* plot.data.frame* plot.Date*
[4] plot.decomposed.ts* plot.default plot.dendrogram*
[7] plot.density plot.ecdf plot.factor*
[10] plot.formula* plot.hclust* plot.histogram*
[13] plot.HoltWinters* plot.isoreg* plot.lm
[16] plot.medpolish* plot.mlm plot.POSIXct*
[19] plot.POSIXlt* plot.ppr* plot.prcomp*
[22] plot.princomp* plot.profile.nls* plot.spec
[25] plot.spec.coherency plot.spec.phase plot.stepfun
[28] plot.stl* plot.table* plot.ts
[31] plot.tskernel* plot.TukeyHSD

When you use the plot function on a data frame, it passes the data on to
the plot.data.frame function. When you read the help file on that, you find
that it then calls the pairs function! So to find out the options to use, you
can finally enter help(pairs). That will show you some interesting options,
including adding histograms on the main diagonal and Pearson correlations
on the upper right panels.

In the next example, I have added the panel.smooth values to draw lowess
smoothing. Although I call the pairs function directly here, I could have
used the plot function to achieve the same result. Since the pairs function is
creating a multiframe plot by itself, you must use its own options to modify
the plot. In this case, we cannot add a smoothed fit with the lines function;
we must use panel.smooth instead (Fig. 15.42).

> pairs(mydata100[3:8], gap=0,
+ lower.panel=panel.smooth,
+ upper.panel=panel.smooth)
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Fig. 15.42. A scatter plot matrix with smoothed fits from the pairs function.

15.10 Dual-Axes Plots

The usual plot has a y-axis on only the left side. However, to enhance read-
ability you may wish to place it on the right as well. If you have the same
y variable measured in two different units (Dollars & Euros, Fahrenheit &
Celsius,. . . ), you may wish a second axis in those units.

If you have two different y variables to plot, using a dual-axis plot is
usually not a good idea [17]. Stacking two different plots in a multiframe plot
is a better way to handle that situation. For examples of how to stack plots,
see Section 15.3, “Graphics Parameters and Multiple Plots on a Page.”

We will simply place the same axis on both sides, which can make it easier
to read the y values of points near the right-hand side of the plot. We will
plot the same graph, once without axes, then adding one on the right, and
then the left.

First, we will need to add space in the margins, especially the right side,
where the new axis will need labeling. That is done with the following function
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call, which changes the margins from their default values of (5,2,2,4)+0.1 to
5,5,4,5 as it applies to the bottom, left, top, and right sides, respectively:

> par( mar=c(5,5,4,5) )

Next, we will plot the points, but without the axes using the argument,
axes=FALSE. We will also fix the limits of the x -axis with xlim=c(55,100).
The limits of the y axis might be different of course, but we need to keep the
x values in each overlaid plot in the exact same locations.

> plot( pretest, posttest, axes=FALSE, xlim=c(55,90),
+ main="Scatter plot with Dual Axes" )

The points and labels will appear now but without axes. The next call to
the axis function asks R to place the current axis on the right side (side 4).

> axis(4)

Next, we can add text to the margin around that axis with the mtext
function. It is placing its text, in a bold font (font=2) on line 3 of side 4 (the
right). If this were a graph for publication rather than education, we would
put the same label on both sides. Here I do different ones just to make it
obvious which is which.

> mtext("Axis label on right size",
+ font=2, side=4, line=3)

Now comes the “secret sauce.” If we were to use the plot function again, it
would completely replace what we have done so far. But if we set the graphics
parameter new=TRUE, it does not erase the screen, allowing us to complete our
plot (Fig. 15.43).
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Fig. 15.43. A scatter plot demonstrating an additional axis on the right side.
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> par( new=TRUE )
> plot( pretest, posttest, xlim=c(60,90) )

15.11 Box Plots

box plots put the middle 50% of the data in a box with a median line in
the middle and lines, called “whiskers,” extending to +/–1.5 times the height
of the box (i.e., the 75th percentile minus the 25th). Points that lie outside
the whiskers are considered outliers. You can create box plots using the plot
function when the first variable you provide is a factor (Fig. 15.44).

> plot( workshop, posttest,
+ main="Box plot using plot function")

There are several variations we can do. First, let us use the mfrow argument
of the par function to create a two by two multiframe plot.

> par( mfrow=c(2,2) )

Next, we will do a box plot of a single variable, posttest. It will appear in the
upper left of Fig. 15.45. We will use the box plot function since it gives us
more flexibility.

> boxplot(posttest)
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90

Boxplot using plot function

Fig. 15.44. A box plot of posttest scores for each workshop.
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Fig. 15.45. Various box plots. The upper left is the posttest score. The upper right
shows pretest and posttest, with notches indicating possible median differences. The
lower left shows posttest scores for each workshop. The lower right shows posttest
for the gender and workshop combinations as well as labels perpendicular to the
x -axis.

Then we will put pretest and posttest side-by-side in the upper right of
Fig. 15.45. The notch argument tells it to create notches such that when
they do not overlap will provide “strong evidence” that the medians differ. It
appears in the upper right.

> boxplot( pretest, posttest, notch=TRUE )

Next we will use a formula to get box plots for each workshop, side–by–
side. It appears in the bottom left of Fig. 15.45.

> boxplot( posttest ~ workshop )
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Finally, we will create a box plot for each workshop:gender combination. If
we tried to use the plot function using the workshop:gender syntax, it would
create two box plots: one for workshop and another for gender. To get one for
all combinations we must use the boxplot function.

Generating the combination of factors will create long value labels, like
“Stata.Female”. So we will need to change the label axis style of the x -axis
using las=2 and increase the bottom margin with mar=c(8,4,4,2)0.1+. We
will set those parameters back to their defaults immediately afterward. The
plot appears in the bottom right of Fig. 15.45.

> par( las=2, mar=c(8,4,4,2)+0.1 )

> boxplot(posttest ~ workshop:gender)

> par( las=0, mar=c(5,4,4,2)+0.1 )

This is a bit of a mess and would probably be more interpretable if we
had done one box plot of workshop for each gender and stack them in a mul-
tiframe plot. For instructions on how to do that, see Section 15.3, “Graphics
Parameters and Multiple Plots on a Page.” The ggplot2 package does a much
better version of this same plot in Fig. 16.36.

15.12 Error Bar Plots

The gplots package, by Gregory R. Warnes et al.[43], has a plotmeans func-
tion that plots means with 95% confidence bars around each. The confidence
intervals assume the data comes from a normal distribution (Fig. 15.46). Its
main argument is in the form measure~group.

> library("gplots")

> plotmeans( posttest ~ workshop,
+ main="Plotmeans from gplots Package")

> detach("package:gplots")

15.13 Interaction Plots

R has a built-in interaction.plot function that plots the means for a two-
way interaction (Fig. 15.47). For three-way or higher interactions, you can
use the by function to repeat the interaction plot for each level of the other
variables.
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Fig. 15.46. An error bar plot showing the posttest mean for each workshop, along
with 95% confidence intervals.

In Fig. 15.47, the males seem to be doing slightly better with R and the
females with Stata. Since the plot does not display variability, we do not have
any test of significance for this interpretation.

> interaction.plot( workshop, gender, posttest,
+ main="Means Using interaction.plot function")

15.14 Adding Equations and Symbols to Graphs

Any of the functions that add text to a graph, such as main, sub, xlab, and
ylab, can display mathematical equations. For example, a well-known formula
for multiple regression is

β̂ = (XtX)−1XtY

You can add this to any existing graph using the following call to the text
function:

text(66, 88, "My Example Formula")
text(65, 85,
expression( hat(beta) ==
(X^t * X)^{-1} * X^t * Y) )
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Fig. 15.47. An interaction plot of posttest means by the workshop and gender
combinations.

The text function adds any text at the x,y position you specify—in this
case, 66 and 88. So the use of it above adds “My Example Formula” to an
existing graph at that position. In the second call to the text function, we
also call the expression function. When used on any of the text annotation
functions, the expression function tells R to interpret its arguments in a
special way that allows it to display a wide variety of symbols. In this ex-
ample, beta will cause the Greek letter β to appear. Two equal signs in a
row (x==y) result in the display of one (x=y). Functions like hat and bar
will cause those symbols to appear over their arguments. So hat(beta) will
display a “^” symbol over the Greek letter beta. This example formula ap-
pears on the plot in Fig. 15.48. You can see several tables of symbols with
help(plotmath).

15.15 Summary of Graphics Elements and Parameters

As we have seen in the examples above, R’s traditional graphics have a range
of functions and arguments that you can use to embellish your plots.

Tables 15.1 through 15.4 summarize them.
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Fig. 15.48. A plot demonstrating many types of text and line annotations. The
“line=n” labels around the margins display how the line numbers start at zero next
to each axis and move outward as the line numbers increase.

15.16 Plot Demonstrating Many Modifications

Below is a program that creates a rather horrible looking plot (Fig. 15.48), but
it does demonstrate many of the options you are likely to in need. The very
repetitive mtext function calls that place labels all over the margins could be
done with a loop, making it much more compact but less clear to beginners
unfamiliar with loops.

par( mfrow=c(1,1) )
par(family="serif")
plot( pretest,posttest,
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main="My Main Title" ,
xlab="My xlab text" ,
ylab="My ylab text",
sub="My subtitle ",
pch=2)

text(66, 88, "My Example Formula")
text(65, 85,
expression( hat(beta) ==
(X^t * X)^{-1} * X^t * Y) )

text (85,65,"My label with arrow", pos=3)
arrows(85,65,64,62, length=0.1)
abline(h=75,v=75)
abline(a=0, b=1, lty=5)
abline( lm(posttest~pretest), lty=1 )
lines( lowess(posttest~pretest), lty=3 )
legend( 64, 99,
c( "Regression", "Lowess", "Posttest=Pretest" ),
lty=c(1,3,5) )

mtext( "line=0", side=1, line=0, at=57 )
mtext( "line=1", side=1, line=1, at=57 )
mtext( "line=2", side=1, line=2, at=57 )
mtext( "line=3", side=1, line=3, at=57 )
mtext( "line=4", side=1, line=4, at=57 )
mtext( "line=0", side=2, line=0, at=65 )
mtext( "line=1", side=2, line=1, at=65 )
mtext( "line=2", side=2, line=2, at=65 )
mtext( "line=3", side=2, line=3, at=65 )
mtext( "line=0", side=3, line=0, at=65 )
mtext( "line=1", side=3, line=1, at=65 )
mtext( "line=2", side=3, line=2, at=65 )
mtext( "line=3", side=3, line=3, at=65 )
mtext( "line=0", side=4, line=0, at=65 )
mtext( "line=1", side=4, line=1, at=65 )
mtext( "line=0", side=4, line=0, at=65 )
mtext( "line=1", side=4, line=1, at=65 )

15.17 Example Program for Traditional Graphics

The Stata examples in this chapter are particularly sparse compared to those
for R. This is due to space constraints rather than due to lack of capability.
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15.17.1 Stata Program for Traditional Graphics

* Filename: GraphicsTraditional.do

use c:\myRfolder\mydata100, clear

* Histogram of q1
histogram q1

* Bar chart of gender
graph bar (count) gender

* Bar chart of workshop and gender at their mean values
graph bar workshop gender

* Scatter plot of pretest and posttest
graph twoway scatter pretest postest

* Scatter plot matrix for all variables but gender
graph matrix workshop q1-q4

15.17.2 R Program for Traditional Graphics

# Filename: GraphicsTradtional.R

setwd("/myRfolder")
load(file="mydata100.Rdata")
attach(mydata100)
options(width=64)

# Request it to ask you to click for new graph.
par(ask=FALSE, mfrow=c(1,1) )

#---Barplots---

# Barplots of counts via table

barplot( c(60,40) )

barplot(q4)
table(q4)
barplot( table(q4) )

barplot( workshop )
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barplot( table(workshop) )
barplot(gender)
barplot( table(gender) )

barplot( table(workshop), horiz=TRUE)

barplot( as.matrix( table(workshop) ),
beside = FALSE)

# Grouped bar plots & mosaic plots

barplot( table(gender,workshop) )

plot( workshop,gender )

mosaicplot( table(workshop,gender) )

mosaicplot(~ Sex + Age + Survived,
data = Titanic, color = TRUE)

barplot( table(gender,workshop), beside=TRUE )

# Barplots of means via tapply

myMeans <- tapply(q1, gender, mean, na.rm=TRUE)
barplot(myMeans)

myMeans <- tapply(q1, list(workshop,gender), mean,na.rm=TRUE)
barplot(myMeans, beside=TRUE)

#---Adding main title, color and legend---

barplot( table(gender,workshop),
beside=TRUE,
col=c("gray90","gray60"),
main="Number of males and females \nin each workshop" )

legend( "topright",
c("Female","Male"),
fill=c("gray90","gray60") )

# A manually positioned legend at 10,15.
legend( 10,15,
c("Female","Male"),
fill=c("gray90","gray60") )
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#---Mulitple Graphs on a Page---

par()
head( par() )

par( mar=c(3,3,3,1)+0.1 )
par( mfrow=c(2,2) )

barplot( table(gender,workshop) )
barplot( table(workshop,gender) )
barplot( table(gender,workshop), beside=TRUE )
barplot( table(workshop,gender), beside=TRUE )

par( mfrow=c(1,1) ) #Sets back to 1 plot per page.
par( mar=c(5,4,4,2)+0.1 )

#---Dotcharts---

dotchart( table(workshop,gender),
main="Dotchart of Workshop Attendance",
cex=1.5)

#---Piecharts---
pie( table(workshop),
col=c("white","gray90","gray60","black" ),
main="Piechart of Workshop Attendance" )

# ---Histograms---

hist(posttest)

# More bins plus density and ticks at values.
hist(posttest, breaks=20, probability=TRUE,
main="Histogram with Density and Points")

lines( density(posttest) )
myZeros <- rep(0, each=length(posttest) )
myZeros
points( posttest, myZeros, pch="|" )

# Histogram of males only.
hist(posttest[gender=="Male"], col="gray60")

# Plotting above two on one page,
# matching breakpoints.
par(mfrow=c(2,1) )



378 15 Traditional Graphics

hist(posttest, col="gray90",
breaks=c(50,55,60,65,70,75,80,85,90,95,100) )

hist(posttest[gender=="Male"], col="gray60",
breaks=c(50,55,60,65,70,75,80,85,90,95,100) )

par(mfrow=c(1,1) )

# Could have used either of these:
# breaks=seq(from=50, to=100, by=5) )
# breaks=seq(50,100,5) )

# Histograms overlaid

hist(posttest, col="gray90",
breaks=seq(from=50, to=100, by=5) )

hist(posttest[gender=="Male"], col="gray60",
breaks=seq(from=50, to=100, by=5),
add=TRUE )

legend( "topright", c("Female","Male"),
fill=c("gray90","gray60") )

# Same plot but extracting $breaks
# from previous graph.

myHistogram <- hist(posttest, col="gray90")
names(myHistogram)
myHistogram$breaks
myHistogram$xlim
hist(posttest[gender=="Male"], col=’gray60’,

add=TRUE, breaks=myHistogram$breaks)
legend( "topright", c("Female","Male"),
fill=c("gray90","gray60") )

# What else does myHistogram hold?
class(myHistogram)
myHistogram

#---Q-Q plots---

library("car")
qq.plot(posttest,
labels=row.names(mydata100),
col="black" )

detach("package:car")

myQQ <- qqnorm(posttest) #Not shown in text.
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identify(myQQ)

#---Stripcharts---

par( mar=c(4,3,3,1)+0.1 )
par(mfrow=c(2,1) )
stripchart(posttest, method="jitter",
main="Stripchart with Jitter")

stripchart(posttest, method="stack",
main="Stripchart with Stacking")

par( mfrow=c(1,1) )
par( mar=c(5,4,4,2)+0.1 )

par( las=2, mar=c(4,8,4,1)+0.1 )
stripchart(posttest~workshop, method="jitter")
par( las=0, mar=c(5,4,4,2)+0.1 )

# --- Scatter plots ---

plot(pretest,posttest)

# Find low score interactively.
# Click 2nd mouse button to choose stop.
identify(pretest,posttest)

# Check it manually.
mydata100[pretest<60, ]

# Different types of plots.
par( mar=c(5,4,4,2)+0.1 )
par( mfrow=c(2,2) )
plot( pretest, posttest, type="p", main="type=p" )
plot( pretest, posttest, type="l", main="type=l" )
plot( pretest, posttest, type="b", main="type=b" )
plot( pretest, posttest, type="h", main="type=h" )
par( mfrow=c(1,1) )

# Scatter plots with Jitter

par( mar=c(5,4,4,2)+0.1 )
par( mfrow=c(1,2) )
plot( q1, q4,
main="Likert Scale Without Jitter")

plot( jitter(q1,3), jitter(q4,3),
main="Likert Scale With Jitter")
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# Scatter plot of large data sets.

# Example with pch="." and jitter.
par(mfrow=c(1,2) )
pretest2 <- round( rnorm( n=5000, mean=80, sd=5) )
posttest2 <-
round( pretest2 + rnorm( n=5000, mean=3, sd=3) )

pretest2[pretest2>100] <- 100
posttest2[posttest2>100] <- 100
plot( pretest2, posttest2,
main="5,000 Points, Default Character \nNo Jitter")

plot( jitter(pretest2,4), jitter(posttest2,4), pch=".",
main="5,000 Points Using pch=’.’ \nand Jitter")

par(mfrow=c(1,1) )

# Hexbins (resets mfrow automatically).
library("hexbin")
plot( hexbin(pretest2,posttest2),
main="5,000 Points Using Hexbin")

detach("package:hexbin")

rm(pretest2,posttest2) # Cleaning up.

# Scatter plot with different lines added.
plot(posttest~pretest)
abline(h=75,v=75)
abline(a=0, b=1, lty=5)
abline( lm(posttest~pretest), lty=1 )
lines( lowess(posttest~pretest), lty=3 )
legend( 60, 95,
c( "Regression", "Lowess", "Posttest=Pretest" ),
lty=c(1,3,5) )

# Scatter plot of q1 by q2 separately by gender.
plot(posttest~pretest,
pch=as.numeric(gender) )

abline( lm( posttest[gender=="Male"]
~ pretest[gender=="Male"] ),

lty=1 )

abline( lm( posttest[gender=="Female"]
~ pretest[gender=="Female"] ),

lty=2 )
legend( "topleft", c("Male","Female"),

lty=c(1,2), pch=c(2,1) )
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# Coplots: conditioned scatter plots
coplot( posttest~pretest | workshop)
coplot( posttest~pretest | q1)

# Scatter plot plotting text labels.

plot(pretest, posttest,
pch=as.character(gender) )

plot(pretest, posttest, type="n" )
text(pretest, posttest,
label=row.names(mydata100) )

# Scatter plot matrix of whole data frame.
plot(mydata100[3:8]) #Not shown with text.

plot(mydata100[3:8], gap=0, cex.labels=0.9)

pairs(mydata100[3:8], gap=0,
lower.panel=panel.smooth,
upper.panel=panel.smooth)

# Dual axes
#Adds room for label on right margin.
par( mar=c(5,5,4,5) )
plot( pretest, posttest, axes=FALSE, xlim=c(55,90),
main="Scatter plot with Dual Axes" )

axis(4)
mtext("Axis label on right size",
font=2, side=4, line=3)

par(new=TRUE)
plot(pretest, posttest, xlim=c(55,90) )

# Scatter plot with Confidence Ellipse.
library("car")
data.ellipse(pretest, posttest,
levels=.95,
col="black")

detach("package:car")

# Confidence Intervals: A small example
x <- c(1,2,3,4)
y1 <- c(1,2,3,4)
y2 <- c(2,3,4,5)
y3 <- c(3,4,5,6)
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yMatrix <- cbind(y1,y2,y3)
yMatrix
plot( x, y2, xlim=c(1,4), ylim=c(1,6), cex=1.5 )
matlines( x, yMatrix, lty=c(2,1,2), col="black" )
rm( x, y1, y2, y3, yMatrix)

# Confidence Intervals: A realistic example
myIntervals <-
data.frame(pretest=seq(from=60, to=100, by=5))

myIntervals
myModel <- lm( posttest~pretest )
myIntervals$pp <- predict( myModel,
interval="prediction", newdata=myIntervals)

myIntervals$pc <- predict( myModel,
interval="confidence", newdata=myIntervals)

myIntervals
class( myIntervals$pp )
myIntervals$pp
plot( pretest, posttest,
ylim=range( myIntervals$pretest,
myIntervals$pp, na.rm=TRUE),

main="Regression Fit with Confidence Intervals" )
matlines(myIntervals$pretest, myIntervals$pc,
lty=c(1,2,2), col="black" )

matlines(myIntervals$pretest, myIntervals$pp,
lty=c(1,3,3), col="black" )

#---Box Plots---
plot(workshop, posttest,
main="box plot using plot function")

par( mfrow=c(2,2) )
boxplot(posttest)
boxplot(pretest,posttest,notch=TRUE)
boxplot(posttest~workshop)
par( las=2, mar=c(8,4,4,2)+0.1 )
boxplot(posttest~workshop:gender)
par( las=1, mar=c(5,4,4,2)+0.1 )

#---Error bar plots---

library("gplots")
par( mfrow=c(1,1) )
plotmeans( posttest~workshop,
main="Plotmeans from gplots Package")

detach("package:gplots")
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interaction.plot( workshop, gender, posttest,
main="Means Using interaction.plot function")

# ---Adding Labels---

# Many annotations at once.
par( mar=c(5,4,4,2)+0.1 )
par( mfrow=c(1,1) )
par(family="serif")
plot(pretest,posttest,
main="My Main Title" ,
xlab="My xlab text" ,
ylab="My ylab text",
sub="My subtitle ",
pch=2)

text(66, 88, "My Example Formula")
text(65, 85,
expression( hat(beta) ==
(X^t * X)^{-1} * X^t * Y) )

text (85,65,"My label with arrow", pos=3)
arrows(85,65,64,62, length=0.1)
abline(h=75,v=75)
abline(a=0, b=1, lty=5)
abline( lm(posttest~pretest), lty=1 )
lines( lowess(posttest~pretest), lty=3 )
legend( 64, 99,
c( "Regression", "Lowess", "Posttest=Pretest" ),
lty=c(1,3,5) )

mtext("line=0", side=1, line=0, at=57 )
mtext("line=1", side=1, line=1, at=57 )
mtext("line=2", side=1, line=2, at=57 )
mtext("line=3", side=1, line=3, at=57 )
mtext("line=4", side=1, line=4, at=57 )

mtext("line=0", side=2, line=0, at=65 )
mtext("line=1", side=2, line=1, at=65 )
mtext("line=2", side=2, line=2, at=65 )
mtext("line=3", side=2, line=3, at=65 )
mtext("line=0", side=3, line=0, at=65 )
mtext("line=1", side=3, line=1, at=65 )
mtext("line=2", side=3, line=2, at=65 )
mtext("line=3", side=3, line=3, at=65 )
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mtext("line=0", side=4, line=0, at=65 )
mtext("line=1", side=4, line=1, at=65 )

#---Scatter plot with bells & whistles---
plot(pretest,posttest,pch=19,
main="Scatter plot of Pretest and Postest",
xlab="Test score before taking workshop",
ylab="Test score after taking workshop" )

myModel <- lm(posttest~pretest)
abline(myModel)
arrows(60,82,65,71, length=0.1)
text(60,82,"Linear Fit", pos=3)
arrows(70,62,58.5,59, length=0.1)
text(70,62,"Double check this value", pos=4)
# Use locator() or:
# predict(myModel,data.frame(pretest=75) )
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Graphics with ggplot2

16.1 Introduction

As we discussed in Chapter 14, “Graphics Overview,” the ggplot2 package
is an implementation of Wilkinson’s Grammar of Graphics (hence the “gg”
in its name). The last chapter focused on R’s traditional graphics functions.
Many plots were easy, but other plots were a lot of work compared to Stata.
In particular, adding things like legends and confidence intervals were com-
plicated.

The ggplot2 package makes many of those things easier, as you will now
see as we replicate many of the same graphs. The ggplot2 package has both a
shorter qplot function (also called quickplot) and a more powerful ggplot
function. We will use both so you can learn the difference and choose whichever
you prefer. Although less flexible overall, the built-in lattice package is also
capable of doing these examples.

While traditional graphics come with R, you will need to install the
ggplot2 package. For details, see Chapter 2, “Installing and Updating R.”
Once installed, we need to load the package using the library function.

> library("ggplot2")

Loading required package: grid
Loading required package: reshape
Loading required package: proto
Loading required package: splines
Loading required package: MASS
Loading required package: RColorBrewer
Loading required package: colorspace

Notice that it requires the grid package. That is a completely different
graphics system than the traditional graphics system. That means that the
par function we used to set graphics parameters, like fonts, in the last chapter

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 385
and Computing, DOI 10.1007/978-1-4419-1318-0 16,
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does not work with ggplot2, nor do any of the base functions that we have
covered, including abline, arrows, axis, box, grid, lines, and text.

16.1.1 Overview qplot and ggplot

With the ggplot2 package, you create your graphs by specifying the following
elements:

• Aesthetics: The aesthetics map your data to the graph, telling it what role
each variable will play. Some variables will map to an axis, and some will
determine the color, shape, or size of a point in a scatter plot. Different
groups might have differently shaped or colored points. The size or color
of a point might reflect the magnitude of a third variable. Other variables
might determine how to fill the bars of a bar chart with colors or patterns;
so, for example, you can see the number of males and females within each
bar.

• Geoms: Short for geometric objects, geoms determine the objects that will
represent the data values. Possible geoms include bar, box plot, error bar,
histogram, jitter, line, path, point, smooth, and text.

• Statistics: Statistics provide functions for features like adding regression
lines to a scatter plot, or dividing a variable up into bins to form a his-
togram.

• Scales: These match your data to the aesthetic features—for example, in
a legend that tells us that triangles represent males and circles represent
females.

• Coordinate system: For most plots this is the usual rectangular Cartesian
coordinate system. However, for pie charts it is the circular polar coordi-
nate system.

• Facets: These describe how to repeat your plot for each subgroup, perhaps
creating a separate scatter plot for males and females. A helpful feature
with facets is that they standardize the axes on each plot, making com-
parisons across groups much easier.

The qplot function tries to simplify graph creation by (a) looking a lot like
the traditional plot function and (b) allowing you to skip specifying as many
of the items above as possible. As with the plot function, main arguments
to the qplot function are the x and y variables. You can identify them with
the argument name “x=” or “y=” or you can simply supply them in that
order. Unlike the plot function, the qplot function has a data argument.
That means you do not have to attach the data frame to use short variable
names. (However, to minimize our code, our examples will assume the data is
attached.)

Finally, as you would expect, elements are specified by an argument. For
example, geom="bar". A major difference between plot and qplot is that
qplot will not automatically give you diagnostic plots for a model you have
created. So it is much easier to get diagnostic plots using the plot function.
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The ggplot function offers a complete implementation of the grammar
of graphics. To do so, it gives up any resemblance to the plot function. It
requires you to specify the data frame, since you can use different data frames
in different layers of the graph. (The qplot function cannot.) Its options
are specified by additional functions rather than the usual arguments. For
example, rather than the geom="bar" format of qplot, they follow the form
+geom_bar(options). The form is quite consistent, so if you know there is
a geom named “smooth,” you can readily guess how to specify it in either
qplot or ggplot.

The simplicity that qplot offers has another limitation. Since it cannot
plot in layers, it occasionally needs help interpreting what you want it to do
with legends. For example, you could do a scatter plot for which size=q4. This
would cause the points to have five sizes, from small for people who did not like
the workshop to large for those who did. The qplot function would generate
the legend for you automatically. However, what happens when you just want
to specify the size of all points with size=4? It generates a rather useless
legend showing one of the points and telling you it represents “4.” Whenever
you want to tell qplot to inhibit the interpretation of values, you nest them
within the “I()” function: size=I(4). As a mnemonic, think that I()=Inhibit
unnecessary legends. The ggplot function does not need the I function since
its level of control is fine enough to make your intentions obvious.

See Table 16.1 for a summary of the major differences between qplot and
ggplot.

Although the ggplot2 is based on The Grammar of Graphics, the package
differs in several important ways from the syntax described in that book.
It depends on R’s ability to transform data, so you can use log(x) or any
other function within qplot or ggplot. It also uses R’s ability to reshape or
aggregate data, so the ggplot2 package does not include its own algebra for
these steps. Also, ggplot2 displays axes and legends automatically, so there
is no “guide” function.

For a more detailed comparison, see ggplot2: Elegant Graphics for Data
Analysis by Hadley Wickham [55].

Now let us look at some examples. When possible, each is done using both
qplot and ggplot. You can decide which you prefer.

16.1.2 Missing Values

By default, the ggplot2 package will display missing values. That would result
in additional bars in bar charts and even entire additional plots when we repeat
graphs for each level of a grouping variable. That might be fine in your initial
analyses, but you are unlikely to want that in a plot for publication. We will
use a version of our data set that has all missing values stripped out with

mydata100 <- na.omit(mydata100)
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Table 16.1. Comparison of the qplot and ggplot functions.

The qplot function The ggplot function
Goal Designed to be quick and as standard

R as possible.
Designed as a full grammar of graphics
system.

Aesthetics Like most R functions:
qplot(x= , y= , fill= ,
color= , shape= ,...)

You must specify the mapping between
each graphical element, even x - and y-
axes, and the variable(s):
ggplot(data= ,
aes(x= , y= , fill= , color= ,
shape= ,...) )

ABline ...geom="abline",
intercept=a, slope=b)

+geom_abline(
intercept=a, slope=b)

Aspect ratio Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square

Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square

Axis flipping +coord_flip() +coord_flip()
Axis labels ...xlab="My Text")

Just like plot function.
+scale_x_discrete("My Text")
+scale_y_discrete("My Text")
+scale_x_continuous("My Text")
+scale_y_continuous("My Text")

Axis
logarithmic

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

Bars ...geom="bar", position="stack"
or dodge.

+geom_bar(position="stack") or dodge.

Bar filling ...posttest, fill=gender) +aes( x=posttest, fill=gender )
Data Optional data= argument as with

most R functions.
You must specify data= argument.
ggplot(data=mydata, aes(...

Facets ...,facets=gender ~ .) + facet_grid( gender ~ . )
Greyscale +scale_fill_grey(start=0, end=1)

Change values to control grey.
+scale_fill_grey(start=0, end=1)
Change values to control grey.

Histogram ...geom="histogram", binwidth=1) +geom_bar(binwidth=1)
Density ...geom="density") +geom_density()
Jitter ..position=position_jitter()

Lessen jitter with e.g., (width=.02).
+geom_jitter(position=position_jitter()
Lessen jitter with e.g., (width=.02).

Legend
inhibit

Use I() function, e.g.,
...geom="point", size=I(4) )

Precise control makes I() function
unnecessary.

Line ...geom="line" +geom_line()
Line vertical ...geom="vline", intercept=?) +geom_vline(intercept=?)
Line horiz. ...geom="hline", intercept=?) +geom_hline(intercept=?)
Pie (polar) +coord_polar(theta="y") +coord_polar(theta="y")
Points ...geom="point") That is the default

for two variables.
+geom_point(size=2) There is no default
geom for ggplot. The default size is 2.

QQ plot ...stat="qq") +stat_qq=()
Smooth ...geom="smooth", method="lm")

Lowess is default method.
+geom_smooth(method="lm")
Lowess is default method.

Smooth w/o
Confidence

...geom="smooth",
method="lm", se=FALSE)

+geom_smooth(method="lm", se=FALSE)

Titles ...main="My Title")
Just like plot function.

+opts(title="My Title" )

See Section 10.5, “Missing Values” for other ways to address missing val-
ues.

16.1.3 Typographic Conventions

Throughout this book we have displayed R’s prompt characters only when
input was followed by output. The prompt characters helped us discriminate
between the two. Each of our function calls will result in a graph, so there is
no chance of confusing input with output. Therefore, we will dispense with
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the prompt characters for the remainder of this chapter. This will make the
code much cleaner to read because our examples of the ggplot function of-
ten end in a “+” sign. That is something you type. Since R prompts you
with “+” at the beginning of a continued line, that looks a bit confusing at
first.

16.2 Bar Plots

Let us do a simple bar chart of counts for our workshop variable (Fig. 16.1).
Both of the following function calls will do it.

The qplot approach to Fig. 16.1 is

> attach(mydata100) # Assumed for all qplot examples

> qplot(workshop)

The ggplot approach to to Fig. 16.1 is

> ggplot(mydata100, aes(workshop) ) +
+ geom_bar()

Bars are the default geom when you give qplot only one factor, so we only
need a single argument, workshop.
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Fig. 16.1. A bar plot of workshop attendance.
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The ggplot function call above requires three arguments:

1. Unlike most other R functions, it requires that you specify the data frame.
As we will see later, that is because ggplot can plot multiple layers, and
each layer can use a different data frame.

2. The aes function defines the aesthetic role that workshop will play. It
maps workshop to the x -axis. We could have named the argument as in
aes(x=workshop). The first two parameters to the aes function are x
and y, in that order. To simplify the code, we will not bother listing their
names.

3. The geom_bar function tells it that the geometric object, or geom, needed
is a bar. Therefore, a bar chart will result. This function call is tied to the
first one through the “+” sign.

We did that the same plot using traditional graphics bar plot function,
but that required us to summarize the data using table(workshop). The
ggplot2 package is more like Stata in this regard; it does that type of sum-
marization for you.

If we want to change to a horizontal bar chart (Fig. 16.2), all we need to
do is flip the coordinates. In the following examples, it is clear that we simply
added the cord_flip function to the end of both qplot and ggplot. There
is no argument to qplot like coord="flip".
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Fig. 16.2. A horizontal bar plot demonstrating the impact of the
coord flip function.
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This brings up an interesting point. Both methods create the exact same
graphics object. Even if there is a qplot equivalent, you can always add a
ggplot function call to a qplot function call.

The qplot approach to Fig. 16.2 is

qplot(workshop) + coord_flip()

The ggplot approach to Fig. 16.2 is

ggplot(mydata100, aes(workshop) ) +
geom_bar() + coord_flip()

You can create the usual types of grouped bar plots. Let us start with
a simple stacked one (Fig. 16.3). You can use either function below. They
contain two new arguments. Although we are requesting only a single bar,
we must still supply a variable for the x -axis. The function call factor("")
provides the variable we need, and it is simply an unnamed factor whose
value is empty. We use the factor function to keep it from labeling the x -
axis from 0 to 1, which it would do if the variable were continuous. The
fill=workshop aesthetic argument tells the function to fill the bars with the
number of students who took each workshop.

With qplot, we are clearing labels on the x -axis with xlab="". Otherwise,
the word “factor” would occur there from our factor("") statement.

The equivalent way to label ggplot is to use the scale_x_discrete func-
tion, also providing an empty label for the x -axis. Finally, the
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Fig. 16.3. A stacked bar plot of workshop attendance.
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scale_fill_grey function tells each function to use shades of grey. You can
leave this out, of course, and both functions will choose the same nice color
scheme. The start and end values tell the function to go all the way to black
and white, respectively. If you use just scale_fill_grey(), it will use four
shades of grey.

The qplot approach to Fig. 16.3 is

qplot(factor(""), fill=workshop,
geom="bar", xlab="") +
scale_fill_grey(start=0, end=1)

The ggplot approach to Fig. 16.3 is

ggplot(mydata100,
aes(factor(""), fill=workshop) ) +
geom_bar() +
scale_x_discrete("") +
scale_fill_grey(start=0, end=1)

16.2.1 Pie Charts

One interesting aspect to the grammar of graphics concept is that a pie chart
(Fig. 16.4) is just a single stacked bar chart (Fig. 16.3), drawn in polar coor-
dinates. So we can use the same function calls that we used for the bar chart
in the previous section, but convert to polar afterward using the coord_polar
function.

This is a plot that only ggplot can do correctly. The geom_bar(width=1)
function call tells it to put the slices right next to each other. If you included
that on a standard bar chart, it would also put the bars right next to each
other.
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Fig. 16.4. A pie chart of workshop attendance.
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ggplot(mydata100,
aes( factor(""), fill=workshop ) ) +
geom_bar( width=1 ) +
scale_x_discrete("") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

That is a lot of code for a simple pie chart! In the previous chapter, we created
this graph with a simple

pie( table(workshop) )

So traditional graphics are the better approach in some cases. However, as we
will see in the coming sections, the ggplot2 package is the easiest to use for
most things.

16.2.2 Bar Charts for Groups

Let us now look at repeating bar charts for levels of a factor, like gender.
This requires having factors named for both the x argument and the fill
argument. By default, the position argument stacks the fill groups—in
this case, the workshops. That graph is displayed in the upper left frame of
Fig. 16.5.

The qplot approach to Fig. 16.5, upper left is

qplot(gender, geom="bar",
fill=workshop, position="stack") +
scale_fill_grey(start=0, end=1)

The ggplot apprach to Fig. 16.5, upper left is

ggplot(mydata100, aes(gender, fill=workshop) ) +
geom_bar(position="stack") +
scale_fill_grey( start=0, end=1 )

Changing either of the above examples to:
position="fill"

makes every bar fill the y-axis, displaying the proportion in each group rather
than the number. That type of graph is called a spine plot and it is displayed
in the upper right of Fig. 16.5.

Finally, if you set
position="dodge" the filled segments appear beside one another, “dodging”
each other. That takes more room on the x -axis, so it appears across the whole
bottom row of Fig. 16.5.

We will discuss how to convey similar information using multiframe plots
in Section 16.15, “Multiple Plots on a Page.”
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Fig. 16.5. A multiframe plot showing the impact of the various position settings.

16.3 Plots by Group or Level

One of the nicest features of the ggplot2 package is its ability to easily plot
groups within a single plot (Fig. 16.6). To fully appreciate all of the work it
is doing for us, let us first consider how to do this with traditional graphics
functions.

1. We would set up a multiframe plot, say for males and females.
2. Then we might create a bar chart on workshop, selecting

which( gender=="Female" ).
3. Then we would repeat the step above, selecting the males.
4. We probably want to standardize the axes to better enable comparisons

and do the plots again.
5. We would add a legend, making sure to manually match any color or

symbol differences across the plots.
6. Finally, we would turn off the multiframe plot settings to get back to one

plot-per-page.
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Fig. 16.6. A bar plot of workshop attendance with facets for the genders.

Thank goodness the ggplot2 package can perform the equivalent of those
tedious steps using either of the following simple function calls:

The qplot approach to Fig. 16.6 is

qplot(workshop, facets=gender ~ . )

The ggplot approach to Fig. 16.6 is

ggplot(mydata100, aes(workshop) ) +
geom_bar() + facet_grid( gender ~ . )

The new feature is the facets argument in qplot and the facet_grid
function in ggplot. The formula it uses is in the form “rows~columns”. In
this case, we have “gender~.” so we will get rows of plots for each gender
and no columns. The “.” represents “1” row or column. If we instead did
“.~gender”, we would have one row and two columns of plots side-by-side.
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You can extend this idea with the various rules for formulas described in
Section 5.6.2, “Controlling Functions with Formulas.” Given the constraints
of space, the most you are likely to find useful is the addition of one more
variable, such as

facets=workshop ~ gender

In our current example, that leaves us nothing to plot, but we will look at a
scatter plot example of that later.

16.4 Presummarized Data

We mentioned earlier that the ggplot2 package assumed that your data
needed summarizing, which is the opposite of some traditional R graphics
functions. However, what if the data are already summarized? The qplot
function makes it quite easy to deal with, as you can see in the program be-
low. We simply use the factor function to provide the x argument and the c
function to provide the data for the y argument. Since we are providing both x
and y arguments, the qplot function will provide a default point geom, so we
override that with geom="bar". The xlab and ylab arguments label the axes,
which it would otherwise label with the factor and c functions themselves.

The qplot approach to Fig. 16.7 is

qplot( factor(c(1,2)), c(40, 60), geom="bar",
xlab="myGroup", ylab="myMeasure")

The ggplot approach to this type of plot is somewhat different because
it requires that the data be in a data frame. I find it much easier to create
a temporary data frame containing the summary data. Trying to nest a data
frame creation within the ggplot function will work, but you end up with so
many parentheses that it can be a challenge getting it to work. The example
program at the end of this chapter contains that example as well.

The following is the more complicated ggplot approach to Fig. 16.7. We
are displaying R’s prompts here to differentiate input from output.

> myTemp <- data.frame(
+ myGroup=factor( c(1,2) ),
+ myMeasure=c(40, 60)
+ )

> myTemp

myGroup myMeasure
1 1 40
2 2 60
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Fig. 16.7. A bar plot of presummarized data.

> ggplot(data=myTemp, aes(myX, myY) ) +
+ geom_bar()

> rm(myTemp) #Cleaning up.

16.5 Dot Charts

Dot charts are bar charts reduced to just points on lines, so you can take any
of the above bar chart examples and turn them into dot charts (Fig. 16.8).

Dot charts are particularly good at packing in a lot of information on a
single plot, so let us look at the counts for the attendance in each workshop,
for both males and females. This example demonstrates how very different
qplot and ggplot can be. It also shows how flexible ggplot is and that it is
sometimes much easier to understand than qplot.

First, let us look at how qplot does it. The variable workshop is in the
x position, so this is the same as saying x=workshop. If you look at the plot,
workshop is on the y-axis. However, qplot requires an x variable, so we can-
not simply say y=workshop and not specify an x variable. Next, it specifies
geom="point" and sets the size of the points to I(4), which is much larger
than in a standard scatter plot. Remember that the I() function around the



398 16 Graphics with ggplot2

count

w
or

ks
ho

p R

SAS

SPSS

Stata

R

SAS

SPSS

Stata

10 12 14 16

F
em

ale
M

ale

Fig. 16.8. A dot chart of workshop attendance with facets for the genders.

4 inhibits interpretation, which in this case means that it stops qplot from
displaying a legend showing which point size represents a “4.” In this example,
that is useless information. You can try various size values to see how it looks.
The stat="bin" argument tells it to combine all of the values that it finds
for each level of workshop as a histogram might do. So it ends up counting
the number of observations in each combination of workshop and gender. The
facets argument tells it to create a row for each gender. The coord_flip
function rotates it in the direction we desire.

The qplot approach to Fig. 16.8 is

qplot(workshop, geom="point", size=I(4),
stat="bin", facets=gender~.) +
coord_flip()

Now let us see how ggplot does the same plot. The aes function supplies the
x -axis variable and the y-axis variable uses the special “..count..” computed
variable. That variable is also used by qplot, but it is the default y variable.
The geom_point function adds points, bins them, and sets their size. The
coord_flip function then reverses the axes. Finally, the facet_grid function
specifies the same formula used earlier in qplot. Notice here that we did not
need the I() function, as ggplot “knows” that the legend is not needed. If
we were adjusting the point sizes based on a third variable, we would have
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to specify the variable as an additional aesthetic. The syntax to ggplot is
verbose, but more precise.

ggplot(mydata100,
aes(workshop, ..count..) ) +
geom_point(stat="bin", size=4) + coord_flip()+
facet_grid( gender~. )

16.6 Adding Titles and Labels

Sprucing up your graphs with titles and labels is easy to do (Fig. 16.9). The
qplot function adds them exactly like the traditional graphics functions do.
You supply the main title with the main argument, and the x and y labels with
xlab and ylab, respectively. There is no subtitle argument. As with all labels
in R, the characters “\n” causes it to go to a new line, so “\nWorkshops”
below will put just the word “Workshops” at the beginning of a new line.

The qplot approach to Fig.16.9 is

qplot(workshop, geom="bar",
main="Workshop Attendance",
xlab="Statistics Package \nWorkshops")
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Fig. 16.9. A bar plot demonstrating titles and x -axis labels.
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The ggplot approach to Fig.16.9 is

ggplot(mydata100, aes(workshop, ..count..) ) +
geom_bar() +
opts( title="Workshop Attendance" ) +
scale_x_discrete("Statistics Package \nWorkshops")

Adding titles and labels in ggplot is slightly more verbose. The opts func-
tion sets various opt ions, one of which is title. The axis labels are attributes
of the axes themselves. They are controlled by the functions,
scale_x_discrete, scale_y_discrete, and for continuous axes, they are
controlled by the functions,
scale_x_continuous, scale_y_continuous, which are clearly named accord-
ing to their function. We find it odd that you use different functions for label-
ing axes if they are discrete or continuous, but it is one of the trade-offs you
make when getting all of the flexibility that ggplot offers.

16.7 Histograms and Density Plots

Many statistical methods make assumptions about the distribution of your
data, or at least of your model residuals. Histograms and density plots are
two effective plots to help you assess the distributions of your data.

16.7.1 Histograms

As long as you have 30 or more observations, histograms (Fig. 16.10) are a
good way to examine continuous variables. You can use either of the follow-
ing examples to create one. In qplot, the histogram is the default geom for
continuous data, making it particulary easy to perform.

The qplot approach to Fig. 16.10 is

qplot(posttest)

The ggplot approach to Fig. 16.10 is

ggplot(mydata100, aes(posttest) ) +
geom_histogram()

Both functions will print the number of bins it uses by default (30) to the R
console (not shown). If you narrow the width of the bins, you will get more
bars, showing more structure in the data (Fig. 16.11). If you prefer qplot,
simply add the binwidth argument. If you prefer ggplot, add the geom_bar
function with its binwidth argument. Smaller numbers result in more bars.

The qplot approach to Fig. 16.11 is

qplot(posttest, geom="histogram", binwidth=0.5)
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Fig. 16.10. A histogram of posttest.

The ggplot approach to Fig. 16.11 is

ggplot(mydata100, aes(posttest) ) +
geom_bar( binwidth=0.5 )

16.7.2 Density Plots

If you prefer to see a density curve, just change the geom argument or function
to density (Fig. 16.12).

The qplot approach to Fig. 16.12 is

qplot(posttest, geom="density" )

The ggplot approach to Fig. 16.12 is

ggplot(mydata100, aes(posttest) ) +
geom_density()

16.7.3 Histograms with Density Overlaid

Overlaying the density on the histogram, as in Fig. 16.13, is only slightly more
complicated. The variable that qplot or ggplot computes in the background
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Fig. 16.11. A histogram of posttest with smaller bin widths.
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Fig. 16.12. A density plot of posttest.
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Fig. 16.13. A density plot overlaid on a histogram.

for the y-axis is named “..density..”. To ask for both a histogram and
the density, you must explicitly list ..density.. as the y variable. Then for
qplot, you provide both histogram and density to the geom argument by
combining them into a character vector using the c function.

For ggplot, you simply call both functions.
The qplot approach to Fig. 16.13 is

qplot(posttest, ..density..,
geom=c( "histogram", "density" ) )

The ggplot approach to Fig. 16.13 is

ggplot(mydata100, aes(posttest, ..density..)) +
geom_histogram() + geom_density()

16.7.4 Histograms for Groups, Stacked

What if we want to compare the histograms for males and females (Fig. 16.14)?
Using base graphics, we had to set up a multiframe plot and learn how to
control breakpoints for the bars so that they would be comparable. Using
ggplot2, the facet feature makes the job trivial.
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Fig. 16.14. Histograms of posttest with facets for the genders.

The qplot approach to Fig. 16.14 is

qplot(posttest, facets=gender~.)

The ggplot approach to Fig. 16.14is

ggplot(mydata100, aes(posttest) ) +
geom_histogram() + facet_grid( gender ~ . )

16.7.5 Histograms for Groups, Overlaid

We can also compare males and females by filling the bars by gender as in
Fig. 16.15. As earlier, if you leave off the scale_fill_grey function, the bars
will come out in two colors rather than black and white.

The qplot approach to Fig. 16.15 is

qplot( posttest, fill=gender ) +
scale_fill_grey(start = 0, end = 1)

The ggplot approach to Fig. 16.15 is

ggplot(mydata100, aes(posttest, fill=gender) ) +
geom_bar() + scale_fill_grey( start=0, end=1 )
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Fig. 16.15. A histogram with bars filled by gender.

16.8 Normal QQ Plots

We defined what a QQ plot is the previous chapter on traditional graphics.
Creating them in the ggplot2 package is straightforward (Fig. 16.16). If you
prefer the qplot function, supply the stat="qq" argument. In ggplot, the
similar stat_qq function will do the trick.

The qplot approach to Fig. 16.16 is

qplot( posttest, stat="qq" )

The ggplot approach to Fig. 16.16 is

ggplot( mydata100, aes(posttest) ) +
stat_qq()

16.9 Strip Plots

Strip plots are scatter plots of single continuous variables, or a continuous
variable displayed at each level of a factor like workshop. As with the single
stacked bar chart, the case of a single strip plot still requires a variable on the
x -axis (Fig. 16.17). As you see below, factor("") will suffice. The variable to
actually plot is the y argument. Reversing the x and y variables will turn the



406 16 Graphics with ggplot2

theoretical

sa
m

pl
e

65

70

75

80

85

90

95

–2 –1 0 1 2

Fig. 16.16. A normal quantile–quantile plot of posttest.

po
st

te
st

60

70

80

90

Fig. 16.17. A strip chart done using the jitter geom.
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plot on its side, the default way the traditional graphics function, stripchart,
does it. We prefer the vertical approach, as it matches the style of box plots and
error bar plots when you use them to compare groups. The geom="jitter"
adds some noise to separate points that would otherwise obscure other points
by plotting on top of them. Finally, the xlab="" and scale_x_discrete("")
labels erase what would have been a meaningless label about factor("") for
qplot and ggplot, respectively.

This qplot approach does a strip plot with wider jitter than Fig 16.17:

qplot( factor(""), posttest, geom="jitter", xlab="")

This ggplot approach does a strip plot with wider jitter than Fig. 16.17:

ggplot(mydata100, aes(factor(""), posttest) ) +
geom_jitter() +
scale_x_discrete("")

The above two examples use an amount of jitter that is best for large data sets.
For smaller data sets, it is best to limit the amount of jitter to separate the
groups into clear strips of points. Unfortunately, this complicates the syntax.

The qplot function controls jitter width with the position argument,
setting position_jitter with width=scalefactor.

The ggplot approach places that same parameter within its geom_jitter
function call.

The qplot approach to Fig. 16.17 is

qplot( factor(""), posttest, data = mydata100, xlab="",
position=position_jitter(width=.02))

The ggplot approach to Fig. 16.17 is

ggplot(mydata100, aes(factor(""), posttest) ) +
geom_jitter(position=position_jitter(width=.02)) +
scale_x_discrete("")

Placing a factor like workshop on the x -axis will result in a strip chart for
each level of the factor (Fig. 16.18).

This qplot approach does a grouped strip plot with wider jitter than
Fig 16.18, but its code is simpler:

> qplot(workshop, posttest, geom="jitter")

This ggplot approach does a grouped strip plot with wider jitter than
Fig 16.18, but with simpler code:

> ggplot(mydata100, aes(workshop, posttest ) ) +
+ geom_jitter()
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Fig. 16.18. A strip chart with facets for the workshops.

Limiting the amount of jitter for a grouped strip plot uses exactly the
same parameters we used for a single strip plot.

The qplot approach to Fig. 16.18 is

qplot(workshop, posttest, data = mydata100, xlab="",
position=position_jitter(width=.08))

The ggplot approach to Fig. 16.18 is

ggplot(mydata100, aes(workshop, posttest) ) +
geom_jitter(position=position_jitter(width=.08)) +
scale_x_discrete("")

16.10 Scatter Plots and Line Plots

The simplest scatter plot hardly takes any effort in qplot. Just list x and y
variables in that order. You could add the geom="point" argument, but it is
the default when you list two variables.

The ggplot function is slightly more complicated. Since it has no default
geometric object to display, we must specify geom_point().

The qplot approach to Fig. 16.19, upper left, is

qplot(pretest, posttest)
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Fig. 16.19. A multiframe plot demonstrating various styles of scatter plots and line
plots. The top two and the bottom left show different geoms. The bottom right is
done a very different way, by drawing line segments from each point to the x -axis.

The ggplot approach to Fig. 16.19, upper left, is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point()

We can connect the points using the line geom, as you see below. However,
the result is different from what you get in traditional R graphics. The line
connects the points in the order that they appear on the x -axis. That almost
makes our data appear as a time series, when it is not.

The qplot approach to Fig. 16.19, upper right, is

qplot( pretest, posttest, geom="line")

The qplot approach to Fig. 16.19, upper right, is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_line()
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Although the line geom ignored the order of the points in the data frame,
the path geom will connect them in that order. You can see the result in the
lower left quadrant of Fig. 16.19. The order of the points in our data set has
no meaning, so it is just a mess!

The qplot approach to Fig. 16.19, lower left, is

qplot( pretest, posttest, geom="path")

The ggplot approach to Fig. 16.19, lower left, is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_path()

Now let us run a vertical line to each point. When we did that using
traditional graphics, it was a very minor variation. In ggplot2, it is quite
different but an interesting example. It is a plot that is much more clear using
ggplot, so we will skip qplot for this one.

In the ggplot code below, the first line is the same as the above exam-
ples. Where it gets interesting is the geom_segment function. It has its own
aes function, repeating the x and y arguments, but in this case, they are the
beginning points for drawing line segments! It also has the arguments xend
and yend, which tell it where to end the line segments. This may look overly
complicated compared to the simple "type=h" argument from the plot func-
tion, but you could use this approach to draw all kinds of line segments. You
could easily draw them coming from the top or either side, or even among sets
of points. The "type=h" approach is a one trick pony. With that approach,
adding features to a function leads to a very large number of options, and
the developer is still unlikely to think of all of the interesting variations in
advance.

The following is the code, and the resulting plot is in the lower right panel
of Fig. 16.19.

ggplot(mydata100, aes(pretest, posttest) ) +
geom_segment( aes( pretest, posttest,

xend=pretest, yend=58) )

16.10.1 Scatter Plots with Jitter

We discussed the benefits of jitter in the previous chapter. To get a nonjittered
plot of q1 and q4, we will just use qplot (Fig. 16.20, left).

qplot(q1,q4)

To add jitter, below are both the qplot and gglot approaches (Fig. 16.20,
right). Note that the geom="point" argument is the default in qplot when two
variables are used. Since that default is not shown, the fact that the position
argument applies to it is not obvious. That relationship is clearer in the ggplot
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Fig. 16.20. A multiframe plot showing the impact of jitter on five-point Likert–
scale data. The plot on the left is not jittered, so many points are obscured. The
plot on the right is jittered, randomly moving points out from behind one another.

code, where the position argument is clearly part of the geom_point func-
tion. You can try various amounts of jitter to see which provides the best view
of your data.

The qplot approach to Fig. 16.20, right, is

qplot(q1, q4, position=position_jitter(width=.3,height=.3))

The ggplot approach to Fig. 16.20, right, is

ggplot(mydata100, aes(x=q1, y=q2) ) +
geom_point(position=position_jitter(width=.3,height=.3))

16.10.2 Scatter Plots for Large Data Sets

When plotting large data sets, points often obscure one another. The ggplot2
package offers several ways to deal with this problem, including decreasing
point size, adding jitter and/or transparency, displaying density contours, and
replacing sets of points with hexagonal bins.

Scatter Plots with Jitter and Transparency

By adjusting the amount of jitter and the amount of transparency, you can
find a good combination that lets you see through points into the heart of a
dense scatter plot (Fig. 16.21).
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Fig. 16.21. A scatter plot demonstrating how transparency allows you to see many
points at once.

Unfortunately, transparency is not yet supported in Windows metafiles.
So if you are a Windows user, choose “Copy as bitmap” when cutting and
pasting graphs into your word processor. For a higher-resolution image, route
your graph to a file using the png function. For an example, see Section 14.6,
“Graphics Devices.” You can also use the ggsave function, which is part of
the ggplot2 package. For details, see Section 16.16, “Saving ggplot2 Graphs
to a File.”

To get 5,000 points to work with, we generated them with the following:

pretest2 <- round( rnorm(n=5000,mean=80,sd=5) )

posttest2 <- round( pretest2 + rnorm(n=5000,mean=3,sd=3) )

pretest2[pretest2>100] <- 100

posttest2[posttest2>100] <- 100

temp=data.frame(pretest2,posttest2)
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Now let us plot this data. This builds on our previous plots that used
jitter and size. In computer terminology, controlling transparency is called
alpha compositing. The qplot function makes this easy with a simple alpha
argument. You can try various levels of transparency until you get the result
you desire.

The size and alpha arguments could be set as variables. In which case,
they would vary the point size or transparency to reflect the levels of the
assigned variables. That would require a legend to help us interpret the plot.
However, when you want to set them equal to fixed values, you can nest the
numbers using the I() function. The I() function inhibits the interpretation
of its arguments. Without the I() function, the qplot function would print
a legend saying that “size=2” and “alpha=0.15,” which in our case is fairly
useless information.

The ggplot function controls transparency with the colour argument to
the geom_jitter function. That lets you control color and amount of trans-
parency in the same option.

The qplot approach to Fig. 16.21 is

qplot(pretest2, posttest2, data=temp,
geom="jitter", size=I(2), alpha=I(0.15),
position=position_jitter(width=2) )

The ggplot approach to Fig. 16.21 is

ggplot(temp, aes(pretest2, posttest2),
size=2, position = position_jitter(x=2,y=2) ) +
geom_jitter(colour=alpha("black",0.15) )

Scatter Plots with Density Contours

A different approach to study a dense scatter plot is to draw density contours
on top of the data (Fig. 16.22). With this approach, it is often better not to
jitter the data, so that you can more clearly see the contours. You can do this
with the density2d geom in qplot or the geom_density function in ggplot.
The size=I(1) argument below reduces the point size to make it easier to
see many points at once. As before, the I() function simply suppressed a
superfluous legend.

The qplot approach to Fig. 16.22 is

qplot(pretest2, posttest2, data=temp,
geom=c("point","density2d"), size = I(1) )

The ggplot approach to Fig. 16.22 is

ggplot(temp, aes( pretest2, posttest2) ) +
geom_point( size=1 ) + geom_density_2d()
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Fig. 16.22. This scatter plot shows an alternate way to see the structure in a large
data set. These points are small, but not jittered, making more space for us to see
the density contour lines.

16.10.3 Hexbin Plots

Another approach to plotting large data sets is to divide the plot surface into
a set of hexagons and shade each hexagon to represent the number of points
that fall within it; see Fig. 16.23. In that way, you can scale millions of points
down into tens of bins.

In qplot, we can use the hex geom. In ggplot, we use the equivalent
geom_hex function. Both use the bins argument to set the number of hexag-
onal bins you want. The default is 30; we use it here only so that you can
see how to change it. As with histograms, increasing the number of bins may
reveal more structure within the data.

The following function call uses qplot to create a color version of Fig. 16.23:

qplot(pretest2, posttest2, geom="hex", bins=30)

The following code uses ggplot to create the actual greyscale version of
Fig. 16.23. The scale_fill_continuous function allows us to shade the
plot using levels of grey. You can change the low="grey80" argument to
other values to get the range of grey you prefer. Of course, you could add
this function call to the above qplot call to get it to be grey instead of
color.
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Fig. 16.23. A hexbin plot of pretest and posttest.

ggplot(temp, aes(pretest2, posttest2)) +
geom_hex( bins=30 ) +
scale_fill_continuous(
low = "grey80", high = "black")

16.10.4 Scatter Plots with Fit Lines

While the traditional graphics plot function took quite a lot of extra effort to
add confidence lines around a regression fit (Fig. 15.38), the ggplot2 package
makes that automatic. Unfortunately, the transparency used to create the
confidence band is not supported when you cut and paste the image as a
metafile in Windows. The image in Fig. 16.24 is a slightly lower resolution
600-dpi bitmap.

To get a regression line in qplot, simply specify geom="smooth". However,
that alone will replace the default of geom="point", so if you want both, you
need to specify geom=c("point","smooth").

In ggplot, you use both the geom_point and geom_smooth functions. The
default smoothing method is a lowess function, so if you prefer a linear model,
include the method=lm argument.

The qplot approach to Fig. 16.24 is

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm )
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Fig. 16.24. A scatter plot with regression line and default confidence band.

The ggplot approach to Fig. 16.24 is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point() + geom_smooth(method=lm)

Since the confidence bands appear by default, we have to set the se argu-
ment (standard error) to FALSE to turn it off.

The qplot approach to Fig. 16.25 is

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm, se=FALSE )

The ggplot approach to Fig. 16.25 is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point() + geom_smooth(method=lm, se=FALSE)

16.10.5 Scatter Plots with Reference Lines

To place an arbitrary straight line on a plot, use the abline geom in
qplot. You specify your slope and intercept using clearly named arguments.
Here we are using intercept=0 and slope=1 since this is the line where
posttest=pretest. If the students did not learn anything in the workshops,
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Fig. 16.25. A scatter plot with regression line with default confidence band re-
moved.

the data would fall on this line (assuming a reliable test). The ggplot func-
tion adds the abline function with arguments for intercept and slope.

The qplot approach to Fig. 16.26 is

qplot(pretest, posttest,
geom=c("point","abline"),
intercept=0, slope=1 )

The ggplot approach to Fig. 16.26 is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point()+ geom_abline( intercept=0, slope=1 )

Vertical or horizontal reference lines can help emphasize points or cutoffs.
For example, if our students are required to get a score greater than 75 before
moving on, we might want to display those cutoffs on our plot (Fig. 16.27).

In qplot, we can do this with the xintercept and yintercept arguments.
In ggplot, the functions are named geom_vline and geom_hline, each with
an intercept argument.

The qplot approach to Fig. 16.27 is

qplot(pretest, posttest,
geom=c("point", "vline", "hline"),
xintercept=75, yintercept=75)
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Fig. 16.26. A scatter plot with a line added where pretest=posttest. Most of the
points lie above this line, showing that students did learn.
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Fig. 16.27. A scatter plot with vertical and horizontal reference lines.
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The ggplot approach to Fig. 16.27 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline( xintercept=75 ) +
geom_hline( yintercept=75 )

To add a series of reference lines, we need to use the geom_vline or
geom_hline functions (Fig. 16.28). The qplot example does not do much
with qplot itself since it cannot create multiple reference lines. So for both
examples, we use the identical geom_vline function. It includes the seq func-
tion to generate the sequence of numbers we needed. Without it we could
have used intercept=c(70,72,74,76,78,80). In this case, we did not save
much effort, but if we wanted to add dozens of lines, the seq function would
be much easier.

The qplot approach to Fig. 16.28 is

qplot(pretest, posttest, type="point") +
geom_vline( intercept=seq(from=70,to=80,by=2) )

The ggplot approach to Fig. 16.28 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline( xintercept=seq(from=70,to=80,by=2) )
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Fig. 16.28. A scatter plot with multiple vertical reference lines.
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16.10.6 Scatter Plots with Labels Instead of Points

If you do not have much data or you are only interested in points around the
edges, you can plot labels instead of plots symbols (Fig. 16.29). The labels can
be identifiers such as ID numbers, people’s names or row names, or they could
be values of other variables of interest to add a third dimension to the plot.

You do this using the geom="text" argument in qplot or the geom_text
function in ggplot. In either case, the label argument points to the values
to use. Recall that in R, row.names(mydata) gives you the stored row names,
even if these are just the sequential characters, “1,” “2,” and so on. We will
store them in a variable named mydata$id and then use it with the label
argument. The reason we do not use the form label=row.names(mydata100)
is that the ggplot2 package puts all of the variables it uses into a separate
temporary data frame before running.

The qplot approach to Fig. 16.29 is

mydata100$id <- row.names(mydata100)
qplot(pretest, posttest, geom="text",
label=mydata100$id )

The ggplot approach to Fig. 16.29 is

ggplot(mydata100, aes(pretest, posttest,
label=mydata100$id ) ) + geom_text()
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Fig. 16.29. A scatter plot with ID numbers plotted instead of points.
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16.10.7 Changing Plot Symbols

You can use different plot symbols to represent levels of any third variable.
Factor values, such as those representing group membership, can be displayed
by different plot symbols (shapes) and/or colors. You could use a continuous
third variable to shade the colors of each point or to vary the size of each
point. The ggplot2 package makes quick work of any of these options. Let us
consider a plot of pretest versus posttest that uses different points for males
and females (Fig. 16.30).

The qplot function can do this using the shape argument.
The ggplot function must bring a new variable into the geom_point func-

tion. Recall that aesthetics map variables into their roles, so we will nest
aes(shape=gender) within the call to geom_point.

You can also set color and size by substituting either of those arguments
for shape.

The qplot approach to Fig. 16.30 is

qplot(pretest, posttest, shape=gender)

The ggplot approach to Fig. 16.30 is

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point( aes(shape=gender) )
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Fig. 16.30. A scatter plot with point shape determined by gender.
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16.10.8 Scatter Plot with Linear Fits by Group

We have seen that the smooth geom adds a lowess or regression line and that
shape can include group membership. If we do both of these in the same plot,
we can get separate lines for each group as shown in Fig. 16.31.

The qplot approach to Fig. 16.31 is

qplot(pretest, posttest, geom=c("smooth","point"),
method="lm", shape=gender)

The ggplot approach to Fig. 16.31 is

ggplot(mydata100,
aes(x = pretest, y=posttest, shape=gender) ) +
geom_smooth( method="lm" ) + geom_point()

16.10.9 Scatter Plots Faceted for Groups

Another way to compare groups on scatter with or without lines of fit is
through facets (Fig. 16.32). As we have seen several times before, simply
adding the facets argument to the qplot function allows you to spec-
ify rows~columns of categorical variables. So facets=workshop~gender is

Fig. 16.31. A scatter plot with regression lines and point shape determined by
gender.
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Fig. 16.32. A scatter plot with facets showing linear fits for each workshop and
gender combination.

requesting a grid of plots for each workshop:gender combination, with work-
shop determining the rows and gender determining the columns.

The ggplot function works similarly, using the facet_grid function to
do the same. If you have a continuous variable to condition on, you can use
the chop function from the ggplot2 package or the cut function that is built
into R to break the variable into groups.

The qplot approach to Fig. 16.32 is

qplot(pretest, posttest, geom=c("smooth","point"),
method="lm", shape=gender, facets=workshop ~ gender)

The ggplot approach to Fig. 16.32 is

ggplot(mydata100, aes( pretest, posttest) ) +
geom_smooth( method="lm" ) + geom_point() +
facet_grid( workshop ~ gender )
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16.10.10 Scatter Plot Matrix

When you have many variables to plot, a scatter plot matrix is helpful
(Fig. 16.33). You lose a lot of detail compared to a set of full-sized plots,
but if your data set is not too large, you usually get the gist of the relation-
ships.

The ggplot2 package has a separate plotmatrix function for this type of
plot. Simply entering the following will plot variables 3 through 8 against one
another (not shown):

plotmatrix( mydata100[3:8] )

You can embellish the plots with many of the options we have covered
earlier in this chapter. Shown below is an example of a scatter plot matrix

Fig. 16.33. A scatter plot matrix with lowess curve fits on the off-diagonal plots,
and density plots on the diagonals.
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(Fig. 16.33) with smoothed lowess fits for the entire data set (i.e., not by
group). The density plots on the diagonals appear by default.

plotmatrix( mydata100[3:8] ) +
geom_smooth()

The lowess fit generated some warnings but that is not a problem. It said,
“There were 50 or more warnings (use warnings() to see the first 50).”

The next example gets fancier by assigning a different symbol shape and
linear fits per group (plot not shown.)

plotmatrix( mydata100[3:8],
aes( shape=gender ) ) +
geom_smooth(method=lm)

16.11 Box Plots

We discussed what box plots are in the Chapter “Traditional Graphics,” Sec-
tion 15.11. We can recreate all those examples using the ggplot2 package,
except for the “notches” to indicate possible group differences, shown in the
upper right of Fig. 15.45

The simplest type of box plot is for a single variable (Fig. 16.34). The
qplot function uses the simple form of factor("") to act as its x -axis value.
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Fig. 16.34. A box plot of posttest.
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The y value is the variable to plot: in this case, posttest. The geom of boxplot
specifies the main display type. The xlab="" argument blanks out the label
on the x -axis, which would have been a meaningless “factor("")”.

The equivalent ggplot approach is almost identical with its ever-present
aes arguments for x and y and the geom_boxplot function to draw the box.
The scale_x_discrete function simply blanks out the x -axis label.

The qplot approach to Fig. 16.34 is

qplot(factor(""), posttest,
geom="boxplot", xlab="")

The ggplot approach to Fig. 16.34 is

ggplot(mydata100,
aes(factor(""), posttest) ) +
geom_boxplot() +
scale_x_discrete("")

Adding a grouping variable like workshop makes box plots much more
informative (Fig. 16.35, ignore the overlaid strip plot points for now). These
are the same function calls as above but with the x variable specified as
workshop. We will skip showing this one in favor of the next.

workshop

po
st

te
st

60

70

80

90

R SAS SPSS Stata

Fig. 16.35. A box plot comparing workshop groups on posttest, with jittered points
on top.
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The qplot approach to box plots (figure not shown) is

qplot(workshop, posttest, geom="boxplot" )

The ggplot approach to box plots (figure not shown) is

ggplot(mydata100,
aes( workshop, posttest) ) +
geom_boxplot()

Now we will do the same plot but with an added jittered strip plot on top
of it (Fig. 16.35). This way we get the box plot information about the median
and quartiles plus we get to see any interesting structure in the points that
would otherwise have been lost. As you can see, the qplot now has jitter added
to its geom argument, and ggplot has an additional geom_jitter function.
Unfortunately, the amount of jitter that both functions provide by default is
optimized for a much larger data set. So these next two sets of code do the
plot shown in Fig. 16.35, but with much more jitter.

The qplot approach to Fig. 16.35 with more jitter added is

qplot(workshop, posttest,
geom=c("boxplot","jitter") )

The ggplot approach to Fig. 16.35 with more jitter added is

ggplot(mydata100,
aes(workshop, posttest )) +
geom_boxplot() + geom_jitter()

The following is the exact code that created Fig. 16.35. The qplot function
does not have enough control to request both the box plot and jitter while
adjusting the amount of jitter.

ggplot(mydata100,
aes(workshop, posttest )) +
geom_boxplot() +
geom_jitter(position=position_jitter(width=.1))

To add another grouping variable, you only need to only add the fill
argument to either qplot or ggplot. Compare the resulting Fig. 16.36 to
the result we obtained from traditional graphics, in the lower right panel of
Fig. 15.45. The ggplot2 version is superior in many ways. The genders are
easier to compare for a given workshop, because they are now grouped side-
by-side. The shading makes it easy to focus on one gender at a time to see
how they changed across the levels of workshop. The labels are easier to read
and did not require the custom sizing that we did earlier to make room for
the labels. The ggplot2 package usually does a better job with complex plots
and makes quick work of them too.
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Fig. 16.36. A box plot comparing workshop and gender groups on posttest.

The qplot approach to Fig. 16.36 is

qplot(workshop, posttest,
geom="boxplot", fill=gender ) +
scale_fill_grey( start=0, end=1 )

The ggplot approach to Fig. 16.36 is

ggplot(mydata100,
aes(workshop, posttest) ) +
geom_boxplot( aes(fill=gender), colour="black") +
scale_fill_grey( start=0, end=1 )

16.12 Error Bar Plots

Plotting means and 95% confidence intervals, as in Fig. 16.37, is a task that
stretches what qplot was designed to do. As you can see from the two ex-
amples below, there is very little typing saved by using qplot over ggplot.
In both cases, we are adding a jittered strip plot of points, as we did earlier
in the section on strip plots (Section 16.9). Notice that we had to use the
as.numeric function for our x variable: workshop. Since workshop is a factor,
the software would not connect the means across the levels of x. Workshop
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Fig. 16.37. An error bar plot with lines running through the means, with default
axis labels.

is not a continuous variable, so that makes sense! Still, connecting the means
with a line is a common approach, one that facilitates the study of higher
level-interactions.

The key function for this plot is stat_summary, which we use twice. First,
we use the argument fun.y="mean" to calculate the group means. We also
use the geom="smooth" argument to connect them with a line. Next, we use
fun.data="mean_cl_normal" to calculate confidence l imits for the means
based on a normal distribution and display them with the errorbar geom.
You can try various values for the width argument until you are satisfied with
the error bar widths.

qplot( as.numeric(workshop), posttest) +
geom_jitter(position=position_jitter(width=.1)) +
stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

ggplot(mydata100,
aes( as.numeric(workshop), posttest ) ) +
geom_jitter(size=1,
position=position_jitter(width=.1) ) +
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stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

Since we have a fairly small data set, replacing the geom_jitter function
with just geom_point(size=1) creates a nice plot too (not shown).

16.13 Logarithmic Axes

If your data has a very wide range of values, working in a logarithmic scale is
often helpful. In ggplot2 you can approach this in three different ways. First,
you can take the logarithm of the data before plotting:

qplot( log(pretest), log(posttest) )

Another approach is to use evenly placed tick-marks on the plot but have the
axis values use logarithmic values such as 101, 102, and so on. This is what the
scale_x_log10 function does (similarly for the y-axis, of course). There are
similar functions for natural logarithms, scale_x_log and base 2 logarithms,
scale_x_log2:

qplot(pretest, posttest, data=mydata100) +
scale_x_log10() + scale_y_log10()

Finally, you can have the tick marks spaced unevenly and use values on
your original scale. The coord_trans function does that. Its arguments for
the various bases of logarithms are log10, log, and log2.

qplot(pretest, posttest, data=mydata100) +
coord_trans("log10", "log10")

With our data set, the range of values is so small that this last plot will not
noticeably change the axes. Therefore, we do not show it.

16.14 Aspect Ratio

Changing the aspect ratio of a graph can be far more important than you
might first think. Research has shown that when most of the lines or scatter
on a plot are angled at 45°, people make more accurate comparisons to those
parts that are not [6].

Unless you specify an aspect ratio for your graph, qplot and ggplot will
match the dimensions of your output window and allow you to change those
dimensions using your mouse, as you would for any other window.

If you are routing your output to a file however, it is helpful to be able to set
it using code. You set the aspect ratio using the coord_equal function. If you
leave it empty, as in coord_equal(), it will make the x - and y-axes of equal
lengths. If you specify this while working interactively, you can stillreshape
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your window, but the graph will remain square. Specifying a ratio parameter
follows the form “height/width.” For a mnemonic, think of how R specifies
[rows,columns]. The following example would result in a graph that is four
times wider than it is high (not shown):

qplot(pretest, posttest) + coord_equal(ratio=1/4)

16.15 Multiple Plots on a Page

In the previous chapter on traditional graphics, we discussed how to put mul-
tiple plots on a page. However, ggplot2 uses the grid graphics system, so
that method does not work. We saw the multiframe plot in Fig. 16.38 in the
section on bar plots. Let us now look at how it was constructed. We will skip
the bar plot details here and focus on how we combined them.

position=stack

gender

co
un

t

0

10

20

30

40

50

Female Male

workshop

R

SAS

SPSS

Stata

position=fill

gender

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

Female Male

workshop

R

SAS

SPSS

Stata

position=dodge

gender

co
un

t

0

5

10

15

Female Male

workshop

R

SAS

SPSS

Stata

Fig. 16.38. A multiframe plot showing the impact of the various position settings.
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We first clear the page with the grid.newpage function. This is an impor-
tant step as otherwise plots printed using the following methods will appear
on top of others.

grid.newpage()

Next, we use the pushViewport function to define the various frames called
viewports in the grid graphics system. The grid.layout argument uses R’s
common format of (rows, columns). The following example sets up a two by
two grid for us to use:

pushViewport( viewport(layout=grid.layout(2,2) ) )

In traditional graphics, you would now just do the graphs in order and
they would find their place. However, in the grid system, we must save the
plot to an object and then use the print function to print it into the viewport
we desire. The object name of “p” is commonly used as an object name for
the plot. Since there are many ways to add to this object, it is helpful to keep
it short. To emphasize that this is something we get to name, we will use
“myPlot.”

The print function has a vp argument that lets you specify the v iewport’s
position in row(s) and column(s). In the following example, we will print the
graph to row 1 and column 1:

myPlot <- ggplot(mydata100,
aes(gender, fill=workshop) ) +

geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=stack " )

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1) )

The next plot prints to row 1 and column 2.

myPlot <- ggplot(mydata100,
aes(gender, fill=workshop) ) +

geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=fill" )

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2) )

The third and final plot is much wider than the first two. So we will print
it to row 2 in both columns 1 and 2. Since we did not set the aspect ratio
explicitly, the graph will resize to fit the double-wide viewport.
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myPlot <- ggplot(mydata100,
aes(gender, fill=workshop) ) +

geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=dodge" )

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1:2) )

The next time you print a plot without specifying a viewport, the screen
resets back to its previous full-window display. The code for the other multi-
frame plots is in the example program in Section 16.19.

16.16 Saving ggplot2 Graphs to a File

In Section 14.6, “Graphics Devices,” we discussed various ways to save plots
in files. Those methods work with the ggplot2 package, and in fact they are
the only way to save a multiframe plot to a file.

However, the ggplot2 package has its own function that is optimized for
saving single plots to a file. To save the last graph you created, with either
qplot or ggplot, use the ggsave function. It will choose the proper graphics
device from the file extension.

For example, the following function call will save the last graph created in
an encapsulated postscript file:

> ggsave("mygraph.eps")

Saving 4.00" x 3.50" image

It will choose the width and height from your computer monitor and will
report back those dimensions. If you did not get it right, you can change those
dimensions and rerun the function. Alternately, you can specify the width and
height arguments in inches or, for bitmapped formats like Portable Network
Graphics (png), in dots-per-inch. See help(ggsave) for additional options.

16.17 An Example Specifying All Defaults

Now that you have seen some examples of both qplot and ggplot, let us take
a brief look at the full power of ggplot by revisiting the scatter plot with a
regression line (Fig. 16.39). We will first review both sets of code, exactly as
described in Section 16.10.4.

First, done with qplot, it is quite easy and it feels similar to the traditional
graphics plot function:
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Fig. 16.39. This same scatter plot results from several types of programs shown in
the text.

qplot(pretest, posttest,
geom=c("point","smooth"), method="lm" )

Next, let us do it using ggplot with as many default settings as possible. It is
not too much more typing, and it brings us into the grammar of graphics world.
We see the new concepts of aesthetic mapping of variables and geometric
objects, or geoms:

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point() +
geom_smooth(method="lm")

Finally, here it is again in ggplot but with no default settings. We see that
the plot is actually two layers: one with points and another with the smooth
line. Each layer can use different data frames, variables, geometric objects,
statistics, and so on. If you need graphics flexibility, ggplot2 is the package
for you!

ggplot() +
layer(
data=mydata100,
mapping=aes(pretest, posttest),
geom="point",
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stat="identity"
) +
layer(
data=mydata100,
mapping=aes(pretest, posttest),
geom="smooth",
stat="smooth",
method="lm"

) +
coord_cartesian()

16.18 Summary of Graphic Elements and Parameters

We have seen many ways to modify plots in the ggplot2 package. The ggopt
function is another way. You can set the parameters of all future graphs in the
current session with the following function call. See help(ggopt) function for
many more parameters.

ggopt(
background.fill = "black",
background.color ="white",
axis.colour = "black" #default axis fonts are grey.
)

The opts function is useful for modifying settings for a single plot. For
example, when colors, shapes, or labels make a legend superfluous, you can
suppress it with

+ opts(legend.position="none")

See help(opts) for more examples.
The plots created with both qplot and ggplot make copious use of color.

Since our examples did not really need color we supressed it with

...+ scale_fill_grey(start=0,end=1)

An alternate way of doing this the theme_set function. To use levels of grey,
use:

theme_set( theme_grey() )

To limit colors to black and white, use:

theme_set( theme_bw() )

To return to the default colors, use:

theme_set()

Enter help(theme_set) for details.
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16.19 Example Programs for ggplot2

Stata does not offer the grammar of graphics model. See previous the chapter
for Stata graphics examples.

This program brings together the examples discussed in this chapter and
a few variations that were not.

# Filename: GraphicsGG.R

setwd("/myRfolder")
load(file="mydata100.Rdata")
detach(mydata100) #In case I’m running repeatedly.

# Get rid of missing values for facets
mydata100 <- na.omit(mydata100)
attach(mydata100)
library(ggplot2)

# ---Barplots---

# Barplot - Vertical

qplot(workshop)

ggplot(mydata100, aes( workshop ) ) +
geom_bar()

# Can also follow this form:
ggplot( mydata100 ) +
aes( x=workshop ) +
geom_bar()

# Barplot - Horizontal

qplot(workshop) + coord_flip()

ggplot(mydata100, aes( workshop ) ) +
geom_bar() + coord_flip()

# Barplot - Single Bar Stacked

qplot(factor(""), fill=workshop,
geom="bar", xlab="") +
scale_fill_grey(start=0, end=1)
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ggplot(mydata100,
aes(factor(""), fill=workshop) ) +
geom_bar() +
scale_x_discrete("") +
scale_fill_grey(start=0, end=1)

# Pie charts, same as stacked bar
but polar coordinates

qplot( factor(""), fill=workshop,
geom="bar", xlab="") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

ggplot(mydata100,
aes( factor(""), fill=workshop ) ) +
geom_bar( width=1 ) +
scale_x_discrete("") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

# Barplots - Grouped
# position=stack, fill, dodge,
# for qplot, then ggplot

qplot(gender, geom="bar",
fill=workshop, position="stack") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom="bar",
fill=workshop, position="fill") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom="bar",
fill=workshop, position="dodge") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill=workshop) ) +
geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill=workshop) ) +
geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1)
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ggplot(mydata100, aes(gender, fill=workshop ) ) +
geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1)

# Barplots - Faceted

qplot(workshop, facets=gender~.)

ggplot(mydata100, aes(workshop) ) +
geom_bar() + facet_grid( gender~. )

# Barplots - Presummarized data

qplot( factor(c(1,2)), c(40, 60), geom="bar",
xlab="myGroup", ylab="myMeasure")

myTemp <- data.frame(
myGroup=factor( c(1,2) ),
myMeasure=c(40, 60)

)
myTemp

ggplot(data=myTemp, aes(myGroup, myMeasure) ) +
geom_bar()

# ---Dotcharts---

qplot(workshop, geom="point", size=I(4),
stat="bin", facets=gender~.) +
coord_flip()

ggplot(mydata100) +
aes(x=workshop, y=..count.. ) +
geom_point(stat="bin", size=4) + coord_flip()+
facet_grid( gender~. )

# ---Adding Titles and Labels---

qplot(workshop, geom="bar",
main="Workshop Attendance",
xlab="Statistics Package \nWorkshops")
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ggplot(mydata100) +
aes(workshop, ..count..) +
geom_bar() +
opts( title="Workshop Attendance" ) +
scale_x_discrete("Statistics Package \nWorkshops")

# Example not in book: labels of continuous scales.
ggplot(mydata100) +
aes(pretest,posttest ) +
geom_point() +
scale_x_continuous("Test Score Before Training") +
scale_y_continuous("Test Score After Training") +
opts( title="The Relationship is Linear" )

# ---Histograms and Density Plots---

# Simle Histogram
qplot(posttest)

ggplot(mydata100) +
aes(posttest) +
geom_histogram()

# Histogram with more bars.
qplot(posttest, geom="histogram", binwidth=0.5)

ggplot(mydata100) +
aes(posttest) +
geom_histogram( binwidth=0.5 )

# Density plot
qplot(posttest, geom="density")

ggplot(mydata100) +
aes(posttest) +
geom_density()

# Histogram with Density

qplot(data=mydata100,posttest, ..density..,
geom=c("histogram","density") )

ggplot(mydata100, aes(posttest, ..density.. ) ) +
geom_histogram() + geom_density()
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# Histogram - Separate plots by group

qplot(posttest, geom="histogram", facets=gender~.)
qplot(posttest, facets=gender~.)

ggplot(mydata100, aes(posttest) ) +
geom_histogram() + facet_grid( gender~. )

# Histograms - Overlaid

qplot( posttest, fill=gender ) +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(posttest, fill=gender) ) +
geom_bar() +
scale_fill_grey(start = 0, end = 1)

# ---QQ plots---

qplot(sample=posttest, stat="qq")

ggplot( mydata100, aes(sample=posttest) ) +
stat_qq()

# ---Strip plots---

# With too much jitter for our small data set:

qplot( factor(""), posttest, geom="jitter", xlab="")

ggplot(mydata100, aes(factor(""), posttest) ) +
geom_jitter() +
scale_x_discrete("")

# Strip plot by group.
qplot(workshop, posttest, geom="jitter")

ggplot(mydata100, aes(workshop, posttest) ) +
geom_jitter()

# Again, with limited jitter that fits our data better.
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qplot( factor(""), posttest, xlab="",
position=position_jitter(width=.02))

ggplot(mydata100, aes(factor(""), posttest) ) +
geom_jitter(position=position_jitter(width=.02)) +
scale_x_discrete("")

# Strip plot by group.
# Note that I am increasing the jitter width from
# .02 to .08 because there is only one fourth the
# room for each graph.

qplot(workshop, posttest, data = mydata100, xlab="",
position=position_jitter(width=.08))

ggplot(mydata100, aes(workshop, posttest) ) +
geom_jitter(position=position_jitter(width=.08)) +
scale_x_discrete("")

# ---Scatter Plots---

# Simple scatter plot

qplot(pretest, posttest)
qplot(pretest, posttest, geom="point")

ggplot(mydata100, aes(pretest, posttest)) +
geom_point()

# Scatter plot connecting points sorted on x.
qplot( pretest, posttest, geom="line")

ggplot(mydata100, aes(pretest, posttest) ) +
geom_line()

# Scatter plot connecting points in data set order.

qplot( pretest, posttest, geom="path")

ggplot(mydata100, aes(pretest, posttest) ) +
geom_path()
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# Scatter plot with skinny histogram-like bars to X axis.

qplot(pretest,posttest,
xend=pretest, yend=50,
geom="segment")

ggplot(mydata100, aes(pretest, posttest) ) +
geom_segment( aes( pretest, posttest,

xend=pretest, yend=50) )

# Scatter plot with jitter
qplot(q1, q4) #First without

# Now with jitter.
qplot(q1, q4, position=
position_jitter(width=.3,height=.3))

ggplot(mydata100, aes(x=q1, y=q2) ) +
geom_point(position=
position_jitter(width=.3,height=.3))

# Scatter plot on large data sets

pretest2 <-
round( rnorm( n=5000, mean=80, sd=5) )

posttest2 <-
round( pretest2 + rnorm( n=5000, mean=3, sd=3) )

pretest2[pretest2>100] <- 100
posttest2[posttest2>100] <- 100
temp=data.frame(pretest2,posttest2)

# Small, jittered, transparent points.

qplot(pretest2, posttest2, data = temp,
size = I(1), colour = I(alpha("black", 0.15)),
geom = "jitter")

# Or in the next version of ggplot2:

qplot(pretest2, posttest2, data = temp,
size = I(1), alpha = I(0.15),
geom = "jitter")

ggplot(temp, aes(pretest2, posttest2),
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size=2, position = position_jitter(x=2,y=2) ) +
geom_jitter(colour=alpha("black",0.15) )

ggplot(temp, aes(pretest2, posttest2)+
geom_point(colour=alpha("black",0.15),
position=position_jitter(width=.3,height=.3)) )

# Hexbin plots

qplot(pretest2, posttest2, geom="hex", bins=30)

ggplot(temp, aes(pretest2, posttest2)) +
geom_hex( bins=30 )

# This works too:

ggplot(temp, aes(pretest2, posttest2)) +
stat_binhex(bins = 30)

# Using density contours and small points.

qplot(pretest2, posttest2, data=temp,
geom=c("point","density2d"), size = I(1) )

# geom_density_2d was renamed geom_density2d

ggplot(temp, aes( x=pretest2, y=posttest2) ) +
geom_point( size=1 ) + geom_density2d()

rm(pretest2,posttest2,temp)

# Scatter plot with regression line,
95% confidence intervals.

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm )

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point() + geom_smooth(method=lm)

# Scatter plot with regression line
but NO confidence intervals.
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qplot(pretest, posttest,
geom=c("point","smooth"),
method=lm, se=FALSE )

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point() +
geom_smooth(method=lm, se=FALSE)

# Scatter with x=y line

qplot(pretest, posttest,
geom=c("point","abline"),
intercept=0, slope=1 )

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point()+
geom_abline(intercept=0, slope=1)

# Scatter with vertical or horizontal lines

# When the book was written, qplot required the
# values to be equal. Now it does not using
# xintercept and yintercept.

qplot(pretest, posttest,
geom=c("point", "vline", "hline"),
xintercept=75, yintercept=75)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline( xintercept=75 ) +
geom_hline( yintercept=75 )

# Scatter plot with a set of vertical lines

qplot(pretest, posttest, type="point") +
geom_vline( xintercept=seq(from=70,to=80,by=2) )

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline( xintercept=seq(from=70,to=80,by=2) )

# Scatter plotting text labels
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qplot(pretest, posttest, geom="text",
label=rownames(mydata100) )

ggplot(mydata100,
aes(pretest, posttest,
label=rownames(mydata100) ) ) +
geom_text()

# Scatter plot with different
point shapes for each group.

qplot(pretest, posttest, shape=gender)

ggplot(mydata100, aes(pretest, posttest) ) +
geom_point( aes(shape=gender ) )

# Scatter plot with regressions fit for each group.

qplot(pretest, posttest,
geom=c("smooth","point"),
method="lm", shape=gender)

ggplot(mydata100,
aes(pretest, posttest, shape=gender) ) +
geom_smooth( method="lm" ) + geom_point()

# Scatter plot faceted for groups

qplot(pretest, posttest,
geom=c("smooth", "point"),
method="lm", shape=gender,
facets=workshop~gender)

ggplot(mydata100,
aes(pretest, posttest, shape=gender) ) +
geom_smooth( method="lm" ) + geom_point() +
facet_grid( workshop~gender )

# Scatter plot matrix

plotmatrix( mydata100[3:8] )

# Small points & lowess fit.
plotmatrix( mydata100[3:8], aes( size=1 ) ) +
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geom_smooth() +
opts(legend.position="none")

# Shape and gender fits.
plotmatrix( mydata100[3:8],
aes( shape=gender ) ) +
geom_smooth(method=lm)

# ---Box Plots---

# box plot of one variable

qplot(factor(""), posttest,
geom="boxplot", xlab="")

ggplot(mydata100,
aes(factor(""), posttest) ) +
geom_boxplot() +
scale_x_discrete("")

# Box plot by group

qplot(workshop, posttest, geom="boxplot" )

ggplot(mydata100,
aes(workshop, posttest) ) +
geom_boxplot()

# Box plot by group with jitter

# First, with default jitter,
# that is too much for our small data set

qplot(workshop, posttest,
geom=c("boxplot","jitter") )

ggplot(mydata100,
aes(workshop, posttest )) +
geom_boxplot() + geom_jitter()

# Again, with a smaller amount of jitter.

ggplot(mydata100,
aes(workshop, posttest )) +
geom_boxplot() +
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geom_jitter(position=
position_jitter(width=.1))

# Box plot for two-way interaction.

qplot(workshop, posttest,
geom="boxplot", fill=gender ) +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100,
aes(workshop, posttest) ) +
geom_boxplot( aes(fill=gender),
colour="grey50") +

scale_fill_grey(start = 0, end = 1)

# Error bar plot

# This is the code for qplot.

qplot( as.numeric(workshop), posttest) +
geom_jitter(position=
position_jitter(width=.1)) +

stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

# This is the code for ggplot.

ggplot(mydata100,
aes( as.numeric(workshop), posttest ) ) +
geom_jitter(size=1,
position=position_jitter(width=.1) ) +

stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

# This does away with the jitter and looks nice.

ggplot(mydata100,
aes( as.numeric(workshop), posttest ) ) +
geom_point(size=1) +
stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +
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stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

# This uses large points for the means.

ggplot(mydata100,
aes( workshop, posttest ) ) +
geom_point(size=1) +
stat_summary(fun.y="mean",
geom="point", size=3) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

# ---Logarithmic Axes---

# Change the variables

qplot( log(pretest), log(posttest) )

ggplot(mydata100,
aes( log(pretest), log(posttest) ) ) +
geom_point()

# Change axis labels

qplot(pretest, posttest, log="xy")

ggplot(mydata100,
aes( x=pretest, y=posttest) ) +

geom_point() +
scale_x_log10() +
scale_y_log10()

# Change axis scaling

# Tickmarks remain uniformly spaced,
# because scale of our data is too limited.

qplot(pretest, posttest, data=mydata100) +
coord_trans(x="log10", y="log10")

ggplot(mydata100,
aes( x=pretest, y=posttest) ) +

geom_point() +
coord_trans(x="log10", y="log10")
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# ---Aspect Ratio---

# This forces x and y to be equal.
qplot(pretest, posttest) + coord_equal()

# This sets aspect ratio to height/width.
qplot(pretest, posttest) +
coord_equal(ratio=1/4)

#---Multiframe Plots: Bar Chart Example---

# Clears the page, otherwise new plots
# will appear on top of old.

grid.newpage()

# Sets up a 2 by 2 grid to plot into.
pushViewport(
viewport( layout=grid.layout(2,2) )

)

# Bar Chart dodged in row 1, column 1.
myPlot <- ggplot(mydata100,

aes(gender, fill=workshop) ) +
geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=stack " )

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1) )

# Bar Chart stacked, in row 1, column 2.
myPlot <- ggplot(mydata100,

aes(gender, fill=workshop) ) +
geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=fill" )

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2) )

# Bar Chart dodged, given frames,
# in row 2, columns 1 and 2.
myPlot <- ggplot(mydata100,
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aes(gender, fill=workshop) ) +
geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1) +
opts( title="position=dodge" )

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1:2) )

dev.off()

#---Multiframe Scatter Plots---

# Clears the page, otherwise new plots
will appear on top of old.

grid.newpage()

# Sets up a 2 by 2 grid to plot into.
pushViewport(
viewport( layout=grid.layout(2,2) )

)

# Scatter plot of points
myPlot <- qplot(pretest, posttest,
main="geom=point")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1) )

myPlot <- qplot( pretest, posttest,
geom="line", main="geom=line" )

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2) )

myPlot <- qplot( pretest, posttest,
geom="path", main="geom=path" )

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1) )

myPlot <- ggplot( mydata100,
aes(pretest, posttest) ) +
geom_segment( aes(x=pretest, y=posttest,

xend=pretest, yend=58) ) +
opts( title="geom_segment" )
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print(myPlot,
vp=viewport(
layout.pos.row=2,
layout.pos.col=2 )

)

# ---Multiframe Scatter Plot for Jitter---

grid.newpage()

pushViewport(
viewport( layout=grid.layout(1,2) )

)

# Scatter plot without
myPlot <- qplot( q1, q4,

main="Likert Scale Without Jitter")
print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1) )

myPlot <- qplot(q1, q4,
position=position_jitter(

width=.3,height=.3),
main="Likert scale with jitter")

print(myPlot,
vp=viewport( layout.pos.row=1,

layout.pos.col=2 )
)

# ---Detailed Comparison of qplot and ggplot---

qplot(pretest, posttest,
geom=c("point","smooth"), method="lm" )

# Or ggplot with default settings:

ggplot(mydata100, aes(x=pretest, y=posttest) ) +
geom_point() +
geom_smooth(method="lm")
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# Or with all of the defaults displayed:
ggplot() +
layer(
data=mydata100,
mapping=aes(x=pretest, y=posttest),
geom="point",
stat="identity"

) +
layer(
data=mydata100,
mapping=aes(x=pretest, y=posttest),
geom="smooth",
stat="smooth",
method="lm"

) +
coord_cartesian()
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Statistics

This chapter demonstrates some basic statistical methods. Since this book is
aimed at people who already know Stata, we assume you are already famil-
iar with most of these methods. We briefly list each example test’s goal and
assumptions and how to get R to perform them. For more statistical cover-
age see Dalgaard’s Introductory Statistics with R [9], or Venable and Ripley’s
much more advanced Modern Applied Statistics with S [51]. For a comprehen-
sive text that shows Stata and R code being used for the same analysis, see
Hilbe’s Logistic Regression Models, [21]. As usual, Stata code duplicating the
R examples used throughout the text is found at the end of the chapter.

The examples in this chapter will use the mydata100 data set described in
Section 14.7. When using functions from the Hmisc package, we
use mydata100L (L for labeled) that adds the variable labels described in
Section 11.2.1.

To get things to fit well on these pages, we have set

options(linesize=64)

You can use that if you want your output to match perfectly, but that is not
necessary.

17.1 Scientific Notation

While Stata tends to print its small probability values as 0.000, R often uses
scientific notation. An example is 7.447e − 5 which means 7.447 × 10−5 or
0.00007447. When the number after the “e” is negative, you move the decimal
place that many places to the left.

You may also see p-values of just “0.” That value is controlled by the digits
option, which is set to be seven significant digits by default. If you wanted
to increase the number of digits to 10, you could do so with the following
function call:

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 453
and Computing, DOI 10.1007/978-1-4419-1318-0 17,
© Springer Science+Business Media, LLC 2010



454 17 Statistics

options(digits=10)

Stata has a similar option, “%1.0f,” but it applies only to the p-values
that the user creates or abstracts from the return codes.

In both packages, setting the number of digits affects only their display.
The full precision of p-values is always available when the numbers are stored.

Supplying a positive number to R’s scientific penalty option, scipen, bi-
ases the printing away from scientific notation and more toward fixed nota-
tion. A negative number does the reverse. So if you want to completely block
scientific notation, you can do so with the following function call:

options(scipen=999)

17.2 Descriptive Statistics

In Stata, you get frequencies from the tabulate command and means, stan-
dard deviations, and the like from the summarize command.

R also has functions that handle categorical and continuous variables to-
gether or separately. Let us start with functions that are most like Stata, and
then move on to functions that are more unique in style to R.

17.2.1 The Hmisc describe Function

Frank Harrell’s Hmisc package [14] offers a wide selection of functions that
have more comprehensive output than the standard R functions. One of these
is the describe function, which we use below. It is similar to the summary
function we have used throughout this book. Before using the describe func-
tion, you must install Hmisc. See Chapter 2, ”Installing and Updating R.”
Then you must load it with either the Packages> Load Packages menu item
or the function call:

library("Hmisc")

You can select variables in many ways. See Chapter 7, “Selecting Vari-
ables” for details. One of the nicest features of the describe function is that
it provides frequencies on nonfactors as well as factors, so long as they do not
have too many values.

> describe(mydata100L)

mydata100L

8 Variables 100 Observations
-----------------------------------------------------------
gender
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n missing unique
99 1 2

Female (47, 47%), Male (52, 53%)
-----------------------------------------------------------
workshop

n missing unique
99 1 4

R (31, 31%), Stata (24, 24%), SPSS (25, 25%), SAS (19, 19%)
-----------------------------------------------------------
q1 : The instructor was well prepared.

n missing unique Mean
100 0 5 3.45

1 2 3 4 5
Frequency 4 14 36 25 21
% 4 14 36 25 21
-----------------------------------------------------------
q2 : The instructor communicated well.

n missing unique Mean
100 0 5 3.06

1 2 3 4 5
Frequency 10 28 21 28 13
% 10 28 21 28 13
-----------------------------------------------------------
q3 : The course materials were helpful.

n missing unique Mean
99 1 5 3.081

1 2 3 4 5
Frequency 10 20 34 22 13
% 10 20 34 22 13
-----------------------------------------------------------
q4 : Overall, I found this workshop useful.

n missing unique Mean
100 0 5 3.4

1 2 3 4 5
Frequency 6 14 34 26 20
% 6 14 34 26 20
-----------------------------------------------------------
pretest

n missing unique Mean .05 .10 .25 .50
100 0 23 74.97 66.95 69.00 72.00 75.00
.75 .90 .95
79.00 82.00 83.00

lowest : 58 62 63 66 67, highest: 82 83 84 85 86
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-----------------------------------------------------------
posttest

n missing unique Mean .05 .10 .25 .50
100 0 28 82.06 71.95 75.00 77.00 82.00
.75 .90 .95
86.00 90.00 92.00

lowest : 59 67 68 69 71, highest: 91 92 95 96 98
-----------------------------------------------------------

Unlike Stata, the describe function does not provide percents that include
missing values. Of course, in Stata, you must provide the “miss” option to the
describe command in order to have the count and frequency of missing values
displayed, but they are able to be displayed nonetheless. In R, you can change
this limitation by setting the exclude.missing argument to FALSE. The
describe function will automatically provide a table of frequencies whenever
a variable has no more than 20 unique values. Beyond that, it will print the
five largest and five smallest values, just like the summarize, detail command
in Stata.

Notice that the survey questions themselves appear in the R output.
That is because this version of the data frame was prepared as described
in Section 11.2, “Variable Labels,” using the Hmisc package’s approach. For
the remainder of this chapter, we use the unlabeled version, mydata100, so
that those labels will not cause problems with functions that do not recognize
them.

17.2.2 The summary Function

R’s built-in function for univariate statistics is summary. We have used the
summary function extensively throughout this book, but we repeat its output
here for comparison.

> summary(mydata100)

gender workshop q1 q2
Female:47 R :31 Min. :1.00 Min. :1.00
Male :52 Stata:24 1st Qu.:3.00 1st Qu.:2.00
NA’s : 1 SPSS :25 Median :3.00 Median :3.00

SAS :19 Mean :3.45 Mean :3.06
NA’s : 1 3rd Qu.:4.00 3rd Qu.:4.00

Max. :5.00 Max. :5.00

q3 q4 pretest
Min. :1.000 Min. :1.0 Min. :58.00
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1st Qu.:2.000 1st Qu.:3.0 1st Qu.:72.00
Median :3.000 Median :3.0 Median :75.00
Mean :3.081 Mean :3.4 Mean :74.97
3rd Qu.:4.000 3rd Qu.:4.0 3rd Qu.:79.00
Max. :5.000 Max. :5.0 Max. :86.00
NA’s :1.000

posttest
Min. :59.00
1st Qu.:77.00
Median :82.00
Mean :82.06
3rd Qu.:86.00
Max. :98.00

As you can see, it is much sparser, lacking percents for factors, frequen-
cies and percents for numeric variables (even if they have a small number of
values), number of nonmissing values, and so on. However, it is much more
compact. The numbers labeled “1st Qu.” and “3rd Qu.” are the first and third
quartiles, or the 25th and 75th percentiles, respectively.

The summary function works with a much wider range of objects, as we
will soon see. The describe function works only with data frames, vectors,
matrices, or formulas. For data frames, choose whichever of these two functions
that meets your needs.

17.2.3 The table Function and Its Relatives

Now let us review R’s built-in functions for frequencies and proportions. We
have covered those in earlier sections also, but we repeat them here for ease
of comparison and elaboration.

R’s built-in function for frequency counts provide output that is much
sparser than those of the describe function:

> table(workshop)

workshop
R Stata SPSS SAS
31 24 25 19

> table(gender)

gender
Female Male

47 52
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The above output is quite minimal, displaying only the frequencies. This
sparcity makes it very easy to use this output as input to other functions
such as barplot; see Chapter 15, “TraditionalGraphics,” for examples.

We can get proportions by using the prop.table function.

> prop.table( table(workshop) )

workshop

R Stata SPSS SAS
0.3131313 0.2424242 0.2525253 0.1919192

> prop.table( table(gender) )

gender

Female Male
0.4747475 0.5252525

You can round off the proportions using the round function. The only argu-
ments you need are the object to round and the number of decimals you would
like to keep.

> round( prop.table( table(gender) ), 2 )

gender

Female Male
0.47 0.53

Converting that to percents is, of course, just a matter of multiplying by 100.
If you multiply before rounding, you will not even need to specify the number
of decimals to keep, since the default is to round to whole numbers.

> round( 100* ( prop.table( table(gender) ) ) )

gender

Female Male
47 53

When examining test scores, it is often helpful to get cumulative propor-
tions. R does this by adding the cumsum function that cumulatively sums a
variable. Here we apply it to the output of the prop.table function to sum
its proportions.

> cumsum( prop.table( table(posttest) ) )
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59 67 68 69 71 72 74 75 76 77 78
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.13 0.18 0.26 0.31
79 80 81 82 83 84 85 86 87 88 89

0.35 0.39 0.48 0.53 0.58 0.65 0.68 0.76 0.79 0.84 0.87
90 91 92 95 96 98

0.92 0.93 0.96 0.98 0.99 1.00

We can see that 0.92 of the students received a score of 90 or lower. This
is information we would get from the Stata tabulate command. We can even
make R do the vertical display that Stata would use. To do so, we write a
short function to put the table into a data frame and then add the proportions
and cumulative proportions to the data frame:

myTable <- function(X)
{
myDF <- data.frame( table(Score) )
myDF$Prop <- prop.table( myDF$Freq )
myDF$CumProp <- cumsum( myDF$Prop )
myDF
}

Now when we call our new function, we get the vertical layout with which we
are familiar (middle removed to save space):

> myTable(Score)

Score Freq Prop CumProp
1 70 39 0.039 0.039
2 71 36 0.036 0.075
3 72 40 0.040 0.115
...
24 93 40 0.040 0.916
25 94 41 0.041 0.957
26 95 43 0.043 1.000

A word of caution about the table function. Unlike the summary function,
if you use it on a whole data frame, it will not give you all one-way frequency
tables. Instead, it will cross-tabulate all of the variables at once. You can use
it on a surprising number of factors at once. When you convert its output to
a data frame, you have a concise list of counts for all possible combinations.
For an example, see Section 10.11.4, “Tabular Aggregation.”

17.2.4 The mean Function and Its Relatives

R’s built-in functions offers similarly sparse output for univariate statistics.
To get just the means of variables q1 through posttest (variables 3 through
8), we can use
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> sapply( mydata100[3:8], mean, na.rm=TRUE)

q1 q2 q3 q4 pretest posttest
3.4500 3.0600 3.0808 3.4000 74.9700 82.0600

Similarly, for the standard deviations:

> sapply( mydata100[3:8], sd, na.rm=TRUE)

q1 q2 q3 q4 pretest posttest
1.0952 1.2212 1.1665 1.1371 5.2962 6.5902

You can also substitute the var function for variance or the median func-
tion for that statistic. You can apply several of these functions at once by
combining them into your own single function. For an example of that, see
“Writing Your Own Functions (Macros),” (Section 5.8). For details about
the sapply function, see Section 10.2, “Procedures or Functions? The Apply
Function Decides.”

17.3 Cross-Tabulation

You can compare groups on categorical measures with the chi-squared test; for
example, testing to see if males and females attended the various workshops
in the same proportions. In Stata, you would use the tabulate command.

Assumptions:

• No more than 20% of the cells in your cross-tabulation have counts fewer
than 5. If you have sparse tables, the exact fisher.test function is more
appropriate.

• Observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

• The variables are not the same thing measured at two times. If that is the
case, the mcnemar.test function may be what you need.

17.3.1 The CrossTable Function

To get output most like that from Stata, we will first use the functions
from Gregory Warnes’ gmodels package [42]. Then we will cover the cross-
tabulation functions that are built into R. Note that we use the format=SAS
argument to produce output that is closest to Stata. It is the default, however,
so you need not type it. There is no specific format=Stata argument.

> library("gmodels")

> CrossTable(workshop, gender,
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+ chisq=TRUE, format="SAS")

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 99

| gender
workshop | Female | Male | Row Total |

-------------|-----------|-----------|-----------|
R | 14 | 17 | 31 |
| 0.035 | 0.032 | |
| 0.452 | 0.548 | 0.313 |
| 0.298 | 0.327 | |
| 0.141 | 0.172 | |

-------------|-----------|-----------|-----------|
Stata | 11 | 13 | 24 |

| 0.014 | 0.012 | |
| 0.458 | 0.542 | 0.242 |
| 0.234 | 0.250 | |
| 0.111 | 0.131 | |

-------------|-----------|-----------|-----------|
SPSS | 13 | 12 | 25 |

| 0.108 | 0.097 | |
| 0.520 | 0.480 | 0.253 |
| 0.277 | 0.231 | |
| 0.131 | 0.121 | |

-------------|-----------|-----------|-----------|
SAS | 9 | 10 | 19 |

| 0.000 | 0.000 | |
| 0.474 | 0.526 | 0.192 |
| 0.191 | 0.192 | |
| 0.091 | 0.101 | |

-------------|-----------|-----------|-----------|
Column Total | 47 | 52 | 99 |

| 0.475 | 0.525 | |
-------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson’s Chi-squared test
------------------------------------------------------------
Chi^2 = 0.2978553 d.f. = 3 p = 0.9604313
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The CrossTable function call above has three arguments.

1. The variable that determines the table rows.
2. The variable that determines the table columns.
3. The chisq=TRUE argument tells R to perform that test. As with Stata,

if you leave this argument out, it will perform the cross-tabulation, but
not the chi-squared test. Of course, in Stata you need only type “chi”
to obtain the Chi-squares test and “exact” to obtain the Fisher’s exact
test.

17.3.2 The tables and chisq.test Functions

R also has built-in functions to do cross-tabulation and the chi-squared test.
As usual, the built-in functions present sparse results. We will first use the
table function. To simplify the coding and to demonstrate a new type of
data structure, we will save the table and name it myWG for workshop and
gender:

> myWG <- table(workshop, gender)

Printing myWG will show us that it contains the form of counts to which
Stata users are accustomed.

> myWG

gender

workshop Female Male
R 14 17
Stata 11 13
SPSS 13 12
SAS 9 10

You may recall from our discussion of factors that you can create factor
levels (and their labels) that do not exist in your data. That will help if you
were to enter more data later that is likely to contain those values or if you
were to merge your data frame with others that have a full set of values.
However, when performing a cross-tabulation, the levels with zero values will
become part of the table. These empty cells will affect the resulting chi-squared
statistic which will drastically change its value. To get rid of the unused levels,
append [ ,drop=TRUE] to the variable reference—for example,

myWG <- table( workshop[ ,drop=TRUE], gender)

Some R functions work better with this type of data in a data frame.
You probably associate this style of tabular data with output from the Stata
tabulate command. The as.data.frame function can provide it.
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> myWGdata <- as.data.frame(myWG)

> myWGdata

workshop gender Freq
1 R Female 14
2 Stata Female 11
3 SPSS Female 13
4 SAS Female 9
5 R Male 17
6 Stata Male 13
7 SPSS Male 12
8 SAS Male 10

The functions we discuss now work well on table objects, so we will use
myWG. We can use the chisq.test function to perform the chi-squared test:

> chisq.test(myWG)

Pearson’s Chi-squared test

data: myWG
X-squared = 0.2979, df = 3, p-value = 0.9604

The table function does not calculate any percents or proportions. To
get row or column proportions, we can use the prop.table function. The
arguments in the example below are the table and the margin to analyze
where 1=row and 2=column. So this will calculate row proportions.

> prop.table(myWG, 1)

gender

workshop Female Male
R 0.45161 0.54839
Stata 0.45833 0.54167
SPSS 0.52000 0.48000
SAS 0.47368 0.52632

Similarly, changing the 1 to 2 requests column proportions:

> prop.table(myWG, 2)

gender

workshop Female Male
R 0.29787 0.32692
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Stata 0.23404 0.25000
SPSS 0.27660 0.23077
SAS 0.19149 0.19231

If you do not provide the margin argument, the function will calculate total
proportions.

> prop.table(myWG)

gender

workshop Female Male
R 0.14141 0.17172
Stata 0.11111 0.13131
SPSS 0.13131 0.12121
SAS 0.09091 0.10101

The round function will round off unneeded digits by telling it how many
decimal places you want—in this case, 2. These are the row proportions.

> round( prop.table(myWG, 1), 2 )

gender

workshop Female Male
R 0.45 0.55
Stata 0.46 0.54
SPSS 0.52 0.48
SAS 0.47 0.53

To convert proportions to percents, multiply by 100 and round off. If you want
to round to the nearest whole percent, multiply by 100 before rounding off.
That way you do not even have to tell the round function how many decimal
places to keep as its default is to round off to whole numbers.

> round( 100* ( prop.table(myWG, 1) ) )

gender

workshop Female Male
R 45 55
Stata 46 54
SPSS 52 48
SAS 47 53

If you wish to add marginal totals, the addmargins function will do so. It
works much like the prop.table function, in that its second argument is a 1
to add a row with totals or 2 to add a column.
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> addmargins(myWG, 1)

gender

workshop Female Male
R 14 17
Stata 11 13
SPSS 13 12
SAS 9 10
Sum 47 52

If you do not specify a preference for row or column totals, you will get
both:

> addmargins(myWG)

gender

workshop Female Male Sum
R 14 17 31
Stata 11 13 24
SPSS 13 12 25
SAS 9 10 19
Sum 47 52 99

17.4 Correlation

Correlations measure the strength of linear association between two continu-
ous variables. Stata calculates them with the correlate command for both
parametric and nonparametric correlations. For pairwise, correlations Stata
uses the pwcorr command.

R has both built-in functions and some in add-on packages.
Assumptions:

1. Scatter plots of the variables shows essentially a straight line. The function
plot(x,y) would do the scatter plots. If you have a curve, transformations
such as square roots or logarithms often help.

2. The spread in the data is the same at low, medium, and high values.
Transformations often help with this assumption also.

3. For a Pearson correlation, the data should be at least interval level and
normally distributed. As discussed in Chapter 15, “Traditional Graphics,”
hist(myvar) or qqnorm(myvar) is a quick way to examine the data. If
your data are not normally distributed or are just ordinal measures (e.g.,
low, medium, high), you can use the nonparametric Spearman or the (less
popular) Kendall correlation.
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The Hmisc package has a good function for doing correlations. We will use
it first and then cover the functions that are built into R. Before using the
Hmisc package, you must install it. See Chapter 2, ”Installing and Updating
R.” Then you must load it with either the Packages> Load Packages menu
item or the function call:

library("Hmisc")

To correlate two variables, simply use their names as arguments to the rcorr
function.

> rcorr(q1,q4)

x y
x 1.00 0.58
y 0.58 1.00

n= 100

P
x y

x 0
y 0

The first piece of output is the Pearson correlation of 0.58. That is a strong
positive relationship, at least for the social sciences. The more a student likes
the instructor (q1), the more he or she likes the workshop overall (q4).

Next, it reports the number of valid observations: 100. Since the rcorr
function uses pairwise deletion of missing values by default, each correlation
is done on the maximum number of cases.

Finally, it reports the p-value of 0. So we can reject the null hypothesis
that the correlation is zero, a significant result. When the p-value gets very
small, it prints just 0 but the full accuracy is available if you save the output
(example below).

To get correlations on a set of variables, you must first put them into a
matrix. That is easily done with the cbind function, which binds the columns.
Below, we place the survey questions into a matrix called myQs and then use
it as the first argument for to rcorr function. We also specify the type of
correlation as Pearson. That is the default, so we are just doing it here for
educational purposes. Note that although Pearson in a proper noun, as an
argument it does not begin with a capital “P.”

> myQs <- cbind(q1,q2,q3,q4)

> rcorr( myQs, type="pearson" )

q1 q2 q3 q4
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q1 1.00 0.67 0.69 0.58
q2 0.67 1.00 0.60 0.49
q3 0.69 0.60 1.00 0.47
q4 0.58 0.49 0.47 1.00

n
q1 q2 q3 q4

q1 100 100 99 100
q2 100 100 99 100
q3 99 99 99 99
q4 100 100 99 100

P
q1 q2 q3 q4

q1 0 0 0
q2 0 0 0
q3 0 0 0
q4 0 0 0

You can change that value to “spearman” to get correlations on variables that
are not normally distributed or are only ordinal in scale (e.g., low, medium,
high):

> rcorr(myQs, type="spearman")

q1 q2 q3 q4
q1 1.00 0.67 0.67 0.55
q2 0.67 1.00 0.61 0.49
q3 0.67 0.61 1.00 0.43
q4 0.55 0.49 0.43 1.00

n
q1 q2 q3 q4

q1 100 100 99 100
q2 100 100 99 100
q3 99 99 99 99
q4 100 100 99 100

P
q1 q2 q3 q4

q1 0 0 0
q2 0 0 0
q3 0 0 0
q4 0 0 0
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If you want to see the very small p-values, you can save the the output
to a list object like myCorrs. We will use the names function to see what
components it contains:

> myCorrs <- rcorr(myQs, type="pearson")

> names(myCorrs)

[1] "r" "n" "P"

Notice that the correlations are stored in a component named “r,” even though
that name did not appear in our output above. The print function determines
how output prints, and when we installed the Hmisc package, it provided the
methods for the print function to use on its objects. The method that printed
the output from rcorr included the instruction to not to print the “r,” as it
is obvious what the correlations are.

We can guess that the “P” object contains the p-values, so let us print
just myCorrs$P. By changing the options function’s digits argument to
various values (7 is the default), you can adjust the precision of the output.
As you can see, all of the p-values are so tiny that it is not worth the effort.
Getting at p-values like this can be helpful when you want to do something
like adjusting them for the affects of multiple testing. You could also set
options(scipen=999) to block scientific notation, but we do not show this
as the numbers are very small.

> options(digits=7)

> myCorrs$P

q1 q2 q3 q4
q1 NA 3.597123e-14 1.554312e-15 3.646581e-10
q2 3.597123e-14 NA 3.602896e-11 2.040895e-07
q3 1.554312e-15 3.602896e-11 NA 7.624040e-07
q4 3.646581e-10 2.040895e-07 7.624040e-07 NA

17.4.1 The cor Function

Now let us take a look at R’s built-in functions for calculating correlations.
As usual, they provide more sparse output.

> cor( data.frame(q1, q2, q3, q4),
+ method="pearson", use="pairwise")

q1 q2 q3 q4
q1 1.0000000 0.6668711 0.6948419 0.5758860
q2 0.6668711 1.0000000 0.6040746 0.4917447
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q3 0.6948419 0.6040746 1.0000000 0.4730732
q4 0.5758860 0.4917447 0.4730732 1.0000000

The cor function call above uses three arguments.

1. The variables to correlate. This can be a vector, matrix, or data frame. If
it is a vector, then the next argument must be another vector with which
to correlate. You can label them x= and y= or just put them in the first
two positions.

2. The method argument can be pearson, spearman, or kendall for those
types of correlations. Be careful not to capitalize these names when used
with arguments in R.

3. The use argument determines how the function will deal with missing
data. The value pairwise.complete, abbreviated pairwise above, uses
as much data as possible. That is the default approach in Stata. The
value complete.obs is the Stata equivalent of listwise deletion of missing
values. This tosses out cases that have any missing values for the variables
analyzed. If each variable has just a few missing values, but each are
missing on different cases, you can lose a very large percent of your data
with this option. However, it does ensure that every correlation is done
on the exact same cases. That can be important if you plan to use the
correlation matrix in additional computations. As usual, by default R
provides no results if it finds missing values. That is the use=all.obs
setting. So if you omit the use argument and have missing values, cor will
print only an error message telling you that it has found missing values.

Unlike the Hmisc package’s rcorr function, the built-in cor function pro-
vides only a correlation matrix. Another built-in function, cor.test, provides
comprehensive output but only for two variables at a time.

> cor.test(q1, q2, use="pairwise")

Pearson’s product-moment correlation

data: q1 and q2

t = 8.8593, df = 98, p-value = 3.597e-14

alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:

0.5413638 0.7633070

sample estimates:
cor

0.6668711

Stata users will recognize this function as similar to the pwcorr command.
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17.5 Linear Regression

Linear regression models the linear association between one continuous de-
pendent variable and a set of continuous independent or predictor variables.
Stata performs linear regression with regress command, among others.

Assumptions:

• Each scatter plot of the dependent variable with each independent variable
forms essentially a straight line. The function plot(x,y) would do the
scatter plots. If you have a curve, transformations such as square roots or
logarithms often help straighten it out.

• The spread in the data is the same at low, medium, and high values. This is
called homoscedasticity. Transformations often help with this requirement
also.

• The model residuals (difference between the predicted values and the ac-
tual values) are normally distributed. We will use the plot function to
generate a normal QQ plot to test this assumption.

• The model residuals are independent. If they contain a relationship, such
as the same subjects measured through time or classes of subjects sharing
the same teacher, you would want to use a more complex model to take
that into account.

When performing a single type of analysis in Stata, you generally type the
appropriate statistical command together with its options on the command
line. It is nearly always possible to duplicate what is typed on the command
line by using the menu system. In addition, most statistical commands have
postestimation commands, which may be unique to a particular primary com-
mand. Residuals, linear predictors, fitted values, and so forth are typically
requested by means of postestimation commands. However, if a researcher
simply wants the basic output for a given statistical command (e.g. regress),
then typing the command, the related variables, any selection criteria, and
associated options as a single line of code is all that is needed. The statisti-
cal results are immediately displayed on the screen, or they can be referred
to a “log” file, or they can be executed quietly without being displayed on
screen.

Let us look at a simple example in R. First, we will use the lm function
to do a l inear model predicting the values of q4 from the survey questions.
Although this type of data is viewed as ordinal scale by many, social scientists
often view it as interval level. With a more realistic data set, we would be
working with a scale for each measure that consisted of the means of several
questions, resulting in far more than just five values.

> lm(q4 ~ q1+q2+q3, data=mydata100)
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Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Coefficients:

(Intercept) q1 q2 q3
1.20940 0.41134 0.15791 0.09372

We see that the results provide only the coefficients to the linear regression
model. So the model is as follows:

Predictedq4 = 1.20940 + 0.41134 × q1 + 0.15791 × q2 + 0.09372 × q3

The other results that Stata would provide, such as R-squared or tests of
significance, are not displayed. Now we will run the model again and save its
results in an object called myModel.

> myModel <- lm(q4 ~ q1 + q2 + q3, data=mydata100)

This time, no printed results appear. We can see the contents of myModel by
entering its name just like any other R object.

> myModel

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Coefficients:

(Intercept) q1 q2 q3
1.20940 0.41134 0.15791 0.09372

The above results are exactly the same as we saw initially. So what type of
object is myModel? The mode and class functions can tell us.

> mode(myModel)

[1] "list"

> class(myModel)

[1] "lm"

So we see the lm function saved our model as a list with a class of lm. Now that
we have the model stored, we can apply a series of extractor functions— which
work like Stata’s postestimation commands— to get much more information.
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Each of these functions will see the class of lm and will apply the methods that
it has available for that class of object. We have used the summary function
previously. With our data frame object, mydata100, the summary function
“knew” to get frequency counts on factors and other measures, like means, on
continuous variables. The following is what it will do with lm objects:

> summary(myModel)

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Residuals:

Overall, I found this workshop useful.
Min 1Q Median 3Q Max

-1.9467 -0.6418 0.1175 0.5960 2.0533

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.20940 0.31787 3.805 0.000251 ***
q1 0.41134 0.13170 3.123 0.002370 **
q2 0.15791 0.10690 1.477 0.142942
q3 0.09372 0.11617 0.807 0.421838

---
Signif. codes: 0 ’***’0.001 ’**’0.01 ’*’0.05 ’.’0.1
Residual standard error: 0.9308 on 95 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.3561, Adjusted R-squared: 0.3358

F-statistic: 17.51 on 3 and 95 DF, p-value: 3.944e-09

That is much the same output we would get from Stata.
From the perspective of this table it might appear that neither q2 nor q3

is adding significantly to the model. However, the next table will provide a
different perspective. The very small p-value of 3.944e−09 or 0.000000003944
is quite a bit smaller than 0.05, so we would reject the hypothesis that the
overall model is worthless. The significant p-value of 0.002370 for q1 makes it
the only significant predictor, given the other variables in the model. We will
test that below.

You can ask for an analysis of variance (ANOVA) table with the anova
function.
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> anova(myModel)

Analysis of Variance Table
Response: q4

Df Sum Sq Mean Sq F value Pr(>F)
q1 1 42.306 42.306 48.8278 3.824e-10 ***
q2 1 2.657 2.657 3.0661 0.08317 .
q3 1 0.564 0.564 0.6508 0.42184
Residuals 95 82.312 0.866
---

Signif. codes: 0 ’***’0.001 ’**’0.01 ’*’0.05 ’.’0.1

These tests are what Stata would call sequential or Type I tests. So the
first test is for q1 by itself. The second is for q2, given that q1 is already in
the model. The third is for q3, given that q1 and q2 are already in the model.
Changing the order of the variables in the lm function would change these
results. From this perspective, q1 is even more significant.

17.5.1 Plotting Diagnostics

The plot function also has methods for lm class objects. The single call to
the plot function below was sufficient to generate all four of the plots shown
in Fig. 17.1

> plot(myModel)

The Residuals vs. Fitted plot shown in Fig. 17.1 (upper left), shows the
fitted values plotted against the model residuals. If the residuals follow any
particular pattern, such as a diagonal line, there may be other predictors not
yet in the model that could improve it. The fairly flat lowess line looks good.

The Normal Q-Q Plot in Fig. 17.1 (upper right), shows the quantiles of
the standardized residuals plotted against the quantiles you would expect if
the data were normally distributed. Since these fall mostly on the straight
line, the assumption of normally distributed residuals is met.

The Scale-Location plot in Fig. 17.1 (lower left), shows the square root of
the absolute standardized residuals plotted against the fitted, or predicted,
values. Since the lowess line that fits this is fairly flat, it indicates that the
spread in the predictions is roughly the same across the prediction line, meet-
ing the assumption of homoscedasticity.

Finally, the Residuals vs. Leverage plot in Fig. 17.1 (lower right), shows
a measure of the influence of each point on the overall equation against the
standardized residuals. Since no points stand out far from the pack, we can
assume that there are no outliers having undue influence on the fit of the
model.
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Fig. 17.1. Linear regression diagnostic plots generated automatically by the plot

function.

17.5.2 Comparing Models

To do a stepwise model selection, first create the full model and save it, and
then apply one of the functions: step, add1, drop1, or, from Venable and Rip-
ley’s MASS package, stepAIC. MASS is named after their book Modern Applied
Statistics with S [51]. Keep in mind that if you start with a large number of
variables, stepwise methods make your p-values essentially worthless. If you
can choose a model on part of your data and see that it still works on the
remainder, then the p-values obtained from the remainder data should be
valid.

The anova function can also compare two models, as long as one is a
subset of the other. So to see if q2 and q3 combined added significantly to
a model over q1, we created the two models and then compared them. One
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catch with this scenario is that with missing values present, the two models
will be calculated on different sample sizes and R will not be able to compare
them. It will warn you, “models were not all fitted to the same size of data
set.” To deal with this problem, we will use the na.omit function discussed
in Section 10.5, to remove the missing values first.

> myNoMissing <- na.omit(
+ mydata100[ , c("q1","q2","q3","q4") ] )

> myFullModel <- lm( q4 ~ q1+q2+q3, data=myNoMissing)

> myReducedModel <- lm( q4 ~ q1, data=myNoMissing)

> anova( myReducedModel, myFullModel)

Analysis of Variance Table

Model 1: q4 ~ q1
Model 2: q4 ~ q1 + q2 + q3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 97 85.532
2 95 82.312 2 3.220 1.8585 0.1615

The p-value of 0.1615 tells us that variables q2 and q3 combined did not add
significantly to the model that had only q1. When you compare two models
using the anova function, you should list the reduced model first.

17.5.3 Making Predictions with New Data

You can apply a saved model to a new set of data using the predict function.
Of course, the new data set must have the same variables, with the same
names and the same types. Under those conditions, you can apply myModel
to myNewData using

myPredictions <- predict(myModel, myNewData)

Because the variables must have the exact same names, it is very important
not to use the $ format in names. The following two statements perform what
is statistically the same model, but the one using mydata100$q4 will only
work on future data frames named “mydata100”!

myModel <- lm( mydata100$q4 ~ mydata$q1 ) #Bad
myModel <- lm(q4 ~ q1, data=mydata100) #Good
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17.6 t-Test: Independent Groups

A t-test for independent groups compares two groups at a time on the mean
of a continuous measure. Stata uses the ttest command for this purpose.

The assumptions for t-tests are as follows:

• The measure is interval-level continuous data. If the data are only ordinal
(e.g., low-medium-high), consider the Wilcoxon rank sum test, also known
as the Mann-Whitney test.

• The measures are normally distributed. You can examine that with
hist(myVar) or qqnorm(myvar) as shown in Chapter 15, “Traditional
Graphics.” If they are not, consider the Mann-Whitney-Wilcoxon test.
For details, see Section 17.9.

• The observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

• The distributions should have roughly the same variance. See Section 17.7,
for details.

You can perform t-tests in R using the t.test function.

> t.test( q1 ~ gender, data=mydata100)

Welch Two Sample t-test

data: q1 by gender

t = 5.0578, df = 96.938, p-value = 2.008e-06

alternative hypothesis:
true difference in means is not equal to 0

95 percent confidence interval:
0.6063427 1.3895656

sample estimates:

mean in group Female mean in group Male
3.978723 2.980769

The t.test function call above has two arguments, the formula and the data
frame to use.
The formula q4~gender is in the form dependent~independent. For details,
see Section 5.6.2, “Controlling Functions with Formulas.”

Instead of a formula, you can specify two variables to compare such as
t.test(x,y) and they can be selected using any of R’s many variable selection
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approaches. The data argument specifies the data frame to use only in the
case of a formula. So you might think that this form works:

t.test( q4[which(gender==’m’) ],
q4[which(gender==’f’) ], data=mydata100)

However, unless the data is attached, it does not! You would have to enter
attach(mydata100) before the function call above would work. Alternatively,
with an unattached data frame, you could leave off the data argument and
use the form

with(mydata100,
t.test( q4[ which(gender==’m’) ],

q4[ which(gender==’f’) ] )
)

or, you might prefer to use the subset function

t.test(
subset(mydata100, gender=="m", select=q4),
subset(mydata100, gender=="f", select=q4)

)

For more details see Chapter 9, “Selecting Variables and Observations.”
The results show that the mean for the females is 3.96 and for the males

is 2.98. The p-value of 2.748e−06, or 0.000002748, is much smaller than 0.05,
so we would reject the hypothesis that those means are the same.

Unlike Stata, R does not provide a test for homogeneity of variance
and two t-test calculations for equal and unequal variances. Instead, it pro-
vides only the unequal variance test by default. The additional argument,
var.equal=TRUE will ask it to perform the other test. See Section 17.7, for
that topic.

17.7 Equality of Variance

Stata offers tests for equality (homogeneity) of variance in its t-test and analy-
sis of variance procedures. R, in keeping with its minimalist perspective, offers
such tests in separate functions.

The Levene test for equality of variance is the most popular. John Fox’s
car package [12] contains the levene.test function.

> library("car")

> levene.test(posttest, gender)

Levene’s Test for Homogeneity of Variance
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Df F value Pr(>F)
group 1 0.4308 0.5131

97

The levene.test function has only two arguments of the form (var,
group). Its null hypothesis is that your groups have equal variances. If its
p-value is smaller than 0.05, you reject that hypothesis. So in the above case,
we would accept the hypothesis that the variances are equal.

Other tests for comparing variances are R’s built-in var.test and
bartlett.test functions.

17.8 t-Test: Paired or Repeated Measures

The goal of a paired t-test is to compare the mean of two correlated measures.
These are often the same measure taken on the same subjects at two different
times. Stata uses the same procedures for paired t-tests as for independent
samples t-tests. R does too.

The paired t-test’s assumptions are:

• The two measures are interval-level continuous data. If the data are only
ordinal (e.g., low-medium-high) consider the Wilcoxon signed-rank test.
For details see Section 17.10.

• The differences between the measures are normally distributed. You can
examine that with hist(posttest-pretest) or
qqnorm(posttest-pretest) as shown in the chapters on graphics. If
they are not, consider the Wilcoxon signed-rank test. For details see
Section 17.10.

• Other than the obvious pairing, observations are independent. For exam-
ple, if siblings were also in your data set, it would be important to take
that into account in a more complex model.

You can perform the paired t-tests in R using the t.test function. This
example assumes the data frame is attached.

> t.test(posttest, pretest, paired=TRUE)

Paired t-test

data: posttest and pretest
t = 14.4597, df = 99, p-value < 2.2e-16

alternative hypothesis:
true difference in means is not equal to 0
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95 percent confidence interval:
6.11708 8.06292

sample estimates:
mean of the differences

7.09

The t.test function call above has three main arguments.

1. The first variable to compare.
2. The second test variable to compare. The function will subtract this from

the first to get the mean difference. If these two were reversed, the p-value
would be the same, however the mean difference would be negative −7.09
and the confidence interval would be around that.

3. The paired=TRUE argument tells it that the two variables are correlated
rather than independent. It is extremely important that you set this option
for a paired test! If you forget this, it will perform an independent-groups
t-test instead.

The results show that the mean difference of 7.09 is statistically significant
with a p-value of 2.2e − 16 or 0.00000000000000022. So we would reject the
hypothesis that the means are the same.

17.9 Wilcoxon Mann-Whitney Rank Sum Test:
Independent Groups

The Wilcoxon rank sum test, also known as the Mann-Whitney U test, com-
pares two groups on the mean rank of a dependent variable that is at least
ordinal (e.g., low, medium, high).

In Stata this test is executed using the ranksum command.
The Wilcoxon-Mann-Whitney test’s assumptions are as follows:

• The distributions in the two groups must be the same, other than a shift
in location; that is, the distributions should have the same variance and
skewness. Examining a histogram is a good idea if you have at least 30
subjects. A box plot is also helpful regardless of the number of subjects in
each group.

• Observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

The wilcox.test function works very much like the t.test function.

> wilcox.test( q1~gender, data=mydata100 )

Wilcoxon rank sum test with continuity correction
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data: q1 by gender

W = 1841.5, p-value = 6.666e-06

alternative hypothesis: true location shift is not equal to 0

The wilcox.test function call above has two main arguments.

1. The formula q4~gender is in the form dependent~independent. For de-
tails, see Section 5.6.2, “Controlling Functions with Formulas.” Instead of
a formula, you can specify two variables to compare, such as wilcox.test
(x,y), and they can be selected using any of R’s many variable selection
approaches. See the examples in the Section 17.6.

2. The data argument specifies the data frame to use, if (and only if) you
are using a formula.

The p-value of 6.666e − 06 or 0.000006666 is less than 0.05, so we would
reject the hypothesis that the males and females have the same distribution
on the q4 variable. The median is the more popular measure of location to
report on for a nonparametric test, and we can apply that function to calculate
them using the aggregate function. Recall that aggregate requires its group
argument be a list or data frame.

> aggregate( q1, data.frame(gender),
+ median, na.rm=TRUE)

gender x

1 Female 4
2 Male 3

We see that the median of the females is 4 and the males is 3.

17.10 Wilcoxon Signed-Rank Test: Paired Groups

The goal of a Wilcoxon signed-rank test is to compare the mean rank of two
correlated measures that are at least ordinal (e.g., low, medium, high) in scale.
These are often the same measure taken on the same subjects at two different
times.

In Stata you can perform this test by creating a difference score and then
running that though the signrank command.

The assumptions of the Wilcoxon signed-rank test are as follows:

• The distribution of the difference between the two measures has a sym-
metric distribution.
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• Other than the obvious pairing, the observations are independent. For
example, if your data also contained siblings, you would want a more
complex model to make the most of that information.

This test works very much like the t.test function with the paired ar-
gument.

> wilcox.test(posttest, pretest, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: posttest and pretest

V = 5005, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

The wilcox.test function call above has three main arguments.

1. The first variable to compare.
2. The second variable to compare. The function will subtract this from the

first and then convert the difference to ranks.
3. The paired=TRUE argument tells it that the variables are correlated. Be

careful, as without this argument, it will perform the Wilcoxon rank sum
test for independent groups. That is a completely different test and it
would be inappropriate for correlated data.

The p-value of 2.2e−16 is less than 0.05, so we would reject the hypothesis
that the location difference is zero. As Dalgaard [9] pointed out, with a sample
size of 6 or fewer, it is impossible to achieve a significant result with this test.

The median is the more popular measure of location to report for a non-
parametric test and we can calculate them with the median function.

> median(pretest)

[1] 75

> median(posttest)

[1] 82

17.11 Analysis of Variance

An analysis of variance (ANOVA or AOV) tests for group differences on the
mean of a continuous variable divided up by one or more categorical factors.
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Stata has two commands that performs this analysis: oneway and anova.
Which you choose depends on the extent of the analysis you need. You can use
anova for repeated measures analysis as well as for the analysis of covariance.
The oneway command is primarily used for a one-way ANOVA as well as for
multiple comparison tests.

The assumptions of R’s ANOVA are as follows:

• The measure is interval-level continuous data. If the data are only ordinal
(e.g., low-medium-high), consider the Kruskal-Wallis test for a single factor
(i.e., one-way ANOVA).

• The measure is normally distributed. You can examine that assumption
with hist(myVar) or qqnorm(myvar), as shown in the chapters on graph-
ics. If they are not, consider the Kruskal-Wallis test.

• The observations are independent. For example, if each group contains
subjects that were measured repeatedly over time or who are correlated
(e.g., same family), you would want a more complex model to make the
most of that information.

• The variance of the measure is the same in each group.

We can get the group means using the aggregate function.

> aggregate( posttest,
+ data.frame(workshop),
+ mean, na.rm=TRUE)

workshop x
1 R 86.258
2 Stata 79.625
3 SPSS 81.720
4 SAS 78.947

Similarly, we can get variances by applying the var function.

> aggregate( posttest,
+ data.frame(workshop),
+ var, na.rm=TRUE)

workshop x
1 R 24.998
2 Stata 37.549
3 SPSS 19.543
4 SAS 73.608

You can see the variance for the Stata group is quite a bit higher than the
rest. Levene’s test will provide a test of significance for that.
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> levene.test(posttest, workshop)

Levene’s Test for Homogeneity of Variance

Df F value Pr(>F)
group 3 2.51 0.06337 .

95

---
Signif. codes: 0 ’***’0.001 ’**’0.01 ’*’0.05 ’.’0.1

The Levene test’s null hypothesis is that the variances do not differ. Since
it calculated a p-value of 0.06337, we can conclude that the differences in
variance are not significant.

The aov function calculates the analysis of variance.

> myModel <- aov( posttest ~ workshop, data=mydata100 )

The aov function call above has two arguments.

1. The formula posttest~workshop is in the form dependent~independent.
The independent variable must be a factor. See Section 5.6.2, “Controlling
Functions with Formulas,” for details about models with more factors,
interactions, nesting, and so forth.

2. The data argument specifies the data frame to use for the formula. If you
do not supply this argument, you can use any other valid form of variable
specification that tells it in which data frame your variables are stored
(e.g., mydata$postest~mydata$workshop).

We can see some results by printing myModel.

> myModel

Call:
aov(formula = posttest ~ workshop, data = mydata100)

Terms:
workshop Residuals

Sum of Squares 875.442 3407.548
Deg. of Freedom 3 95
Residual standard error: 5.989067

Estimated effects may be unbalanced
1 observation deleted due to missingness

Of course, the summary function has methods for ANOVA models; it prints
the same result.
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> anova(myModel)

Analysis of Variance Table

Response: posttest
Df Sum Sq Mean Sq F value Pr(>F)

workshop 3 875.4 291.8 8.1356 7.062e-05 ***
Residuals 95 3407.5 35.9

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Given the p-value of 7.062e − 05 or 0.00007062, we would reject the hy-
pothesis that the means are all the same. However, which ones differ? The
pairwise.t.test function provides all possible tests and corrects them for
multiple testing using the Holm method by default. In our case, we are doing
six t-tests, so the best (smallest) p-value is multiplied by 6, the next best by
5, and so on. This is also called a sequential Bonferroni correction.

> pairwise.t.test(posttest, workshop)
Pairwise comparisons using t tests with pooled SD

data: posttest and workshop

R Stata SPSS
Stata 0.00048 - -
SPSS 0.02346 0.44791 -
SAS 0.00038 0.71335 0.39468

P value adjustment method: holm

We see that the posttest scores are significantly different for R compared
to the other three. The mean scores for the other workshops do not differ
significantly among themselves.

An alternate comparison approach is to use Tukey’s HSD test. The
TukeyHSD function call below uses only two arguments: the model and the
factor whose means you would like to compare.

> TukeyHSD(myModel, "workshop")

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = posttest ~ workshop, data = mydata100)

$workshop
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diff lwr upr p adj
Stata-R -6.63306 -10.8914 -2.37472 0.00055
SPSS-R -4.53806 -8.7481 -0.32799 0.02943
SAS-R -7.31070 -11.8739 -2.74745 0.00036
SPSS-Stata 2.09500 -2.3808 6.57078 0.61321
SAS-Stata -0.67763 -5.4871 4.13185 0.98281
SAS-SPSS -2.77263 -7.5394 1.99416 0.42904

The “diff” column provides mean differences. The “lwr” and “upr” columns
provide lower and upper 95% confidence bounds, respectively. Finally, the “p
adj” column provides the p-values adjusted for the number of comparisons
made. The conclusion is the same: the R group’s posttest score differs sig-
nificantly from the others, but the others do not differ significantly among
themselves.

We can graph these results using the plot function (Fig. 17.2).

> plot( TukeyHSD(myModel, "workshop") )
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Fig. 17.2. A plot of the Tukey HSD test results showing the R group differing from
the other three workshops.



486 17 Statistics

The plot function also provides appropriate diagnostic plots (not shown).
These are the same plots shown and discussed in Section 17.5, “Linear
Regression.”

> plot(myModel)

You can perform much more complex ANOVA models in R, but they are
beyond the scope of this book. A good book on ANOVA is Pinheiro and Bates’
Mixed Effects Models in S and S-Plus [37].

17.12 Sums of Squares

In analysis of variance, Stata provides partial (Type III) sums of squares and
F-tests by default. Stata also provides sequential sums of squares and F-tests
as an option. R provides sequential ones in its built-in functions. For one-way
ANOVAs or for two-way or higher ANOVAS with equal cell sizes, there is no
difference between sequential and partial tests. However, in two-way or higher
models that have unequal cell counts (unbalanced models), these two sums of
squares lead to different F-tests and p-values.

The R community has a very strongly held belief that tests based on
partial sums of squares can be misleading. One problem with Type III tests
is that they test the main effect after supposedly partialing out significant
interactions. In many circumstances, that does not make much sense. See the
paper, Exegeses on Linear Models, by Venables [50] for details.

If you are sure you want Type III sums of squares, John Fox’s car package
will calculate them using its Anova function. Notice that the function begins
with a capital letter “A”! To run it, we must first load the car package from
the library.

> library("car")

Attaching package: ’car’
The following object(s) are masked from package:Hmisc :
recode

You can see from the above message that the car package also contains a
recode function that is now blocking access to (masking) the recode function
in the Hmisc package. We could have avoided that message by detaching Hmisc
first, but this is a good example of function masking and it does not affect
the function we need.

We use the Anova function with the type="III" argument to request the
sums of squares you need. Since our model is a one-way ANOVA, the results
are identical to those from the lowercase anova function that is built-in to R,
except that the p-values are expressed in scientific notation and the intercept,
the grand mean in this case, is tested.
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> Anova(myModel, type="III")

Anova Table (Type III tests)

Response: posttest

Sum Sq Df F value Pr(>F)
(Intercept) 230654 1 6430.4706 < 2.2e-16 ***
workshop 875 3 8.1356 7.062e-05 ***
Residuals 3408 95

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

To get reasonable Type III tests when doing more complex ANOVA mod-
els, it is important to set the contrasts option. The function call

options( contrasts=c("contr.sum", "contr.poly") )

is an example of this. See an R book devoted to analysis of variance for details.

17.13 The Kruskal–Wallis Test

The nonparametric equivalent to a one-way analysis of variance is the Kruskal-
Wallis test. The Kruskal-Wallis test compares groups on the mean rank of a
variable that is at least ordinal (e.g., low, medium, high). Stata offers it as
the kwallis command.

Its assumptions are as follows:

• The distributions in the groups must be the same, other than a shift in
location. This is often misinterpreted to mean that the distributions do
not matter at all. That is not the case. They do not need to be normally
distributed, but they do need to generally look alike. Otherwise the test
can produce a significant result if, for example, the distributions are skewed
in opposite directions but are centered in roughly the same place.

• The distributions should have roughly the same variance. Since the test re-
quires no particular distribution, there is no single test for this assumption.
Box plots are a good way to examine this assumption.

• The observations are independent. For example, if each group contains
subjects that were measured repeatedly over time or who are correlated
(e.g., same family), you would want a more complex model to make the
most of that information.

The following is an example that uses the nonparametric kruskal.test
function to compare the different workshops on the means of the q4 variable:
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> kruskal.test(posttest~workshop)

Kruskal-Wallis rank sum test

data: posttest by workshop

Kruskal-Wallis chi-squared=21.4448, df=3, p-value=8.51e-05

The kruskal.test function call above has two arguments.

1. The formula posttest~workshop is in the form dependent~independent.
For details, see Section 5.6.2.

2. The data argument specifies the data frame to use for the formula. If you
do not supply this argument, you can use any other valid form of variable
specification that tells it in which data frame your variables are stored
(e.g., mydata$postest~mydata$workshop).

The p-value of 8.51e−05 or 0.0000851 is smaller than the typical cutoff of
0.05, so you would reject the hypothesis that the groups do not differ. The next
question would be, “which of the groups differ?” The pairwise.wilcox.test
function answers that question. The only arguments we use below are the
measure and the factor, respectively.

> pairwise.wilcox.test(posttest, workshop)

Pairwise comparisons using Wilcoxon rank sum test

data: posttest and workshop

R Stata SPSS
Stata 0.0012 - -
SPSS 0.0061 0.4801 -
SAS 0.0023 0.5079 0.4033

P value adjustment method: holm

Warning messages:

1: In wilcox.test.default(xi, xj, ...) :
cannot compute exact p-value with ties

So we see that R workshop group differs significantly from the other three
and that the other three do not differ among themselves. The median is the
more popular measure to report with a nonparametric test. We can use the
aggregate function to apply the median function.

> aggregate( posttest,



17.14 Example Programs for Statistical Tests 489

+ data.frame(workshop),
+ median, na.rm=TRUE)

workshop x
1 R 86.0
2 Stata 78.5
3 SPSS 81.0
4 SAS 78.0

17.14 Example Programs for Statistical Tests

The R examples require installing the car, Gmodels and Hmisc packages. See
details in Chapter 2, “Installing and Updating R.”

17.14.1 Stata Program for Statistical Tests

* Filename: Statistics.do

* ---Various Statistics Commands---
use c:\myRfolder\mydata100, clear
* Show variable obs number, mean, sd, min, max for q1-q4
summ q*

* Same, with percentiles, variance, skew, kurtosis...
summ q*, detail

* Display statistics to use in other commands
return list

* Tabluation of gender and workshop,
* showing percentages of column and rows,
* and a fisher exact Chi2 test.
tab gender workshop, row col exact

* Create dummy or indicator variables
* q1_1, q1_2, q1_3, and q1_4 are created
tab q1, gen(q1_)

* Table of means, sd, min, and max values for q1-q4.
tabstat q1-q4, by(gender) stat(mean sd min max)

* meanq1 through meanq4 created with mean values of q1-q4
forvalues i = 1/4 {
egen meanq‘i’ = mean(q‘i’)
}
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* Correlations
corr q1 q4
corr q*

* Pairwise correlations, with *=sign at 0.05
pwcorr q*, star(.05)

* Linear regression of q4 on q1-q3
regress q4 q1-q3

* ANOVA table of above regression
regress q4 q1-q3, notab

* plot of leverage on normalized residuals
lvr2plot

* -----group comparisons--------

* T-test male vs female
ttest q1, by(gender) unpair unequ

* Paired tttest of pretest and posttest
ttest pretest = posttest

* Levene test for equality of variance
robvar posttest, by(gender)

* Two-sample variance-comparison test
sdtest posttest = gender

* ANOVA oF posttest on workshop
anova posttest workshop

* -----Non-parametric versions of above

* Wilcoxon signed-rank test or pretest and posttest
signtest pretest = posttest

* Kruskal-Wallis equality-of-populations rank test
kwallis posttest, by(workshop)

* Wilcoxon matched pairs test of posttest and workshop
signrank posttest = workshop
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* Two-sample Wilcoxon rank-sum (Mann-Whitney) test
ranksum posttest, by(gender)

* Pearson chi-squared test of the equality of medians
median posttest, by(gender)

* Fisher’s exact test of the equality of the medians
median posttest, by(gender) exact

17.14.2 R Program for Statistical Tests

# Filename: Statistics.R

setwd("/myRfolder")
load("mydata100.Rdata")
attach(mydata100)
options(linesize=64)

head(mydata100)

# --- Frequencies & Univariate Statistics ---

# The easy way using the Hmisc package.
library("Hmisc")
describe(mydata100)

# R’s build in function.
summary(mydata100)

# The flexible way using built-in functions.

table(workshop)
table(gender)

# Proportions of valid values.
prop.table( table(workshop) )
prop.table( table(gender) )

# Rounding off proportions.
round( prop.table( table(gender) ), 2 )

# Converting proportions to percents.
round( 100* ( prop.table( table(gender) ) ) )
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# Cumulative proportions.
cumsum( prop.table( table(posttest) ) )

# A Function to Mimic Stata Cum Proportions

# My original function, Score now called "x"
myTable <- function(X)
{
myDF <- data.frame( table(Score) )
myDF$Prop <- prop.table( myDF$Freq )
myDF$CumProp <- cumsum( myDF$Prop )
myDF
}
myTable(Score)

# Frequencies & Univariate
summary(mydata100)

# Means & Std Deviations
options(width=64)
sapply( mydata100[3:8], mean, na.rm=TRUE)
sapply( mydata100[3:8], sd, na.rm=TRUE)

# --- Crosstabulations---

# The easy way, using the gmodels package.
library("gmodels")
CrossTable(workshop, gender,
chisq=TRUE, format="SAS")

# The flexible way using built in functions.

# Counts

myWG <- table(workshop, gender)
myWG # Crosstabulation format.
myWGdata <- as.data.frame(myWG)
myWGdata # Summary or Aggregation format.

chisq.test(myWG)

# Row proportions.
prop.table(myWG, 1)
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# Column proportions.
prop.table(myWG, 2)

# Total proportions.
prop.table(myWG)

# Rounding off proportions.
round( prop.table(myWG, 1), 2 )

# Row percents.
round( 100* ( prop.table(myWG, 1) ) )

# Adding Row and Column Totals.

addmargins(myWG, 1)
addmargins(myWG, 2)
addmargins(myWG)

# ---Correlation & Linear Regression---

# The rcorr function from the Hmisc package

library("Hmisc")

rcorr(q1,q4)

myQs <- cbind(q1, q2, q3, q4)
rcorr(myQs, type="pearson")

# See just the P values.
options(digits=7)
myCorrs <- rcorr(myQs, type="pearson")
myCorrs$P

# See P values without scientific notation.
options(scipen=999) #Block scientific notation.
myCorrs$P
options(scipen=0) # Restore scientific notation.

# Spearman correlations using the Hmisc rcorr function.
rcorr( cbind(q1,q2,q3,q4), type="spearman" )

# The built-in cor function.
cor( data.frame(q1, q2, q3, q4),
method="pearson", use="pairwise")
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# The built-in cor.test function
cor.test(q1, q2, use="pairwise")

# Linear regression.
lm( q4 ~ q1 + q2 + q3, data=mydata100)

myModel <- lm( q4 ~ q1 + q2 + q3, data=mydata100 )
myModel
summary(myModel)
anova(myModel) #Same as summary result.

# Set graphics parameters for 4 plots (optional).
par( mfrow=c(2,2), mar=c(5,4,2,1)+0.1 )

plot(myModel)

# Set graphics parameters back to default settings.
par( mfrow=c(1,1), mar=c(5,4,4,2)+0.1 )

# Repeat the diagnostic plots and route them
# to a file.
postscript("LinearRegDiagnostics.eps")
par( mfrow=c(2,2), mar=c(5,4,2,1)+0.1 )
plot(myModel)
dev.off()
par( mfrow=c(1,1), mar=c(5,4,4,2)+0.1 )

myNoMissing <-
na.omit(mydata100[ , c("q1","q2","q3","q4") ] )

myFullModel <- lm( q4 ~ q1 + q2 + q3, data=myNoMissing)
myReducedModel <- lm( q4 ~ q1, data=myNoMissing)
anova( myReducedModel, myFullModel)

#---Group Comparisons---

# Independent samples t-test.
t.test( q1 ~ gender, data=mydata100)

t.test( q1[gender==’Male’], q1[gender==’Female’] )

# Paired samples t-test.
t.test(posttest, pretest, paired=TRUE)
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# Equality of variance.
library("car")
levene.test(posttest, gender)

var.test(posttest~gender)

# Wilcoxon/Mann-Whitney test.
wilcox.test( q1 ~ gender, data=mydata100)
# Same test specified differently.
wilcox.test( q1[gender==’Male’],

q1[gender==’Female’] )
aggregate( q1, data.frame(gender),
median, na.rm=TRUE)

# Wilcoxon signed rank test.
wilcox.test( posttest, pretest, paired=TRUE)
median(pretest)
median(posttest)

# Analysis of Variance (ANOVA).
aggregate( posttest,
data.frame(workshop),
mean, na.rm=TRUE)

aggregate( posttest,
data.frame(workshop),
var, na.rm=TRUE)

library("car")
levene.test(posttest, workshop)

myModel <- aov(posttest~workshop,
data=mydata100)

myModel

anova(myModel)
summary(myModel) #same as anova result.

# type III sums of squares
library("car")
Anova(myModel, type="III")

pairwise.t.test(posttest, workshop)

TukeyHSD(myModel, "workshop")
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plot( TukeyHSD(myModel, "workshop") )
# Repeat TukeyHSD plot and route to a file.
postscript("TukeyHSD.eps")
plot( TukeyHSD(myModel, "workshop") )
dev.off()

# Set graphics parameters for 4 plots (optional).
par( mfrow=c(2,2), mar=c(5,4,2,1)+0.1 )
plot(myModel)
# Set graphics parameters back to default settings.
par( mfrow=c(1,1), mar=c(5,4,4,2)+0.1 )

#Nonparametric oneway ANOVA using
# the Kruskal-Wallis test.
kruskal.test(posttest~workshop)

pairwise.wilcox.test(posttest, workshop)

aggregate( posttest,
data.frame(workshop),
median, na.rm=TRUE)
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Conclusion

As we have seen, R has many features in common with Stata. Both share rich
programming environments optimized for extensibility, functions open for you
to see and modify, and flourishing ecosystems of extensions written by their
devoted users.

R also has features that Stata lacks, such as a much wider selection of user-
written functions, its rich collection of data structures, functions that optimize
their output automatically for different data structures, and a flexibility that
extends all the way to the core of the system. You can change anything about
it you like.

R’s extreme flexibility may seem daunting to learn at first. However, its
many thousands of add-on packages and its free price make it well worth the
effort.

This book has covered how R compares to Stata and how you can do the
very same things in each. However, what we have not covered literally fills
many volumes. We hope this will start you on a long and successful journey
with R.

We also hope to improve this book as time goes on, so if there are
changes you would like to see in the next edition, please drop us a line at
muenchen.bob@gmail.com or jhilbe@aol.com. Negative comments are often
the most useful, so do not worry about being critical.

Have fun working with R!

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 497
and Computing, DOI 10.1007/978-1-4419-1318-0 18,
© Springer Science+Business Media, LLC 2010
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Glossary of R jargon

Below is a selection of common R terms defined first using Stata jargon (or
plain English when possible) and then more formally using R jargon. Some
definitions in Stata jargon are quite loose given the fact that they have no
direct analog of some R terms. Definitions in R terms are often quoted (with
permission) or paraphrased from S Poetry by Patrick Burns [3].

Apply
The process of having a command work on variables or observations.
Determines whether a procedure will act as a typical command or as a
function instead. Also the name of a function that controls that process.
More formally, the process of targeting a function on rows or columns.
Also a function that does that.

Argument
The options that control what the commands do and the arguments
that control what functions do. Confusing because in R, functions
do what both commands and functions do in Stata. More formally,
input(s) to a function that control it. Includes data to analyze.

Array
A matrix with more than two dimensions. All variables must be only
one type (e.g., all numeric or all character). More formally, a vec-
tor with a dim attribute. The dim controls the number and size of
dimensions.

Assignment function
Assigns values like the equal sign in Stata. The two-key sequence, “<-”,
that places data or results of procedures or transformations into a
variable or data set. More formally, the two-key sequence, “<-”, that
gives names to objects.

Atomic object
A variable whose values are all of one type, such as all numeric or all
character. More formally, an object whose components are all of one
mode. Modes allowed are numeric, character, logical, or complex.

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 499
and Computing, DOI 10.1007/978-1-4419-1318-0,
© Springer Science+Business Media, LLC 2010
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Attach
The process of adding a data set or add-on module to your path.
Attaching a data set appears to copy the variables into an area that
lets you use them by a simple component name like “gender” rather
than by using the $ format name like “mydata$gender.” Done using
the attach function. More formally, the process of adding a database
to your search list. Also a function that does this.

Attributes
Traits of a data set like its variable names and labels. More formally,
traits of objects such as names, class, or dim.

Class
An attribute of a variable or data set that a command used to change
its options automatically. More formally, the class attribute of an object
determines which method of a generic function is used when the object
is an argument in the function call.

Component
Like one data set stored in a zipped set of data sets. More formally, an
item in a list. The length of a list is the number of components it has.

CRAN
The Comprehensive R Archive Network at http://cran.r-project.
org/. An Internet archive like the Statistical Software Components
(SSC) Archive. Consists of a set of sites around the world called mirrors
that provide R and its add-on packages for you to download and install.

Data frame
A data set. More formally, a set of vectors bound together in a list.
They can be different modes or classes (e.g., numeric and character),
but they must have equal length.

Database
One data set or a set of them, or an add-on module. More formally, an
item on the search list or something that might be. Can be an R data
file or a package.

Dim
A variable whose values are the number of rows and columns in a data
set. It is stored in the data set itself. Also, a procedure that prints
or sets these values. More formally, the attribute that describes the
dimensions of an array. Also, the function that retrieves or changes
that attribute.

Element
A specific value for a variable. More formally, an item in a vector.

Extractor function
A postestimation command. More formally, a function that has meth-
ods that apply to modeling objects.

Factor
A categorical variable and its value labels. Value labels may be nothing
more than “1,” “2,”. . . , if not assigned explicitly. More formally, the

http://cran.r-project.org/
http://cran.r-project.org/
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type of object that represents a categorical variable. It stores its labels
in its levels attribute.

Function
A command and/or a function. When you apply it down through cases,
it is just like a Stata command. However, you can also apply it across
rows like a Stata function. More formally, an R program that is stored
as an object.

Generic function
A command or function that has different default options or arguments
set depending on the type of data you give it. More formally, a function
whose behavior is determined by the class of one or more of its argu-
ments. The class of the relevant argument(s) determines which method
the generic function will use.

Index
The order number of a variable in a data set or the subscript of a value
in a variable. In our practice data set gender is the second variable, so
its index is 2. Gender is mydata[ ,2]. The first index selects rows, the
second selects columns. If empty, it refers to all rows/columns. More
formally, the number of the component in a list or data frame, or of an
element in a vector.

Install
You install packages just like ado files, just once per version of R.
However, you must load it from the library every time you start R.
More formally, adding a package into your library.

Label
A procedure that creates variable labels. Also, a parameter that sets
value labels using the factor or ordered commands. More formally, a
function from the Hmisc package that creates variable labels. Also an
argument that sets factor labels using the factor or ordered functions.

Length
The number of observations/cases in a variable, including missing val-
ues, or the number of variables in a data set. More formally, a measure
of objects. For vectors, it is the number of its elements (including NAs).
For lists or data frames, it is the number of its components.

Levels
The values that a categorical variable can have. Actually stored as a
part of the variable itself in what appears to be a very short character
variable (even when the values themselves are numbers). More formally,
an attribute to a factor object that is a character vector of the values
the factor can have. Also an argument to the factor and ordered
functions that can set the levels.

Library
Where a given version of R stores its base packages and the add-on
modules you have installed. Also a procedure that loads a package
from the library into working memory. You must do that in every R
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session before using a package. More formally, a directory containing R
packages that is set up so that the library function can attach it. Also a
function that attaches a package from the library onto your search list.

List
Like a zipped collection of data sets that you can analyze easily without
unzipping. More formally, a set of objects of any class. Can contain
vectors, data frames, matrices and even other lists.

Load
Bringing a data set (or collection of data sets) from disk to memory.
You must do this before you can use data in R. Also the command
that performs that task, like the Stata use command. More formally,
bringing an R data file into your workspace. Also the function that
performs that task.

Matrix
A data set that must contain only one type of variable, e.g. all numeric
or character. More formally, a two-dimensional array; that is, a vector
with a dim attribute of length 2.

Method
The analyses and/or graphs that a procedure will perform by default,
that is different for different types of variables. The default settings for
some commands depend on the scale of the variables you provide. E.g.
summary(temperature) provides mean temperature, summary(gender)
counts males & females. More formally, a function that provides the
calculation of a generic function for a specific class of object.

Mode
A variable’s type such as numeric or character. More formally, a fun-
damental property of an object. Can be numeric, character, logical or
complex.

Modeling function
A command that performs estimation. More formally, a function that
tests association or group differences and usually accepts a formula
(e.g. y~x) and a data= argument.

Modeling objects
A model created by a modeling function.

NA
A missing value. Stands for N ot Available. See also NaN.

Names
Variable names. They are stored in a character variable that is a part
of a data set or variable. Since R can use an index number instead,
names are optional. Also a procedure that extracts or changes variable
names. More formally, an attribute of many objects that labels the
elements or components of the object. Also the function that retrieves
or sets this attribute.
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NaN
A missing value. Stands for N ot a Number. Something that is undefined
mathematically such as zero divided by zero.

NULL
An object you can use to drop variables or values. E.g. mydata$x ¡-
NULL drops the variable x from the data set mydata. More formally,
NULL has a zero length and no particular mode. Assigning it to an
object deletes it.

Numeric
A variable that contains only numbers. More formally, the atomic mode
that represents real numbers. This contains storage modes double, sin-
gle and integer.

Object
A data set, a variable or even the equivalent of a Stata command).
More formally, almost everything in R. If it has a mode, it is an object.
Includes data frames, vectors, matrices, arrays, lists and functions.

Object Oriented Programming
A style of software in which the output of a procedure depends on the
type of data you provide it. R has an object orientation, Stata added
it in version 11.

Option
A statement that sets general parameters, such as the width of each
line of output. More formally, settings that control some aspect of your
R session, such as the width of each line of output. Also a function that
queries or changes the settings.

Package
A set of ado-files, and related files, such as help, for each bundled
together. Like the packages at the SSC. May come with R or be written
by its users. More formally, a collection of functions and, optionally,
data objects.

R
A language and environment for statistical computing and graphics.
An implementation of the S language.

R-PLUS
A commercial version of R. It includes a graphical user interface,
context-sensitive editor and other features.

Replacement
A way to replace values. More formally, when you use subscripts on
the left side of an assignment to change the values in an object. E.g.
setting 9 to missing: x[x==9] <- NA

S
The language from which R evolved. R can run many S programs, but
S cannot use R packages.
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S3, S4
Used in the R help files to refer to different versions of S. The differences
between them are of importance mainly to advanced programmers.

Script
The equivalent of a do file. An R program.

Search list
Somewhat like an operating system search path for R objects. More
formally, the collection of databases that R will search, in order, for
objects.

S-PLUS
The commercial version of S. Mostly compatible with R but will not
run R packages. It includes graphical user interface and can analyze
“big data” that is larger than your computer’s main memory.

Subscript
Choosing variables or values by the order in which they appear or by
their name. More formally, the extraction or replacement of an object
using its index or name in square [brackets].

Vector
A variable. It can exist on its own in memory or it can be part of a
data set. More formally, a set of values that have the same mode, i.e.
an atomic object.

Workspace
A temporary work area in which all R computation happens. Data that
exists there will vanish if not saved to your hard drive before quitting
R. More formally, the area of your computer’s main memory where R
does all its work. Data must be loaded into it from files, and packages
must be loaded into it from the library, before you can use either.
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Comparison of Stata commands and R
functions

With over 3,000 add-on packages, many containing multiple procedures, R
can do almost everything that Stata can do and quite a bit more. People are
releasing new packages at a rapid pace and R can give you the latest count
with the following program.

The first function sets the repositories for R to search. A dialog box will
prompt you so you can select them all. Next, the available.packages func-
tion searches the Internet repositories for the packages that are currently
available, and stores their names in myPackageNames. Finally, the unique
function counts the number of unique package names.

> setRepositories()

(select all of the repositories it offers)
> myPackageNames <- available.packages()
> length(unique( rownames(myPackageNames) ))

[1] 3175

So at the time of publication, there were 3,175 add-on packages.
The table below focuses only on a small but important subset of areas.

Much more detailed information about R packages is available organized in
Task Views at http://cran.r-project.org/web/views/index.html. An-
other site to search by task is at http://biostat.mc.vanderbilt.edu/s/
finder/finder.html. Detailed information about most R packages is avail-
able at http://www.r-project.org/, choose CRAN, then choose a mirror, then
choose Packages.
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Table B.1. Comparison of Stata commands and functions to R functions.

Stata command or function R function (or package name)
* comment # comment
append rbind.fill (reshape); rbind
anova; oneway aov
bitest binom.test
ci confint
clear rm( list=ls() )
correlate cor, corr.test, corr (Hmisc)
describe attributes; str; ls.str; contents (Hmisc)
drop mydata["varname"]<-NULL
edit fix; edit
findit help.search
help help.start
help <topic> help(<topic>) or ?<topic>
include source
glm glm
graph plot; qplot (Hmisc); ggplot (Hmisc)
infile; infix read.table; read.csv; read.FWF
keep Select the variables using any technique.
kwallis kruskal.test
label values factor; ordered
label variables label (Hmisc)
list print; head; tail;
logistic glm(...family=binomial)
mean mean
merge merge
nbreg glm.nb()
ologit polr
outsheet write.table
poisson glm(...family=poisson)
predict predict
qnorm qqnorm
recode recode (car)
rename rename (reshape); names
regress lm
reshape reshape; melt/cast (reshape)
save save; save.image
set options
search help.search
ssc install.packages
signrank wilcox.test
sort order
sum sum
summarize summary
tab <x>, gen() factor, ordered
table CrossTable (gmodels); table
tabulate table
tabstat tapply; by; aggregate
ttest t.test
type file.show
update update.packages
use load
xtgee gee
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Automating Your R Setup

Stata has the profile.do file lets you automatically set options. R has a similar
file called .Rprofile. This file is stored in your initial working directory, which
you can locate with the getwd() function.

We will look at some useful things to automate in an .Rprofile.

C.1 Setting Options

In your .Rprofile, you can set options just as you would in R. I usually set
my console width to 64 so the output fits training examples better. I also ask
for five significant digits and tell it to mark significant results with stars. The
latter is the default, but since many people prefer to turn that feature off, I
included it. You would turn them off with a setting of FALSE.

options(width=64, digits=5, show.signif.stars=TRUE)

Enter help(options) for a comprehensive list of parameters that you can set
using the options function.

Setting the random number seed is a good idea if you want to generate
numbers that are random but repeatable. That is handy for training examples
in which you would like every student to see the same result. Here I set it to
the number 1234.

set.seed(1234)

The setwd function sets the working directory, the place that all of your
files will go if you do not specify a path.

setwd("/myRfolder")

Since I included the “/” in the working directory path, it will go to the
root level of my hard drive. That works in most operating systems. Note that
it must be a forward slash, even in Windows, which usually uses backward
slashes in filenames. If you leave the slash off completely, it will set it to be a
folder within your normal working directory.
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C.2 Creating Objects

We also like to define the set of packages that we install whenever we upgrade
to a new version of R. With these stored in myPackages, I can install them all
with a single function call. For details, see Chapter 2, “Installing and Updating
R.” This is the list of some of the packages used in this book.

myPackages <- c("car","hexbin","ggplot2",
"gmodels","gplots", "Hmisc",
"reshape","Rcmdr","prettyR")

C.3 Loading Packages

You can have R load load your favorite packages automatically too. This
is particularly helpful when setting up a computer to run R with a graphi-
cal user interface like R Commander. Loading packages at startup does have
some disadvantages though. It slows down your startup time, takes up mem-
ory in your workspace, and can create conflicts when different packages have
functions with the same name. Therefore, you do not want to load too many
this way.

Loading packages at startup requires the use of the local function. The
getOption function gets the names of the original packages to load and stores
them in a character vector I named myOriginal. I then created a second char-
acter vector, myAutoLoads, containing the names of the packages I want to
add to the list. I then combined them into one character vector, myBoth.
Finally, I used the options function to change the default packages to the
combined list of both the original list and my chosen packages:

local({
myOriginal <- getOption("defaultPackages")

# edit next line to be your list of favorites.
myAutoLoads <- c("Hmisc","ggplot2")

myBoth <- c(myOriginal,myAutoLoads)

options(defaultPackages = myBoth)
})

C.4 Running Functions

If you want R to run any functions automatically, you create your own single
functions that do the required steps. To have R run a function before all
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others, name it “.First.” To have it run the function after all others, name it
“.Last.” Notice that utility functions require a prefix of “utils::” or R will
not find them while it is starting up. The timestamp function is one of those.
It returns the time and date. The cat function prints messages. Its name
comes from the UNIX command “cat”. It is short for catenate (a synonym
for concatenate). In essence, we will use it to concatenate the timestamp to
your console output.

.First <- function()
{
cat("\n Welcome to R!\n")
utils::timestamp()
cat("\n")

}

You can also have R run any functions before exiting the package. I have it
turn off my graphics device drivers with the graphics.off function to ensure
that no files are left open.

I like to have it save my command history in case I later decide I should
have saved some of the commands to a script file. Below I print a farewell
message and then save the history to a file named myLatest.Rhistory.

.Last <- function()
{
graphics.off() #turns off graphics devices just in case.
cat("\n\n myCumulative.Rhistory has been saved." )
cat("\n\n Goodbye!\n\n")
utils::savehistory(file="myCumulative.Rhistory")

}

WARNING: Since the .First and .Last functions begin with a period,
they are invisible to the ls function by default. The function call

ls(all.names=TRUE)

will show them to you. Since they are functions, if you save a workspace
that contains them, they will continue to operate whenever you load that
workspace, even if you delete the .Rprofile! This can make it very difficult to
debug a problem until you realize what is happening. As usual, you can display
them by typing their names and run them by adding empty parentheses to
them:

.First()

If you need to delete them from the workspace, rm will do it with no added
arguments:

rm(.First,.Last)
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C.5 Example .Rprofile

The following is the .Rprofile with all of the above function calls combined.
You do not have to type this in; it is included in the book’s programs and
data files at http://r4stats.com.

# Startup Settings
# Place any R commands below.

options(width=64, digits=5, show.signif.stars=TRUE)
set.seed(1234)
setwd("/myRfolder")
myPackages <- c("car","hexbin","ggplot2",
"gmodels","gplots", "Hmisc",
"reshape","ggplot2","Rcmdr")

utils::loadhistory(file = "myCumulative.Rhistory")

# Load packages automatically below.

local({
myOriginal <- getOption("defaultPackages")

# Edit next line to include your favorites.
myAutoLoads <- c("Hmisc","ggplot2")
myBoth <- c(myOriginal,myAutoLoads)
options(defaultPackages = myBoth)

})

# Things put here are done first.
.First <- function()
{
cat("\n Welcome to R!\n")
utils::timestamp()
cat("\n")

}

# Things put here are done last.
.Last <- function()
{
graphics.off()
cat("\n\n myCumulative.Rhistory has been saved." )
cat("\n\n Goodbye!\n\n")
utils::savehistory(file="myCumulative.Rhistory")

}

http://r4stats.com


D

Example Simulation

The following examples are fully working program files. When run, they each
create the same synthetic logistic regression data set consisting of 50,000 ob-
servations and a response or dependent variable with two normally distributed
continuous predictors, x1 and x2. The values assigned to the predictors and
intercept are

x1 = 0.75 x2 = −1.25 intercept or constant = 3
The binary response, or dependent variable, is created using a binomial

random number generator, based on the linear predictor, xb, which is created
from the randomly generated data.

Once the data has been created, it is estimated using the GLM functions of
the two software applications. For details, see Joseph Hilbe’s article, Creation
of Synthetic Discrete Response Regression Models [22].

D.1 Stata Example Simulation

* Filename: GenerateLogit.do

clear
set obs 50000
set seed 13579
gen x1 = invnorm(runiform())
gen x2 = invnorm(runiform())
gen xb = 2 + 0.75*x1 - 1.25*x2
gen exb = 1/(1+exp(-xb))
gen by = rbinomial(1, exb)
glm by x1 x2, nolog fam(bin 1)
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D.2 R Example Simulation

# Filename: GenerateLogit.R

library(MASS)
x1 <- runif(50000)
x2 <- runif(50000)
xb <- 2 + .75*x1 - 1.25*x2
exb <- 1/(1+exp(-xb))
by <- rbinom(50000, size = 1, prob =exp)

lry <- glm(by ~ x1 + x2, family=binomial(link="logit"))
summary(lry)
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itors, Compstat 2002 — Proceedings in Computational Statistics, pages
575–580. Physica Verlag, 2002.

[30] Jim Lemon and Philippe Grosjean. prettyR: Pretty descriptive stats.
Available from http://cran.r-project.org, 2009.

[31] Thomas Lumley. biglm: Bounded Memory Linear and Generalized Linear
Models.
Available from http://CRAN.R-project.org, 2009. R package version 0.7.

[32] David Meyer, Achim Zeileis, and Kurt Hornik. vcd: Visualizing Categor-
ical Data.
Available from http://www.jstatsoft.org/v17/i03/, 2009. R package ver-
sion 1.2-3.

[33] Michael N. Mitchell. A Visual Guide to Stata Graphics, 2nd ed. Stata
Press, 2008.

[34] Robert A. Muenchen. R for SAS and SPSS Users. Springer, 2008.
[35] Paul Murrell. R Graphics. Chapman & Hall/CRC, 2005.
[36] Roger B. Newson. Rsource: Stata module to run r from inside stata using

an r source file, 2008.
Available from http://ideas.repec.org/c/boc/bocode/s456847.html.

[37] Jose C. Pinheiro and Douglas M. Bates. Mixed Effects Models in S and
S-Plus. Springer, 2002.

[38] R Development Core Team. R: A Language and Environment for Statis-
tical Computing.
Available from http://www.R-project.org, 2008.

[39] R Development Core Team. R Data Import/Export.
Available from http://www.R-project.org, 2008.

[40] Deepayan Sarkar. Lattice Multivariate Data Visualization with R.
Springer, 2007.

[41] Deepayan Sarkar. lattice: Lattice Graphics.
Available from http://CRAN.R-project.org, 2009. R package version
0.17-22.

[42] Gregory R. Warnes. Includes R source code and/or documentation con-
tributed by Ben Bolker, Thomas Lumley, , and Randall C Johnson. gmod-
els: Various R Programming Tools for Model Fitting.
Available from http://CRAN.R-project.org, 2009. R package version
2.15.0.

[43] Gregory R. Warnes. Includes R source code and/or documentation con-
tributed by (in alphabetical order) Ben Bolker, Lodewijk Bonebakker,
Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, Mar-
tin Maechler, Arni Magnusson, Steffen Moeller, Marc Schwartz, and Bill
Venables. gplots: Various R Programming Tools for Plotting Data.
Available from http://CRAN.R-project.org, 2009. R package version
2.7.1.



516 References

[44] Phil Spector. Data Manipulation with R (Use R). Springer, 2008.
[45] StataCorp. Base Reference Manual. Stata Press, 2009.
[46] StataCorp. Data-Management Reference Manual. Stata Press, 2009.
[47] Deborah F. Swayne, Duncan Temple Lang, Andreas Buja, and Dianne

Cook. GGobi: Evolving from XGobi into an extensible framework for
interactive data visualization. Computational Statistics & Data Analysis,
43:423–444, 2003.

[48] Duncan Temple Lang. The omegahat environment: New possibilities for
statistical computing. Journal of Computational and Graphical Statistics,
9(3), 2000.

[49] S. Urbanek and M Theus. High interaction graphics for r, 2003.
Available from http://rosuda.org/iPlots/iplots.html.

[50] W. N. Venables. Exegeses on linear models, 1998.
Available from http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.

[51] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S, 4th
ed. Springer, 2002.

[52] W. N. Venables, B. D. Ripley, and the R Core Development Team. An
Introduction to R. Springer, 2007.

[53] Hadley Wickham. Reshaping data with the reshape package. Journal of
Statistical Software, 21(12), 2007.

[54] Hadley Wickham. ggplot2: An Implementation of the Grammar of
Graphics.
Available from http://cran.r-project.org, 2008. R package version 0.8.1.

[55] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer,
2009.

[56] Leland Wilkinson, Graham Wills, Graham Wills, and Anonymous. The
Grammar of Graphics. Springer, 2005.

[57] Graham Williams. rattle: A Graphical User Interface for Data Mining
in R Using GTK. Available from http://rattle.togaware.com, 2008. R
package version 2.3.128.



Index

+ R prompt, 6

+ R operator, 168

+ Stata operator, 168

.GlobalEnv environment, 295

.RData files, 275

.Rprofile, 15, 32

.Rprofile R file, 507

$ notation, 59, 67, 128

$ prefixing by dataframe$, 128

%in% R operator, 126, 127, 149, 249

& R operator, 180

& Stata operator, 180

** R operator, 168

** Stata operator, 168

* R operator, 168

* Stata operator, 168

* Stata operator wildcard, 119

- Stata operator (dash), 119

.First R function, 509

.Last R function, 509

.Last.value. R object, 93

/ R operator, 168

/ Stata operator, 168

: R operator, 46, 121, 278

< R operator, 180

< Stata operator, 180

<- R operator, getting help on, 38

<= R operator, 180

<= Stata operator, 180

= Stata operator, 180

== R operator, 50, 125, 180

== Stata operator, 50

> R operator, 180

> R prompt, 6
> Stata operator, 180
>= R operator, 180
??, searching help with, 39
^ R operator, 127, 168
^ Stata operator, 168
9, 99, 999 as missing values, 188, 190

abbreviating argument names in R, 72
accuracy, of R, 4
adding variables to data sets, 214
add1 R function, 474
addition, 168
addmargins R function, 464
advantages, R vs. Stata, 3
aesthetics in ggplot2 package, 386
aggregated data sets

creating, 219
merging with original data, 222

aggregate R function, 219
compared to others, 232
getting group means for ANOVA, 482
getting group variances for ANOVA,

482
aggregation methods compared, 232
aggregation, tabular, 224
all keyword in Stata, 120
analysis of variance, 481
ANOVA, 481
anova R function, 77
anova Stata command, 481
antilogarithm, 168
AOV, 481
aov R function, 483
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appending data sets, 210

append Stata command, 210

apply R function, 174

ARFF, see Attribute-Relation File
Format

arguments, of a Stata command, 48

arguments, of an R function, 47, 48, 70

arrays, 63

as.character R function

converting factors, 260

as.data.frame R function, 249

for converting tables to dataframes,
462

as.data.frame R function, applied to
by objects, 230

as.factor R function, 256

as.list R function, 249

as.logical R function, 125

as.matrix R function, 173, 249

as.numeric R function, 180

converting factors, 260

as.vector R function, 249

attaching data frames, how it works,
296

attach R function, 129

when creating new variables, 170

used with data frames, 296

used with files, 298

how it works, 296

attribute-relation file format, 29

attributes R function, 292

automating settings, 507

bar plots

of means, using barplot R function,
326

bartlett.test R function, 478

batch submission

Linux or UNIX, 26

in R, 48

Windows, 26

Benford’s law, 29

biglm package, 305
binary version of R, 9

binding rows, 210

breaking a function call across two lines,
45

Buja, Andreas, 311

by objects, converting to data frames,
230

by processing, 228
by R function, 229

finding first or last observation per
group, 238

compared to others, 232
bysort Stata command, 243
by Stata operator, 228

calculations, simple, 46
car package, 18, 205, 477
car package, used with ANOVA, 486
Carr, Dan, 352
cast R function, 240
cbind R function, 60, 249

when creating new variable, 169
cd Stata command, 302
Chambers, John, vi
changing object class, 249
character factors, 254
character vector, 48
check.names argument, checking names

for validity, 269
chisq.test R function, 463
chop R function, 423
class of an R object, 73
class, converting, 249
class R function, 73, 76, 292

regarding factors, 254
Cleveland, W. S., 313
coersion

forcing mode change, 48
preventing in data.frame call, 58

colClasses argument, 99
colMeans R function, 174
colSums R function, 174
collapse Stata command, 219, 225
collapsing data sets, 219
colon R operator, 46
columns, of a data frame, 56
comma

importance when selecting observa-
tions, 141

importance when selecting variables,
124

commands, compared to functions, 172
commands, in Stata, 48
comment attribute, 266
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comment R function, 266
comments, to document programs, 69
complete.cases R function, 189
components of a list, 78
Comprehensive R Archive Networks, 9
concatenating data sets, 210
conditional transformations, 180

multiple, 183
contents R function, 40, 294
Contents SAS procedure, 294
continuing a function call on another

line, 45
controlling functions, 248
converting data structures, 247
converting factors into numeric or

character variables, 260
converting logical vector to numeric,

250
converting numeric vector to logical,

250
converting object class, 249
Cook, Dianne, 311
coordinate systems, defined in ggplot2

package, 386
correlate Stata command, 465
correlation, 465
cor R function

applied to a matrix, 62
cor.test R function, 469
CRAN, see Comprehensive R Archive

Network
CRAN R archive, 9
c R function, 249
CrossTable R function, 460
cross-tabulation, 460
crosstabular aggregation, 224
cumsum R function, 458
cut R function, 423
cut2 R function, 204
cumulative proportions, 458
cumulative sums, 458

Dahl, David, 272
dash, use of in Stata, 119
data

accessing in packages, 17
how R stores it, 305

data editor, 91
Data export to CSV, 114

data.frame R function, 57, 249
its impact on spaces in variable

names, 269
data frames, 56

creating, 56
selecting elements, 58

data generation, 277
data mining, 29
data, retrieving lost, 93
data R function, 17
data set, Stata, 56
data structures, 47
data structures, converting, 247
data transformations, 167
date, displaying in output, 509
deleting objects, see removing objects,

299
describe R function, 13
describe Stata command, 456
detach R function, 13, 129
detail Stata command, 456
digitssetting significant digits, 468
directory

working directory, 68
getting or extracting, 68
setting, 68

display Stata command, 46
division, 168
do loops, 167
dollar notation, 59, 67, 128
do.call R function, 249

converting by object to data frame,
232, 238

do Stata command, 25
dropping factor levels, 262
dropping variables, 209
drop1 R function, 474
drop Stata command, 209
duplicated R function, 235
duplicate observations, finding and

removing, 234
duplicates Stata command, 234

edit R function
when renaming variables, 196

egen Stata command, 167
egen Stata function, 176
elements, of a vector, 47
Elff, Martin, 270
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Emacs text editor, 24
environment, 295
escape

unrecognized, 68
example programs

for applying statistical functions, 178
for assigning missing values, 192
for by or split-file processing, 233
for collapsing/ aggregating data, 226
for collapsing/aggregating data, 226
for conditional transformations, 182
for exporting data from R to Stata,

117
for formatting output, 275
for generating data, 285
for graphics, traditional, 374
for joining/merging data sets, 217
for keeping and dropping variables,

210
for multiple conditional transforma-

tions, 185
for reading delimited text files, 100
for reading fixed-width text files

one record per case, 110
two or more records per case, 112

for reading text data within a
program, 104

for recoding variables, 208
for removing duplicate observations,

236
for renaming variables, 200
for reshaping data, 242
for selecting last observation per

group, 239
for selecting observations, 152
for selecting variables and observa-

tions, 162
for sorting data sets, 246
for stacking/Appending data sets,

213
for statistical tests, 489
for transforming variables, 171
for value labels or formats, 263
for variable labels, 270
for variable selection, 134
for writing comma-delimited files, 115
ggplot2, 436

exponentiation, 168
Exporting data to CSV, 114

exp R function, 168
exp Stata function, 168
extractor functions, advantages of, 77

facets, defined in ggplot2 package, 386
factor levels, dropping, 262
factor R function, 93, 253
factors, 51

character, 254
converting into numeric or character

variables, 260
converting variables to, 30
creating

from character vectors, 54
from numeric vectors, 51

file management, 291
fillin Stata command, 108
findit Stata command, 38
first observation per group, selecting,

237
Fisher’s exact test, 460
fisher.test R function, 460
fix R function

when renaming variables, 194
foreign package, 113
forest models, 30
format Stata command, 253
formulas, using short variable names

with, 130
Fox, John, 18, 205, 477, 486
Friendly, Michael, 315
functions

controlling with an object’s class, 73
controlling with arguments, 70
controlling with extractor functions,

75
controlling with formulas, 72
to comment out blocks of code, 70

functions, compared to commands, 172
functions, controlling, 248
functions, in R, 48
functions, writing your own, 81

generate Stata command, 277
generating a data frame, 285
generating continuous random numbers,

283
generating data, 277
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generating integer random numbers,
281

gen Stata command, 167

geoms, defined in ggplot2 package, 386

getOption R function, 508

getwd, 301

getwd R function, 68

GGobi, 29

GGobi software, 311

ggplot arguments and functions table,
389

ggplot2 package, 385

ggplot R function, 386

glob, 128

glob, global wildcard, 150

glob2rx R function, 150

global, 128

global, searching with, 150

GlobalEnv environment, 295

glob2rx R function, 128

gl R function for generating levels of
factors, 279

Gouberman, Alex, 311

gplots package, 370

grammar of graphics, 385

Graphical User Interfaces, 26

Java GUI for R, 30

R Commander, 26

Rattle, 29

graphics

arguments and functions, for ggplot2
package, 389

aspect ratio

using ggplot R function, 430

using qplot R function, 430

bar charts

for groups, using ggplot R function,
393

for groups, using qplot R function,
393

bar plot

horizontal, using barplot R
function, 322

bar plots

of counts, using barplot function,
319

of counts, using ggplot R function,
389

of counts, using qplot R function,
389

horizontal, using ggplot R function,
390

horizontal, using qplot R function,
390

presummarized data, using ggplot

R function, 396
presummarized data, using qplot R

function, 396
stacked, using barplot R function,

322
stacked, using ggplot R function,

391
stacked, using qplot R function,

391
for subgroups, using barplot

function, 324
using barplot R function, 319
using ggplot R function, 389
using qplot R function, 389

box plots
using boxplot R function, 368
using ggplot R function, 425
using plot R function, 368
using qplot R function, 425

colors, in traditional graphics, 327
density plots

using ggplot R function, 401
using qplot R function, 401

devices, 316
dot charts

using dotchart R function, 333
using ggplot R function, 397
using qplot R function, 397

dual-axes plots
using plot R function, 366

equations, adding to, 371
error bar plots

using ggplot R function, 428
using plotmeans R function, 370
using qplot R function, 428

functions
to add elements to existing

traditional plots, 347
GGobi software, 311
ggplot2 example programs, 436
grid graphics system, 316
hexbin plots
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using ggplot R function, 414
using hexbin R function, 352
using qplot R function, 414

histograms
using ggplot R function, 400
using hist R function, 333, 334
using qplot R function, 400

histograms, with density overlaid
using ggplot R function, 401
using qplot R function, 401

histograms overlaid
using ggplot R function, 404
using hist R function, 337
using qplot R function, 404

histograms, stacked
using ggplot R function, 403
using hist R function, 336
using qplot R function, 403

interaction plots
using interaction.plot R

function, 370
iplots package, 311
jpeg device driver, 317
labels, in ggplot2 graphics, 399
lattice package, 312, 316
legends, in traditional graphics, 327
line plots

using ggplot R function, 408
using plot R function, 347
using qplot R function, 408

logarithmic axes
using ggplot R function, 430
using qplot R function, 430

missing values’ effect on, 387
mosaic plots

using mosaicplot function, 324
using plot function, 324

multiple plots on a page
in ggplot2, 431
in traditional graphics, 330

normal QQ plot
using ggplot R function, 405
using qplot R function, 405
using qqnorm R function, 342
using qq.plot R function, 341

overview, 311
parameters

for both par and traditional
graphics functions, 347

demo plot in traditional graphics,
373

in ggplot2 graphics, 435
in ggplot2 package, 433
to set or query using only the par

function in traditional graphics,
345

in traditional graphics, 330, 372
for traditional high-level graphics

functions, 343
pdf device driver, 317
pictex device driver, 317
pie charts

using ggplot R function, 392
using pie R function, 331
using qplot R function, 392

plots by group or level, using ggplot

R function, 394
plots by group or level, using qplot

R function, 394
png device driver, 317
quartz device driver, 317
rattle package link to GGobi, 311
rggobi package, 311
saving plots to a file

in ggplot2 package, 433
scatter plot for correlation, 465
scatter plot matrices

using ggplot R function, 424
using plot R function, 364
using qplot R function, 424

scatter plots
using ggplot R function, 408
using plot R function, 347
using qplot R function, 408

scatter plots with confidence ellipse
using plot R function, 356

scatter plots with confidence and
prediction intervals

using plot R function, 357
scatter plots, with density contours

using ggplot R function, 413
using qplot R function, 413

scatter plots, faceted by group
using ggplot R function, 422
using qplot R function, 422

scatter plots, with fit lines
using ggplot R function, 415
using qplot R function, 415
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scatter plots by group or level
using plot R function, 354

scatter plots, with jitter
using ggplot R function, 410
using plot R function, 350
using qplot R function, 410

scatter plots, with labels as points
using ggplot R function, 420
using plot R function, 362
using qplot R function, 420

scatter plots, for large data sets
using ggplot R function, 411
using plot R function, 350
using qplot R function, 411

scatter plots, with linear fits by group
using ggplot R function, 422
using plot R function, 353
using qplot R function, 422

scatter plots, with reference lines
using ggplot R function, 416
using qplot R function, 416

scatter plots, with reference lines
added

using plot R function, 352
scatter plots, with symbols by group

using ggplot R function, 421
using qplot R function, 421

strip charts
using stripchart R function, 342

strip plots
using qplot R function, 405
using ggplot R function, 405

systems, compared to procedures, 315
titles, in ggplot2 graphics, 399
titles, in traditional graphics, 327
traditional, 312
windows device driver, 317
win.meta device driver, 317
x11 device driver, 317

grid graphics system, 316
Grosjean, Philippe, 12, 177, 270
gsort Stata command, 243
GUI, see Graphical User Interfaces

Harrell, Frank, 10, 40, 113, 204, 266,
294, 454

head R function, 17, 292
help

for R data sets, 42

for R functions, 37
for R functions that call other

functions, 40
for R packages, 41
via mailing lists, 42

help.search R function, 38
help.start R function, 38
hexbin package, 352
hexbin R function, 352
history file in R, 305
history, of R work, 21, 23, 24
hist R function, 466
Hmisc package, 266
Hmisc package, 10, 13, 40, 113, 204, 294,

454
Hornik, Kurt, 315
HTML output, 272

ifelse R function, 180
if Stata command, 119
IF Stata option, 139
importing data

from Stata, 113
imputation, 30
include Stata command, 104
index values, generating from variable

names, 132
indexing, 120

data frames, 58
lists, 66
matrices, 62
vectors, 50

indices, see indexing
input Stata command, 102
installed.packages R function, 12
install.packages R function, 15
in Stata command, 119
in Stata operator, 127, 145
in Stata option, 149
interaction.plot R function, 370
interactive mode in R, 48
iplots package, 311
I() R function, 387
is.data.frame R function, 248
is.na R function, 177
is.vector R function, 248

Java GUI for R, 30
jpeg R function, 317
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JGR, 30
join, full outer, 217
join, inner, 217
joining data sets, 214
journal, Stata file, 23

keeping variables, 209
keep Stata command, 209
Koenker, Roger, 275
kruskal.test R function, 487
Kuhn, Max, 275
kwallis Stata command, 487

label data Stata command, 42
label Stata command, 266
lappy R function, 175
last observation per group, selecting,

237
LaTeX output, 272
latex.table R function, 275
lattice package, 312, 316
Lawerence, Michael, 311
Lecoutre, Eric, 275
Leisch, Friedrich, 275
Lemon, Jim, 12, 177, 270
length

of data frame components, 56
length R function, 176
length Stata function, 176
levene.test R function, 482
Levine test, 477
Lewin-Koh, Nicholas, 352
library

loading packages with, 12
showing installed packages, 12

linear regression, 470
linesize, controlling in R, 46
linestyle Stata option, 315
Linux, R versions for, 9
list R function, 249
lists, 63

creating, 63
related to data frames, 63
selecting elements, 66

list Stata command, 37, 48
lm R function, 470
loadhistory R function, 21, 23, 24, 305
loading data subsets, 162
load R function, 21, 22, 24, 162, 302

local R function, 508
log file in Stata, 305
logarithm, 167
logical operators, 180
log R function, 168
log10 R function, 168
log Stata function, 168
log10 Stata function, 168
long format data sets, 240
ls R function, 67, 291

applied to search path, 295
Lumley, Thomas, 305

Mac OS, R versions for, 9
macro substitution, 109
macros, writing in R, 81
Maechler, Martin, 352
managing files and workspace, 291
Mann-Whitney U test for independent

groups, 479
mapply R function, 178
margins, adding to cross-tabulations,

464
masked objects, 13
masking objects, 297
MASS package, 474
matching data sets, 214
mathematical operators, 168
matrices, see matrix
matrix, 56, 60

creating, 60
selecting elements, 62
stored in a data frame or list, 62

matrix R function, 60, 249
McNemar test, 460
mcnemar.test R function, 460
mean R function, 71

applied to a matrix, 62
getting group means for ANOVA, 482
help file, 39

median R function, 176
melt R function, 240
memisc package, 270
merge_all R function, 217
merge R function, 216
merge Stata command, 214
merging data sets, 214
merging, data with aggregates, 222
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merging more than two data frames at
once, 217

methods, 248
Meyer, David, 315
Microsoft Word, 275
Minard, Charles Joseph, 313
missing values, 48, 49, 186

9, 99, 999 as missing codes, 190
finding observations with none, 189
substituting means, 188

mode, 48
character, 48

mode of an R object, 73
model selection, stepwise. . . , 474
multiplication, 168
Murrell, Paul, 312, 316

NA, not available or missing, 48, 49,
186

na.rm argument, 49
names R function, 123, 127, 197, 292

used with which, 133
names, rules for in R, 45
na.omit R function, 189
na.strings argument for reading

missing values, 187
ncol R function, 123
nesting function calls, 167
Newson, Roger, 3
nonparametric analysis of variance, 487
NULL R object, 209

objects, 69
changing class, 249

objects R function, 67, 291
observations

advanced selection methods, 151
saving selections to data frame, 152
selecting all, 140
selecting in Stata, 139
selecting using subset function, 150
selecting using index number, 140
selecting using logic, 145
selecting using row names, 143
selecting using string search, 148
selection example R program, 153
selection example Stata program, 153

observations, renaming, 200
observations, selecting, 139

observations, selecting first or last per
group, 237

observations, StataS, 56
ODBC, see Open Database Connectiv-

ity
odfWeave package, 275
ODS, see Output Delivery System
OMS, see Output Management System
oneway Stata command, 481
Open Database Connectivity, 29
Open Document Format, 275
OpenOffice, 275
operators, logical, 180
operators, mathematical, 168
options R function

at startup, 507
setting significant digits, 468

options, setting automatically, 507
options Stata command, 46
ordered R function, 257
order R function, 243
outliers, 30
outreg2 Stata command, 272
outtex Stata command, 272

packages
accessing data in, 17
conflicts among, 13
detaching, 15
installing, 10
uninstalling, 15

pairwise.t.test R function, 484
pairwise.wilcox.test R function, 488
paste R function, 124, 199
path, 295
pdf R function, 317
pictex R function, 317
pie charts

using ggplot R function, 399
using qplot R function, 398

plot R function, 77
for correlations, 465
testing linearity, 470
used to plot ANOVA diagnostics, 486
used to plot multiple comparisons,

485
png R function, 317
postestimation Stata commands, 470
predict R function, 77, 475
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prettyR package, 12, 13, 177, 270
printing

components of a list, 81
printing the contents of lm objects, 78
print R function, 37, 48, 292
profile.do Stata file, 507
prompt characters, R, 6
proportions, row, column, total, 463
prop.table R function, 458, 463
pwcorr Stata command, 465

qplot arguments and functions table,
389

qplot R function, 385
qqnorm R function, 466
quantreg package, 275
quartz R function, 317
quickplot R function, 386

R Commander, 26
R-help mailing list, 42
random number generation

continuous, 283
data frames, 285
integer, 281

range R function, 222, 230
ranksum Stata command, 479
rattle package

for data mining, 311
link to GGobi, 311

rbind R function, 210, 249
converting by object to data frame,

231
rbind.fill R function, 212
rcorr R function, 466
reading data within a program, 102
reading delimited text files, 93
reading Stata data sets, 113
reading text files

skipping columns, 99
two or more records per case, 111

reading text files, tab-delimited, 96
read.table R function, 94, 109

reading factors, 254
setting missing values, 187

recode R function, 205
recode Stata command, 204
records, 56
regression, 30

linear, 470
regress Stata command, 470
regular expression, when searching for

object names, 292
reliability, of R, 4
remove.packages R function, 15
remove R function, 69, 299
removing objects, 69, 299
rename R function, 194
rename Stata command, 194
renaming observations, 200
renaming variables, 194

by column name, 198
by index, 197
many sequentially numbered names,

199
repeated measures data sets, 240
repositories, selecting, 15
rep R function, 280
reshape package, 194, 212, 217, 240
reshape Stata command, 240
reshaping data sets, 240
resid R function, 77
retrieving lost data, 93
rggobi package, 311
R2HTML package, 275
Ripley, B.D, 474
rm R function, 69, 299

in relation to dropping variables, 209
rnorm R function, 283
rolling up data, 219
rounding off, 168
rounding off decimals, 458
round R function, 168, 458

applied to cross-tabulations, 464
round Stata function, 168
rowMeans R function, 174
row names, 58

changing, 200
setting in data editor, 92

row.names R function, 58, 92, 149, 151,
200

rownonmiss Stata function, 176, 177
RSiteSearch R function, 43
rows, of a data frame, 56
rowSums R function, 174
rpart R function, 204
runif R function, 283
running R
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in batch mode, 25
interactively, 19

sapply R function, 176
Sarkar, Deepayan, 312, 313
savehistory, 305
savehistory R function, 21, 23, 24
save.image R function, 21, 22, 24, 69,

302
when creating new variables, 171

saveold Stata command, 113
save R function, 69, 162, 302

when creating new variables, 171
saving data subsets, 162
saving selected variables to a data

frame, 133
saving your work, 67
scales, defined in ggplot2 package, 386
scientific notation, 453
scipen R option, 453
sd R standard deviation function, 176
sd Stata function, 176
search path, 295
searching for R packages or functions,

43
search R function, 295
selecting

data frame components, 58
list components, 66
matrix elements, 62
vector elements, 50

selecting observations, 139
all, 140
example R program, 153
example Stata program, 153
saving to data frame, 152
in Stata, 139
using subset function, 150
using advanced methods, 151
using index numbers, 140
using logic, 145
using row names, 143
using string search, 148

selecting variables
all variables, 120
saving to a data frame, 133
in Stata, 119
using $ notation, 128
using attach R function, 129

using subset R function, 131
using with R function, 130
using column name, 123
using formulas, 130
using index number, 120
using list index, 132
using logic, 124
using R’s with function, 130
using simple name, 129
using string search, 126

selecting variables and observations, 157
seq R function, 278
sessionInfo R function, 43
setRepositories R function, 16
set.seed R function, 278, 281
setwd R function, 68, 302
shortcuts, use in Windows, 304
signrank Stata command, 480
signtest Stata command, 480
sink R function, 24
sorting

controlling order, 245
dangers of, 56
data frames, 243
on more than one variable, 245

sort Stata command, 243
source code for R, 9
source R function, 104
split-file processing, 228
split R function, 210
sqrt R function, 168
sqrt Stata function, 168
square root, 168
SSC Stata archive, 9
stacking data sets, 210
star wildcard operator in Stata, 119
stata.get R function, 113, 114
Statistical Software Components

Archive, 9, 10
statistics

analysis of variance, 481
aov R function, 483
Bartlett test for equality of variance,

478
chisq.test R function, 463
correlation, 465
cor.test R function, 469
cross-tabulation, 460
descriptive, 454
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equality of variance, 477

Fisher’s exact test, 460

frequencies, 454

group means, 482

group variances, 482

homogeneity of variance for ANOVA,
482

Kruskal-Wallis test, 487

Levine test for homogeneity of
variance, 477

Mann-Whitney U test for independent
groups, 479

McNemar’s test, 460

model selection, stepwise. . . , 474

pairwise.t.test R function for
multiple comparisons, 484

pairwise.wilcox.test R function,
488

percentages, 458

postestimation in Stata, 470

proportions, 458, 463

prop.table R function, 458

rcorr R function, 466

regression

linear, 470

predicting with new data, 475

rounding off decimals, 458

summary R function, compared to
describe R function, 456

sums of squares, different types, 486

t-test

for independent groups, 476

for paired groups, 478

TukeyHSD R function for multiple
comparisons, 484

Wilcoxon rank sum test for
independent groups, 479

Wilcoxon Signed-Rank Test

for paired groups, 480

statistics, defined in ggplot2 package,
386

stepAIC R function, 474

step R function, 474

stepwise model selection, 474

str R function, 292

stringsAsFactors argument, 58

stringsAsFactors argument to
data.frame R function, 254

stringsAsFactors argument to
read.fwf R function, 109

subscripting, 120
subset R function, 133, 157, 477

selecting both variables and
observations, 157

selecting observations, 150
selecting variables, 131

subtraction, 168
summarization methods compared, 232
summarized data sets

creating, 219
merging with original data, 222

summarize Stata command, 120, 454,
456

sum R function
when used for counting, 177

sums of squares, different types, 486
Support Vector Machines, 30
SVM, see Support Vector Machines
Sweave R function, 275
Swayne, Deborah F., 311
symbolstyle Stata option, 315

t-test
for independent groups, 476
for paired groups, 478

table R function, 49, 225
applied to a matrix, 62
compared to others, 232
for cross-tabulation, 462

tables
adding row/column totals, 464
calculating chi-squared on, 463
converting to percents, 464
converting to proportions, 463

tabular aggregation, 224
tabulate Stata command, 49, 224, 454,

456, 459, 460, 462
tail R function, 17, 292
tapply R function, 221

compared to others, 232
technical support, 42
technical support, for R, 4
Temple Lang, Duncan, 311
textConnection R function, 104
text files, tab-delimited, 96
Theus, Martin, 311
time, displaying in output, 509
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timestamp R function, 509
transcript of R work, 24
transformations, 167

multiple conditional, 183
single conditional, 180

transform R function, 168, 297
tree models, 30
t.test R function

for independent groups, 476
for paired groups, 478

ttest Stata command, 476, 478
TukeyHSD R function, 484
Type III sums of squares, 486
type, of a variable, 48

unclass R function, 78, 249
undeleting data using .Last.value R

function, 93
uninstalling

R, 15
an R package, 15

unique R function, 234
unlist R function, 249
update.packages R function, 14
updating R installation, 14
Urbanek, Simon, 311

valid.n R function, 177
value labels, 253
value label Stata command, 253
variables

saving selection to a data frame, 133
selecting all variables, 120
selecting in Stata, 119
selecting using $ notation, 128
selecting using attach R function,

129
selecting using subset R function,

131
selecting using with R function, 130
selecting using column name, 123
selecting using formulas, 130
selecting using index number, 120
selecting using list index, 132
selecting using logic, 124
selecting using simple name, 129
selecting using string search, 126

variables, Stata, 56
var R function, 176

getting group variances for ANOVA,
482

var.test R function, 478
vignette R function, 44
vector arithmetic, 167
vectors, 47

analyzing, 49
creating, 47
selecting elements, 50

Venable, W.N., 474
Venables, W.N., 486
visualization, 29

Warnes, Gregory, 370
Weaston, Steve, 275
which R function, 151, 159, 184, 249

used with names, 133
Wichtrey, Tobias, 311
Wickham, Hadley, 194, 212, 240, 311,

313, 387
wide format data sets, 240
width, of output in R, 46
Wilcoxon test

for paired groups, 480
Wilcoxon test for independent groups,

479
wildcard, 128

searching with, 150
Williams, Graham, 29, 311
windows R function, 317
win.meta R function, 317
Windows, R versions for, 9
within R function, 168
with R function, 130

compared to within, 168
working directory, 68
working directory, getting and setting,

301
workspace, 67
workspace management, 291
write.csv R function, 114
write.foreign R function, 116

x11 R function, 317
xtable function, 272
xtable package, 272

Zeileis, Achim, 315


	1441913173
	R for Stata Users
	Preface
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview
	1.2 Similarities Between R and Stata
	1.3 Why Learn R?
	1.4 Is R Accurate?
	1.5 What About Tech Support?
	1.6 Getting Started Quickly
	1.7 Programming Conventions
	1.8 Typographic Conventions

	2 Installing and Updating R
	2.1 Installing Add-on Packages
	2.2 Loading an Add-on Package
	2.3 Updating Your Installation
	2.4 Uninstalling R
	2.5 Choosing Repositories
	2.6 Accessing Data in Packages

	3 Running R
	3.1 Running R Interactively on Windows
	3.2 Running R Interactively on Macintosh
	3.3 Running R Interactively on Linux or UNIX
	3.4 Running Programs That Include Other Programs
	3.5 Running R in Batch Mode
	3.6 Graphical User Interfaces
	3.6.1 R Commander
	3.6.2 Rattle for Data Mining
	3.6.3 JGR Java GUI for R


	4 Help and Documentation
	4.1 Introduction
	4.2 Help Files
	4.3 Starting Help
	4.4 Help Examples
	4.5 Help for Functions That Call Other Functions
	4.6 Help for Packages
	4.7 Help for Data Sets
	4.8 Books and Manuals
	4.9 E-mail Lists
	4.10 Searching the Web
	4.11 Vignettes

	5 Programming Language Basics
	5.1 Introduction
	5.2 Simple Calculations
	5.3 Data Structures
	5.3.1 Vectors
	5.3.2 Factors
	5.3.3 Data Frames
	5.3.4 Matrices
	5.3.5 Arrays
	5.3.6 Lists

	5.4 Saving Your Work
	5.5 Comments to Document Your Programs
	5.6 Controlling Functions (Commands)
	5.6.1 Controlling Functions with Arguments
	5.6.2 Controlling Functions with Formulas
	5.6.3 Controlling Functions with an Object's Class
	5.6.4 Controlling Functions with Extractor Functions

	5.7 How Much Output is There?
	5.8 Writing Your Own Functions (Macros)
	5.9 R Program Demonstrating Programming Basics

	6 Data Acquisition
	6.1 The R Data Editor
	6.2 Reading Delimited Text Files
	6.2.1 Reading Comma-Delimited Text Files
	6.2.2 Reading Tab-Delimited Text Files
	6.2.3 Missing Values for Character Variables
	6.2.4 Trouble with Tabs
	6.2.5 Skipping Variables in Delimited Files
	6.2.6 Example Programs for Reading Delimited TextFiles

	6.3 Reading Text Data Within a Program
	6.3.1 The Easy Approach
	6.3.2 The More General Approach
	6.3.3 Example Programs for Reading Text Data Within a Program

	6.4 Reading Fixed-Width Text Files, One Record per Case
	6.4.1 Macro Substitution
	6.4.2 Example Programs for Reading Fixed-Width Text Files, One Record Per Case

	6.5 Reading Fixed-Width Text Files, Two or More Records per Case
	6.5.1 Example Programs to Read Fixed-Width Text Files with Two Records per Case

	6.6 Importing Data from Stata into R
	6.6.1 R Program to Import Data from Stata

	6.7 Writing Data to a Comma-Delimited Text File
	6.7.1 Example Programs for Writing a Comma-Delimited File

	6.8 Exporting Data from R to Stata

	7 Selecting Variables
	7.1 Selecting Variables in Stata
	7.2 Selecting All Variables
	7.3 Selecting Variables Using Index Numbers
	7.4 Selecting Variables Using Column Names
	7.5 Selecting Variables Using Logic
	7.6 Selecting Variables Using String Search
	7.7 Selecting Variables Using $ Notation
	7.8 Selecting Variables Using Component Names
	7.8.1 The attach Function
	7.8.2 The with Function
	7.8.3 Using Component Names in Formulas

	7.9 Selecting Variables with the subset Function
	7.10 Selecting Variables Using List Index
	7.11 Generating Indexes A to Z from Two Variable Names
	7.12 Saving Selected Variables to a New Dataset
	7.13 Example Programs for Variable Selection
	7.13.1 Stata Program to Select Variables
	7.13.2 R Program to Select Variables


	8 Selecting Observations
	8.1 Selecting Observations in Stata
	8.2 Selecting All Observations
	8.3 Selecting Observations Using Index Numbers
	8.4 Selecting Observations Using Row Names
	8.5 Selecting Observations Using Logic
	8.6 Selecting Observations Using String Search
	8.7 Selecting Observations Using the subset Function
	8.8 Generating Indexes A to Z from Two Row Names
	8.9 Variable Selection Methods with No Counterpart for Selecting Observations
	8.10 Saving Selected Observations to a New Data Frame
	8.11 Example Programs for Selecting Observations
	8.11.1 Stata Program to Select Observations
	8.11.2 R Program to Select Observations


	9 Selecting Variables and Observations
	9.1 The subset Function
	9.2 Selecting Observations by Logic and Variables by Name
	9.3 Using Names to Select Both Observations and Variables
	9.4 Using Numeric Index Values to Select Both Observations and Variables
	9.5 Using Logic to Select Both Observations and Variables
	9.6 Saving and Loading Subsets
	9.7 Example Programs for Selecting Variables and Observations
	9.7.1 Stata Program for Selecting Variables and Observations
	9.7.2 R Program for Selecting Variables and Observations


	10 Data Management
	10.1 Transforming Variables
	10.1.1 Example Programs for Transforming Variables

	10.2 Functions or Commands? The apply Function Decides
	10.2.1 Applying the mean Function
	10.2.2 Finding N or NVALID
	10.2.3 Example Programs for Applying StatisticalFunctions

	10.3 Conditional Transformations 
	10.3.1 Example Programs for ConditionalTransformations

	10.4 Multiple Conditional Transformations
	10.4.1 Example Programs for Multiple Conditional Transformations

	10.5 Missing Values
	10.5.1 Substituting Means for Missing Values
	10.5.2 Finding Complete Observations
	10.5.3 When ``99'' Has Meaning
	10.5.4 Example Programs to Assign Missing Values

	10.6 Renaming Variables (and Observations)
	10.6.1 Renaming Variables---Advanced Examples
	10.6.2 Renaming by Index
	10.6.3 Renaming by Column Name
	10.6.4 Renaming Many Sequentially Numbered Variable Names
	10.6.5 Renaming Observations
	10.6.6 Example Programs for Renaming Variables

	10.7 Recoding Variables
	10.7.1 Recoding a Few Variables
	10.7.2 Recoding Many Variables
	10.7.3 Example Programs for Recoding Variables

	10.8 Keeping and Dropping Variables 
	10.8.1 Example Programs for Keeping and Dropping Variables

	10.9 Stacking/Appending Data Sets
	10.9.1 Example Programs for Stacking/AppendingData Sets

	10.10 Joining/Merging Data Sets
	10.10.1 Example Programs for Joining/Merging Data Sets

	10.11 Creating Collapsed or Aggregated Data Sets
	10.11.1 The aggregate Function
	10.11.2 The tapply Function
	10.11.3 Merging Aggregates with Original Data
	10.11.4 Tabular Aggregation
	10.11.5 The reshape Package
	10.11.6 Example Programs for Collapsing/AggregatingData

	10.12 By or Split-File Processing
	10.12.1 Comparing Summarization Methods
	10.12.2 Example Programs for By or Split-file Processing

	10.13 Removing Duplicate Observations
	10.13.1 Example Programs for Removing Duplicate Observations

	10.14 Selecting First or Last Observations per Group
	10.14.1 Example Programs for Selecting Last Observation per Group

	10.15 Reshaping Variables to Observations and Back
	10.15.1 Example Programs for Reshaping Variables to Observations and Back

	10.16 Sorting Data Frames
	10.16.1 Example Programs for Sorting Data Sets

	10.17 Converting Data Structures
	10.17.1 Converting from Logical to Numeric Indexand Back


	11 Enhancing Your Output
	11.1 Value Labels or Formats (and Measurement Level)
	11.1.1 Character Factors
	11.1.2 Numeric Factors
	11.1.3 Making Factors of Many Variables
	11.1.4 Converting Factors into Numeric or Character Variables
	11.1.5 Dropping Factor Levels
	11.1.6 Example Programs for Value Labels or Formats

	11.2 Variable Labels
	11.2.1 Variable Labels in The Hmisc Package
	11.2.2 Long Variable Names as Labels
	11.2.3 Other Packages That Support Variable Labels
	11.2.4 Example Programs for Variable Labels

	11.3 Output for Word Processing and Web Pages
	11.3.1 The xtable Package
	11.3.2 Other Options for Formatting Output
	11.3.3 Example Programs for Formatting Output


	12 Generating Data
	12.1 Generating Numeric Sequences
	12.2 Generating Factors
	12.3 Generating Repetitious Patterns (Not Factors)
	12.4 Generating Integer Measures
	12.5 Generating Continuous Measures
	12.6 Generating a Data Frame
	12.7 Example Programs for Generating Data
	12.7.1 Stata Program for Generating Data
	12.7.2 R Program for Generating Data


	13 Managing Your Files and Workspace
	13.1 Loading and Listing Objects
	13.2 Understanding Your Search Path
	13.3 Attaching Data Frames
	13.4 Attaching Files
	13.5 Removing Objects from Your Workspace
	13.6 Minimizing Your Workspace
	13.7 Setting Your Working Directory
	13.8 Saving Your Workspace
	13.8.1 Saving Your Workspace Manually
	13.8.2 Saving Your Workspace Automatically

	13.9 Getting Operating Systems to Show You ``.RData'' Files
	13.10 Organizing Projects with Windows Shortcuts
	13.11 Saving Your Programs and Output
	13.12 Saving Your History
	13.13 Large Data Set Considerations
	13.14 Example R Program for Managing Filesand Workspace

	14 Graphics Overview
	14.1 Stata Graphics
	14.2 R Graphics
	14.3 The Grammar of Graphics
	14.4 Other Graphics Packages
	14.5 Graphics Procedures and Graphics Systems
	14.6 Graphics Devices
	14.7 Practice Data: mydata100

	15 Traditional Graphics
	15.1 Bar Plots
	15.1.1 Bar Plots of Counts
	15.1.2 Bar Plots for Subgroups of Counts
	15.1.3 Bar Plots of Means

	15.2 Adding Titles, Labels, Colors, and Legends
	15.3 Graphics Parameters and Multiple Plots on a Page
	15.4 Pie Charts
	15.5 Dot Charts
	15.6 Histograms
	15.6.1 Basic Histograms
	15.6.2 Histograms Stacked
	15.6.3 Histograms Overlaid

	15.7 Normal QQ Plots
	15.8 Strip Charts
	15.9 Scatter Plots and Line Plots
	15.9.1 Scatter plots with Jitter
	15.9.2 Scatter plots with Large Data Sets
	15.9.3 Scatter plots with Lines
	15.9.4 Scatter plots with Linear Fit by Group
	15.9.5 Scatter plots by Group or Level (Coplots)
	15.9.6 Scatter plots with Confidence Ellipse
	15.9.7 Scatter plots with Confidence and PredictionIntervals
	15.9.8 Plotting Labels Instead of Points
	15.9.9 Scatter plot Matrices

	15.10 Dual-Axes Plots
	15.11 Box Plots
	15.12 Error Bar Plots
	15.13 Interaction Plots
	15.14 Adding Equations and Symbols to Graphs
	15.15 Summary of Graphics Elements and Parameters
	15.16 Plot Demonstrating Many Modifications
	15.17 Example Program for Traditional Graphics
	15.17.1 Stata Program for Traditional Graphics
	15.17.2 R Program for Traditional Graphics


	16 Graphics with ggplot2
	16.1 Introduction
	16.1.1 Overview qplot and ggplot
	16.1.2 Missing Values
	16.1.3 Typographic Conventions

	16.2 Bar Plots
	16.2.1 Pie Charts
	16.2.2 Bar Charts for Groups

	16.3 Plots by Group or Level
	16.4 Presummarized Data
	16.5 Dot Charts
	16.6 Adding Titles and Labels
	16.7 Histograms and Density Plots
	16.7.1 Histograms
	16.7.2 Density Plots
	16.7.3 Histograms with Density Overlaid
	16.7.4 Histograms for Groups, Stacked
	16.7.5 Histograms for Groups, Overlaid

	16.8 Normal QQ Plots
	16.9 Strip Plots
	16.10 Scatter Plots and Line Plots
	16.10.1 Scatter Plots with Jitter
	16.10.2 Scatter Plots for Large Data Sets
	16.10.3 Hexbin Plots
	16.10.4 Scatter Plots with Fit Lines
	16.10.5 Scatter Plots with Reference Lines
	16.10.6 Scatter Plots with Labels Instead of Points
	16.10.7 Changing Plot Symbols
	16.10.8 Scatter Plot with Linear Fits by Group
	16.10.9 Scatter Plots Faceted for Groups
	16.10.10 Scatter Plot Matrix

	16.11 Box Plots
	16.12 Error Bar Plots
	16.13 Logarithmic Axes
	16.14 Aspect Ratio
	16.15 Multiple Plots on a Page
	16.16 Saving ggplot2 Graphs to a File
	16.17 An Example Specifying All Defaults
	16.18 Summary of Graphic Elements and Parameters
	16.19 Example Programs for ggplot2

	17 Statistics
	17.1 Scientific Notation
	17.2 Descriptive Statistics
	17.2.1 The Hmisc describe Function
	17.2.2 The summary Function
	17.2.3 The table Function and Its Relatives
	17.2.4 The mean Function and Its Relatives

	17.3 Cross-Tabulation
	17.3.1 The CrossTable Function
	17.3.2 The tables and chisq.test Functions

	17.4 Correlation
	17.4.1 The cor Function

	17.5 Linear Regression
	17.5.1 Plotting Diagnostics
	17.5.2 Comparing Models
	17.5.3 Making Predictions with New Data

	17.6 t-Test: Independent Groups
	17.7 Equality of Variance
	17.8 t-Test: Paired or Repeated Measures
	17.9 Wilcoxon Mann-Whitney Rank Sum Test: IndependentGroups
	17.10 Wilcoxon Signed-Rank Test: Paired Groups
	17.11 Analysis of Variance
	17.12 Sums of Squares
	17.13 The Kruskal--Wallis Test
	17.14 Example Programs for Statistical Tests
	17.14.1 Stata Program for Statistical Tests
	17.14.2 R Program for Statistical Tests


	18 Conclusion
	Glossary of R jargon
	Comparison of Stata commands and R functions
	Automating Your R Setup
	C.1 Setting Options
	C.2 Creating Objects
	C.3 Loading Packages
	C.4 Running Functions
	C.5 Example .Rprofile

	Example Simulation
	D.1 Stata Example Simulation
	D.2 R Example Simulation

	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





